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In the preceding Comment [1], Hanninen raised a criticism
against the results obtained in my paper “Reconnection of
quantized vortex filaments and the Kolmogorov spectrum” [2].
Let me state several counterarguments to his remarks.

I would like to start with the last sentence in the abstract of
the Comment, “Therefore, we find the suggestion misleading
that the Kolmogorov spectrum in superfluids arises from
the reconnection of vortices.” In fact, the main (although
not unique) suggestion of my work was somewhat different.
Indeed, it was that the spectrum E(k) close to the Kolmogorov
dependence E(k) ∝ k−5/3, which was observed in a number
of numerical simulations on the dynamics of quantized vortex
filaments and which was held in the interval of the order of one
decade for around k ≈ 2π/δ, may appear from reconnecting
lines. And, arising out of this, the main claim was that
the numerical works (cited as [21–26] in [2]), reporting
on the Kolmogorov-type spectrum, cannot be considered as
rigorous and definite evidence of the quasiclassic behavior
of quantum turbulence. I want to stress once again that due
to the extremely great importance of the underlying physical
problem (interpretation of the classical turbulence in terms of
quantized vortex lines), all arguments and evidence should be
carefully scrutinized, and any result which offers dependence
close to k−5/3 should be alarming. This clarification, first of
all, shifts the accents, and secondly, changes the requests to
my results; that is, if there are any variants of generating the
dependence E(k) ∝ k−5/3, different from the vortex bundles
structure, they can affect our vision of the quasiclassic behavior
of quantum turbulence (see discussion in [3]).

The second issue, which has been touched on in the Com-
ment by Hanninen, concerns the self-energy of vortex filament
and its contribution into the energy spectrum. Calculation of
the spectrum in [2] was implemented with the use of equation

E(k) = ρsκ
2

(2π )2

∮ ∮
s′(ξ1)s′(ξ2)dξ1dξ2

sin(k|s(ξ1) − s(ξ2)|)
k|s(ξ1) − s(ξ2)| ,

(1)

where only the interaction terms have been considered, i.e., ξ1

and ξ2 belong to different lines participating in the reconnec-
tion process. Hanninen noticed that the majority of the kinetic
energy is contained in the self-energy term, which appeared
from integration along the same line. This contribution has
a characteristic spectrum of 1/k, and exceeds the suggested
Kolmogorov-type spectrum E(k) ∝ k−5/3, arising from the
interacting term. In particular, in Ref. [3], Hanninen wrote:
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“The self-energy term at the contact (reconnection) point does
not vanish, rather it is the interaction energy which exactly
cancels the self-terms, but this occurs only at the contact
point and does not change the general conclusions presented
here.” Let me comment on this conclusion. Of course, the
full annihilation occurs in the contact point. However, the
behavior of touching curves (see Fig. 1 in [2]) is such that
neighboring points remain very close to each other. The shape
of contacting lines is crucial for the form of the spectrum,
as was proved in the section “Analytical consideration” of
paper [2]. It is easy to illustrate the said above in the 2D case. In
this case the spectrum can be written as: E(k) = ρsvkv−k/2 =
ρsωkω−k/2k2 (this follows, e.g., from the observation that in
k space the vorticity ω obeys ωk = k × vk, and k · vk = 0
due to incompressibility). Putting a vortex-antivortex pair in
points a = (a,0) and −a = (−a,0) on the xy plane, and using
that ωk = (κ/2π )

∫
[δ(r − a) − δ(r + a)] exp(−ik · r)d2r =

(κ/2π )[exp(−ik · a) − exp(ik · a)], we get for the en-
ergy spectrum E(k) = (ρsκ

2/2π2k2) sin2(k · a). The one-
dimensional spectral density E(k) in k space is obtained by
integrating over the azimuthal angle

E(k) = ρsκ
2

2πk
[1 − J 0(2ka)]. (2)

It is seen that when the vortex-antivortex pair annihilates
(a = 0), the full energy vanishes, E = 0. However, the effect
of screening remains also for small a, since for the small
argument 2ka, the expansion for the Bessel function is
J0(2ka) ≈ 1 − (ka)2. Thus, we see that for small separation,
the effect of the self-energy disappears, and one-dimensional
spectral density E(k) (2) is entirely determined by the
intervortex distance. This consideration allows one to assert
that for collapsing lines, the main contribution to the energy
spectrum comes from interacting terms.

