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Comment on “Reconnection of quantized vortex filaments and the Kolmogorov spectrum”
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In this Comment we would like to emphasize that in Phys. Rev. B 90, 104506 (2014) the calculated energy
spectrum takes into account only the small interaction (cross) term and, additionally, this term is only calculated
at the instant when the two vortices reconnect. The majority of the kinetic energy is contained in the self-energy
term which has a characteristic spectrum of 1/k. If this, and the additional average over time, is taken into
account the suggested Kolmogorov-type k−5/3 spectrum is likely not visible in the kinetic energy spectrum which
contains both terms. Therefore, we find the suggestion misleading that the Kolmogorov spectrum in superfluids
arises from the reconnection of vortices.
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I. INTRODUCTION

In classical turbulent fluids, the famous Kolmogorov en-
ergy spectrum E(k) ∝ k−5/3 is one of the most well-known
indications of the energy flux through different length scales,
until dissipation becomes important at the smallest scales.
In superfluids the viscosity is zero and due to quantization
of the vorticity a similar Kolmogorov-type cascade is only
possible at scales larger than the intervortex distance. A
classical-like spectrum is typically, but not always, explained
by the formation of vortex bundles of different size that can
mimic classical turbulence at scales larger than the intervortex
spacing [1]. In Ref. [2] a k−5/3 spectrum is suggested to result
from the reconnection of two vortices. We argue that this
conclusion is rather misleading due to the omitted terms, and
also because a proper time average is omitted.

II. ENERGY SPECTRUM FROM LINE VORTICES

At scales larger than the vortex core, quantized vortices
can be approximated using the vortex filament model where
the superfluid velocity is given by the Biot-Savart law. The
(incompressible) kinetic energy spectrum (averaged over the
solid angle for the k vector) can be written in the form given
in Ref. [2]:

E(k) = ρsκ
2

(2π )2

∮ ∮
ŝ′(ξ1) · ŝ′(ξ2)

sin(k|s(ξ1)−s(ξ2)|)
k|s(ξ1)−s(ξ2)| dξ1dξ2,

(1)
where s(ξ ) describes the vortex location with the unit tangent
ŝ′(ξ ). In the equation both line integrals sweep the whole vortex
tangle [in Ref. [2] the two vortices (1) and (2)], described by the
arc length ξ . Here one needs to assume that the vortices form
closed loops. In Ref. [2] the author states that “I calculated
only the interaction energy between the approaching parts of
different lines; the self-energy in the vicinity of the point
of contact vanishes, since the lines are antiparallel.” This
means that the calculated energy only contains the integrand
where ξ1 and ξ2 belong to the different vortices. However,
the self-energy term where ξ1 and ξ2 belong to the same
vortex is nonzero everywhere, the dominant part coming when
ξ1 ≈ ξ2, also near the contact point [3]. This contribution to
the energy is generally the most important one but is left
totally unnoticed in Ref. [2]. The self-energy term is present
in the experiments which trace the total energy distribution

and it has been included in the spectrum when analyzing the
previous vortex filament simulations. It produces the known
result for the energy spectrum at length scales smaller than the
average intervortex distance, giving E(k) ∝ 1/k, i.e., loosely
speaking, it results from the spectrum of a straight vortex which
generates a velocity field vs = κ/(2πr)φ̂ around its core. The
amplitude of the energy spectrum at large k is simply given by
the vortex length. This is also true even if the vortices support
Kelvin waves (helical distortions) [4–6]. We have additionally
analyzed the total energy spectrum for reconnecting vortex
rings, the situation described and otherwise analyzed in
Ref. [7], and only found the 1/k spectrum at length scales
smaller than the initial ring radius. In many early numerical
simulations with the vortex filament model this asymptotic
limit is poorly derived [8–10].

In the vortex filament simulations the k−5/3 spectrum is
realized on scales larger than the intervortex distance, not
around it as stated in Ref. [2]. The only simulations where
the Kolmogorov-like spectrum extends to scales smaller than
the intervortex distance are Gross-Pitaevskii calculations [11].
There the big question is the effect of the compressibility and
the existence of sound waves, which complicate the analysis.
Even though this spectrum might be an indication of the
Kelvin-wave cascade, a more plausible explanation is given
in Ref. [12], and references therein.

Since the integrand of the self-energy term brings a similar
contribution to the energy spectrum as the integrand of the
interaction term at the contact point, one may easily estimate
that the interaction term, after integration, is at least a/L times
smaller than the self-energy term, where a is the curvature
radius at the tip and L is the total length of the vortices which
here can be chosen to be of the same order as the intervortex
distance. One should expect that a/L � 1. Additionally,
since the steady state energy spectrum is an average over
time, one should average over a time window where the
minimum distance between the two tips varies between 0 and
intervortex distance. Since this minimum distance behaves like
dmin = A

√|t − trec|, where trec is the instant of reconnection,
the time window where the interaction term is dominant is
only a small fraction around trec of the total time window.
This is a further reason that the k−5/3 spectrum from the
interaction term is likely to be nonresolvable and masked by
the dominant 1/k spectrum originating from the self-energy
term.
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Finally we note that one should be careful when using
Eq. (1) to calculate the energy spectrum for vortex configu-
rations that are not closed loops, as in the example of Ref.
[2]. This gives results which are erroneous at scales around the
system size and larger. Here the system size can be taken as the
intervortex distance δ ≈ 1 (the author is using dimensionless
units).

III. CONCLUSIONS

The search for the k−5/3 spectrum in superfluids originates
mainly from the many similarities found between classical flu-
ids and superfluids. Currently the Kolmogorov-type spectrum
is only supported by a few numerical simulations illustrating
that at length scales larger than the intervortex distance the
superfluid mimics classical fluids. A proper explanation is still
missing. At length scales smaller than the intervortex distance
the Kelvin-wave cascade has been suggested to produce the

k−5/3 spectrum for the energy [13]. However, also in this case
the spectrum is not for the total kinetic energy, but only for the
energy related to the Kelvin waves. If one takes into account
the spectrum from the straight vortex one realizes that the total
spectrum will be much closer to 1/k, as emphasized, e.g.,
in Refs. [4,5]. Here, in Ref. [2], the suggested k−5/3 spectrum
resulting from the shape of the reconnection kinks at the instant
when two antiparallel vortices reconnect at one point, is also
likely to be dominated by the self-energy term that was omitted
in the analysis.
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