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Variational cluster approach to s-wave pairing in heavy-fermion superconductors
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We study s-wave Cooper pairing in heavy-fermion systems. We analyze the periodic Anderson model by means
of the variational cluster approach (VCA) focusing on the interorbital Cooper pairing between a conduction
electron (c electron) and an f electron, called the “c-f pairing.” It is shown that the s-wave superconductivity
appears coexisting with long-range antiferromagnetic order when electrons or holes are doped into the system
at half filling. The antiferromagnetic order vanishes when the doping concentration exceeds a certain critical
value, leading to a pure s-wave superconducting state. Moreover, the comparative study with different reference
systems used in the VCA shows that the interorbital c-f pairing is essential for the appearance of the s-wave
superconductivity.
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I. INTRODUCTION

Heavy-fermion systems have provided opportunities to
study various types of superconductivity. For example, the Ce-
based compound CeCoIn5 has two kinds of superconducting
states, one of which observed in higher magnetic fields is
a strong candidate for the Fulde-Ferrell-Larkin-Ovchinnikov
state with finite center-of-mass momentum of the Cooper pairs
[1]. In superconductors without inversion symmetry, such
as CePt3Si and CeRhSi3, the exotic parity mixing between
spin-singlet and spin-triplet states is expected to occur due
to the existence of the antisymmetric spin-orbit interaction
[2–4]. The coexistence of superconductivity and long-range
magnetic order has been observed in several ferromagnets
(UGe2, URhGe, etc.) as well as in several antiferromegnets
(UPd2Al3, UNi2Al3, etc.) [4]. A variety of experimental and
theoretical efforts have been devoted to understanding those
exotic states.

Superconductivity with simple s-wave pairing symmetry
is another intriguing phenomenon in heavy-fermion systems.
Usually, heavy-fermion superconductors favor the nodal pair-
ing states, such as the d-wave and p-wave states, rather than
the s-wave state. This is because the strong Coulomb repulsion
in those systems is incompatible with intrasite Cooper pairing,
which gives the nodal d-wave and p-wave states. In fact,
nuclear resonance [NMR and nuclear quadrupole resonance
(NQR)] experiments have demonstrated that many of the
heavy-fermion superconductors possess the nodal supercon-
ducting gaps [4–6]. On the other hand, some heavy-fermion
compounds, such as CeRu2 [7–11], CeCo2 [12], and the
recently reinvestigated CeCu2Si2 [13], are known to exhibit
s-wave superconductivity. In the BCS theory, such s-wave
superconductivity is explained as a result of the electron-
phonon attraction between electrons. However, as mentioned
above, heavy-fermion compounds have the strong Coulomb
repulsion, which is considered as the dominant interaction
between electrons. Thus, the s-wave superconductivity in those
compounds may come from another mechanism.
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The multiorbital nature is one of the characteristic features
of heavy-fermion systems, which are composed of itinerant
electrons in the conduction orbitals (c electrons) and localized
electrons in the f orbitals (f electrons). The correlation be-
tween c and f electrons leads to various intriguing phenomena,
such as the Kondo effect [4,14], quantum critical behavior
[15–17], and magnetic orderings due to the Ruderman-Kittel-
Kasuya-Yosida interaction [14,18]. Recently, the importance
of such orbital degrees of freedom has also been recognized in
the studies of superconductivity in the other strongly correlated
electron systems. For example, the material dependence in the
critical temperature of cuprates has been explained by using the
multiorbital Hubbard models [19]. Moreover, the multiorbital
nature is considered to be the key for understanding the high-Tc

superconducting properties in iron pnictides [20]. Previous
studies [21–23] suggested that the multiorbital nature can be a
source of s-wave superconductivity in heavy-fermion systems.
Hanzawa and Yosida [21] and Spałek [22] discussed the
interorbital Cooper pairing between c and f electrons, which
we call the “c-f pairing,” as a possible mechanism for s-wave
superconductivity. They estimated the order of the critical
temperature in the periodic Anderson model with infinitely
large Coulomb repulsion. More recently, the present authors
[23] also studied the c-f pairing for finite Coulomb repulsion,
and presented a mean-field phase diagram of the s-wave
superconducting state. Note, however, that the mean-field
approximation cannot properly describe local charge, spin, and
orbital fluctuation effects, which are crucial in heavy-fermion
systems. Thus more sophisticated treatment is required to
achieve a deeper understanding of the nature of the interorbital
pairing.