In the case of many (N ) vortices with circulation κi =
±κ , placed in points ri,rj , formula (2) is generalized to the
following form (see, e.g., [4], and references therein):

E(k) = ρs

2πk

N∑
i=1,j=1

κiκjJ0(k|ri − rj |). (3)

Following paper [5] we introduce N -vortex distribution
density for a system of N vortices

f (t,r(1),....,r(N)) =
〈

N∏
m=1

δ(xm(t) − rm)

〉
, (4)

where xm(t) is the trajectory of the m vortex. In the case
of the neutral configuration of vortices, consisting of an
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equal number of vortices (N/2), which have opposite signs
(“vortex plasma”), and in the case of uniform distribution
(f = const), the averaged spectrum 〈E(k)〉 → 0 [just due
to the antisymmetry of expression (3) over indices i,j ]. Of
course, because of the strong interaction between vortices
the fully uniform distribution is not possible. Due to the
involved dynamics the some structure (vortex clusters in the
2D case, bundles of collapsing lines in the 3D case) can
appear, which determines the properties of 2D turbulence and
generates nontrivial energy spectra. But as for the contribution
from self-energy, the “ . . . cancellation of the far-field velocity
profiles for length scales exceeding the largest intervortex
separation in any neutral configuration of vortices.” is very
probable (see [4]). Resuming, we can assert, that screening
and averaging diminish the contribution of self-energy from
remote lines into spectrum 〈E(k)〉.

In the three-dimensional case, the similar consideration is
more involved; however, we suppose that this line of reasoning
is also valid, i.e., the main contribution into spectral density
〈E(k)〉 appears from the interaction of collapsing filaments,
and the shape of lines near the contact point is of crucial
importance for the final result.

In my eyes, the misunderstanding appears from the straight-
forward use of formula (1). This formula, although convenient
for the evaluation of spectra, includes in the latent form the
preliminary averaging both over an ensemble and angle (see,
e.g., [6,7]). For this reason it does not take into account both
the screening and the averaging effects. Therefore, one has
to treat this formula with precaution, otherwise, indeed, the
wholespectrum would be 1/k. The possible confirmation of
that would be the fact that the power-law spectrum close to the
k−5/3, arising from reconnection lines, had been discussed by
other authors, who accomplished calculations with the use of
a quite different technique (see, e.g., [8–11].

Another issue, touched on in the Comment, is related to
the role of the time averaging over the interval, when vortices

approach each other to reconnect. This problem is tightly
related to the second motivation of my paper, namely, to the
role of hydrodynamic collapse in the formation of turbulent
spectra. That is an important topic, which is intensively
being discussed in the nonlinear physics society. The striking
example of such type of spectra is the Phillips spectrum for
water-wind waves, created by white caps—wedges of water
surface. Despite the fact that the formation of cups requires the
finite time (just as the reconnection of vortex filaments), as was
shown in experiments (see, e.g., [12]) the Phillips spectrum
is really observed for some intervals of wave numbers. The
reason for this behavior could be the following: the formation
of coherent structures usually occurs in a self-similar manner.
This means that at any given time at the appropriate scales
the formation of the required gradients takes place. At larger
times, the formation of the steeper gradients on smaller scales
occurs. Thus, each collapse (here reconnection) leads to the
formation of power-law behavior for all the characteristic times
of the collapse formation, involving the greater and greater
values of k. Of course, the area uninvolved in the collapses
continues to evolve in a regular manner, perhaps on a weakly
turbulent scenario. In our case this scenario corresponds to
those parts of the vortex lines uninvolved in the collapses,
evolving according to their (extremely complicated) dynam-
ics, but it concerns large scales (small k � 2π/δ) spectra.
Thus, the two processes must coexist, and there is some
crossover, but the according problem is very hard and is not
resolved yet.

I thank the author of the Comment, R. Hanninen, who
attracted the attention of the quantum fluids society to
really important and actual issues in the theory of quantum
turbulence. I also thank E. Kuznetsov and S. Nazarenko for
their comments and useful discussion. The work was supported
by Grant No. 14-29-00093 from RSCF (Russian Scientific
Foundation).
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