In this paper, we use the variational cluster approach (VCA)
[24] to study s-wave superconductivity in heavy-fermion
systems. The VCA can properly take into account the local
Coulomb repulsion [25,26] and allows us to deal with various
long-range orders, such as charge-density-wave [27], d-
wave superconducting [28,29], and antiferromagnetic [30,31]
orders. Here, we apply the VCA to the standard periodic
Anderson model considering all three types of s-wave Cooper
pairings, i.e., between c electrons (c-c pairing), between f

electrons (f -f pairing), and between c and f electrons
(c-f pairing). We also consider possible antiferromagnetic
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order, which has been shown to emerge when the Coulomb
repulsion is sufficiently strong [31–33]. We calculate those
order parameters and find five different phases depending
on the parameters. At half filling, the system undergoes
a second-order phase transition from nonmagnetic Kondo
insulator to antiferromagnetic state when we increase the
Coulomb repulsion. Away from half filling, we find the s-wave
superconducting phase, in which all the superconducting
order parameters (c-c, f -f , and c-f pairings) have finite
values. We also find the coexistence phase of the s-wave
superconductivity and long-range antiferromagnetic order in
a region closer to half filling. In the VCA, the self-energy
of the original system is approximated by that of a reference
system consisting of isolated clusters. An advantage of the
VCA is that it can treat symmetry-breaking states by assuming
effective fields called the “Weiss fields” in the reference
system. We compare two different reference systems with and
without the Weiss field that acts as a pair potential for the
c-f pairing, and conclude that the formation of Cooper pairs
between c and f electrons is indeed an essential mechanism to
stabilize the s-wave superconducting states in heavy-fermion
systems.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the periodic Anderson model and
extend the formulation of the VCA to describe the s-
wave superconductivity in the model. In Sec. III, we show
the phase diagram obtained by the VCA. In Sec. IV, the
mechanism for the emergence of the s-wave superconducting
states is discussed. The final section, Sec. V, is devoted to
conclusions.

II. MODEL AND METHOD

We consider the periodic Anderson model, which is
believed to capture the essential physics of heavy-fermion
systems. The Hamiltonian of the model is given by

HPAM = −t
∑
〈ij 〉

∑
σ

(c†iσ cjσ + H.c.) + εf

∑
iσ

n
f

iσ

−V
∑
iσ

(f †
iσ ciσ + H.c.) + U

∑
i

n
f

i↑n
f

i↓

−μ
∑
iσ

(
nc

iσ + n
f

iσ

)
, (1)

where c
†
iσ (f †

iσ ) creates an itinerant c electron (a localized f

electron) with spin σ at site i, nc
iσ = c

†
iσ ciσ , and n

f

iσ = f
†
iσ fiσ .

Here, t is the hopping amplitude of c electrons, εf is the on-site
energy of f electrons, V is the hybridization between c and
f states, U is the on-site Coulomb repulsion in the f orbital,
and μ is the chemical potential. The sum 〈ij 〉 is taken over
nearest-neighbor pairs of lattice sites. We consider the system
on a square lattice in this study.

We study the model (1) using the VCA [24], which is
based on the self-energy functional theory (SFT) proposed
by Potthoff [34]. We first assume a reference system that is
given as a set of identical clusters � of two neighboring sites.
The Hamiltonian of the reference system is H ′ = ∑

� H ′
� ,

H ′
� = H ′

PAM + H ′
cc + H ′

ff + H ′
cf + H ′

AF, (2)

where

H ′
PAM = −t

∑
〈ij〉∈�,σ

(c†iσ cjσ + H.c.) + εf

∑
i∈�,σ

n
f

iσ

−V
∑
i∈�,σ

(f †
iσ ciσ + H.c.) + U

∑
i∈�

n
f

i↑n
f

i↓

−μ′ ∑
i∈�,σ

(
nc

iσ + n
f

iσ

)
, (3)

H ′
cc = h′

cc

∑
i∈�

(ci↑ci↓ + H.c.), (4)

H ′
ff = −h′

ff

∑
i∈�

(fi↑fi↓ + H.c.), (5)

H ′
cf = −h′

cf

∑
i∈�

(ci↑fi↓ − ci↓fi↑ + H.c.), (6)

H ′
AF = −h′

AF

∑
i∈�

eiQ·ri
(
n

f

i↑ − n
f

i↓
)
. (7)

Here, � is the label of each cluster and Q is the commensurate
wave vector (π,π ). As shown in Eq. (2), the cluster Hamilto-
nian H ′

� includes four types of Weiss-field terms, H ′
cc, H ′

ff ,
H ′

cf , and H ′
AF. The first three terms allow for describing the c-c,

f -f , and c-f pairing orders, respectively. The last term gives
long-range antiferromagnetic order. The corresponding Weiss
fields, h′

cc, h′
ff , h′

cf , and h′
AF, are determined by the variational

conditions as mentioned below. To keep the thermodynamic
consistency [35,36], the cluster chemical potential μ′ is also
treated as a variational parameter. We denote the set of
these variational parameters as t′ ≡ (h′

cc,h
′
ff ,h′

cf ,h′
AF,μ

′). We
assume that the Weiss field h′

AF acts only on f electrons, which
is justified by the fact that the antiferromagnetic order in this
system is mainly due to the Coulomb repulsion between f

electrons.
We introduce the following Nambu spinor defined on each

cluster:

� = (c1↑,c2↑,f1↑,f2↑,c
†
1↓,c

†
2↓,f

†
1↓,f

†
2↓)T, (8)

where the two sites on the cluster � are labeled 1 and 2.
By diagonalizing the two-site Hamiltonian H ′

� , we can easily
obtain the Green’s-function matrix G′ = 〈〈�; �†〉〉 and the
grand potential �′ of the reference system H ′. Note that G′
includes the anomalous Green’s functions regarding the c-c,
f -f , and c-f pairings as the off-diagonal components. We
can also calculate the self-energy matrix �′ of the reference
system by using �′(t′) = G′

0
−1 − G′−1, where G′

0 is the free
Green’s function of the reference system obtained by setting
U = 0 in Eq. (2).

According to the SFT [34], the grand potential of the
original system can be written as

� (t′) = �′ − N

2
Tr ln [−G′]

+
∑

k̃

Tr ln [−GVCA(k̃)] − 2N (μ − μ′), (9)

where N is the total number of lattice sites. In the VCA [24], the
self-energy of the original system is approximated by that of
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the reference system as GVCA(k̃) ≡ (G0(k̃)−1 − �′)−1. Here,
G0(k̃) is the free Green’s function of the original system (1)
with k̃ being the wave vector in the Brillouin zone of the
reference system. The last term on the right-hand side of
Eq. (9), −2N (μ − μ′), arises from the anticommutation rela-
tion of electron operators when we rewrite the Hamiltonians,
Eqs. (1) and (2), using the Nambu spinor. Practical details of the
evaluation of Eq. (9) are given in the Appendix. We determine
the optimal values of the variational parameters t′opt by solving
the variational problems ∂�

∂h′
cc

= 0, ∂�
∂h′

ff

= 0, ∂�
∂h′

cf

= 0, ∂�
∂h′

AF
=

0, and ∂�
∂μ′ = 0, simultaneously. For a given total density n, we

also determine the chemical potential μ so that it can satisfy
the number equation n − ∑

iσ 〈nc
iσ + n

f

iσ 〉/N = 0, where the
average 〈· · ·〉 is calculated from the VCA Green’s function
with the optimized variational parameters GVCA(k̃)|t′=t′opt . The
condition ∂�

∂μ′ = 0 guarantees that the thermodynamic relation

n = − 1
N

∂�
∂μ

is satisfied [35,36]. Using the same Green’s

function GVCA(k̃)|t′=t′opt , we evaluate the following quantities:

	cc = 1

N

∑
i

〈ci↓ci↑〉, (10)

	ff = 1

N

∑
i

〈fi↓fi↑〉, (11)

	cf = 1

2N

∑
i

〈ci↓fi↑ − ci↑fi↓〉, (12)

mc = 1

2N

∑
i

eiQ·ri 〈nc
i↑ − nc

i↓〉, (13)

mf = 1

2N

∑
i

eiQ·ri 〈nf

i↑ − n
f

i↓〉, (14)

δcf = 1

2N

∑
i

eiQ·ri 〈ci↓fi↑ + ci↑fi↓〉, (15)

where 	cc, 	ff , and 	cf represent the s-wave superconduct-
ing order parameters for the c-c, f -f , and c-f pairings, re-
spectively, and mc (mf ) is the staggered magnetization in the c

(f ) orbital. The quantity δcf represents a staggered modulation
of the difference between the anomalous average 〈ci↓fi↑〉 and
its time-reversal counterpart −〈ci↑fi↓〉. Throughout this work,
we fix the value of εf to −U/2, considering the situation where
the Fermi level is located near the center of the upper and lower
Hubbard bands of f electrons. Under the symmetric condition
εf = −U/2, the models for electron-doped (n = 2.0 + δ) and
hole-doped (n = 2.0 − δ) systems are symmetric with each
other about half filling (n = 2.0). Thus, we discuss only the
electron-doped case hereafter. We set the hybridization V = t

and the temperature T = 0 in the present study.

III. RESULTS

At half filling, the system exhibits the Kondo insulating
state, which changes into an antiferromagnetic state when the
Coulomb repulsion exceeds a critical value Uc/t [31–33]. Our
VCA analysis gives Uc/t ≈ 2.31. In the following, we focus
on the case of U > Uc. Figure 1 shows the phase diagram
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FIG. 1. The phase diagrams in the (n,U/t) plane. The horizontal
dashed line indicates the line of U/t = 2.6.

in the (n, U/t) plane. To explain each phase in the phase
diagram, we show in Fig. 2(a) the n dependencies of the order
parameters at U/t = 2.6, which is marked by the horizontal
dashed line in Fig. 1. We also show the corresponding behavior
of the Weiss fields in Fig. 2(b). Away from half filling, only
the superconducting order parameters, 	ff , 	cf , and 	cc,
have finite values, which means that the system is in the pure
s-wave superconducting (SC) phase. The values of the order
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FIG. 2. The n dependencies of (a) the order parameters and (b)
the Weiss fields for U/t = 2.6.
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FIG. 3. The n dependence of the chemical potential for U/t = 2.6.

parameters satisfy the inequality 	ff > 	cf > 	cc. When we
decrease the density n, the staggered magnetizations mf and
mc appear at the critical density nc ≈ 2.12, below which the
s-wave superconductivity coexists with the antiferromagnetic
(AF) order. The quantity δcf takes a nonzero value only
when the antiferromagnetic order occurs (mc,mf 
= 0), as
will be explained later. When n is decreased further, the
system exhibits phase separation (PS). Since the difference
of the grand potentials at μ = μA and μ = μB was given
by 	� = −N

∫ μB

μA
n(μ)dμ, we determined the boundaries n1

and n2 of the PS region from the Maxwell construction in
the (n,μ/t) plane, as shown in Fig. 3. This type of phase
separation was also found in the previous VCA studies that
discussed the coexistence of d-wave superconductivity and
antiferromagnetic order in the Hubbard model [35,37–39].
One of these studies [37] has predicted that the PS region
becomes narrower as the cluster size increases and may vanish
in the limit of large cluster size. This may also be the case
for the PS region in our results. Finally, near half filling
(2 � n<n1), the system exhibits the coexistence phase again.

For U/t = 2.6, the f -f pairing amplitude |	ff | is larger
than the other ones, |	cc| and |	cf |, as shown in Fig. 2(a).
This is attributed to the large density of states (DOS) for
f electrons [40]. In usual heavy-fermion compounds, the
Coulomb repulsion U (∼5–12 eV [14]) is quite large compared
to the hopping t and the hybridization V . In such a situation
(U � t,V ), the on-site f -f pairing is expected to be strongly
suppressed. Figure 4 shows the U dependencies of each
superconducting order parameter in the superconducting state.
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FIG. 4. The U dependencies of the superconducting order param-
eters for n = 2.15.

The magnitude relation among 	cc, 	cf , and 	ff drastically
changes at U/t ∼ 3.5, and |	cc| becomes much larger than
the others in a very large U region. Therefore, the c-c pairing
is dominant in a realistic parameter regime. However, the
values of 	cf and 	ff do not become completely zero due to
the hybridization V , and especially the formation of the c-f
pairing is essentially important for the s-wave superconducting
state as will be explained in the next section.

IV. DISCUSSION

We investigate here the role of the c-f pairing in the
formation of s-wave superconducting state by a comparative
study with the VCA. To this end, we carry out additional
calculations based on the following cluster Hamiltonians
instead of Eq. (2): (i) H ′

�,1 = H ′
PAM + H ′

cc + H ′
ff (i.e., the

c-f pairing field is not considered); (ii) H ′
�,2 = H ′

PAM + H ′
cf

(i.e., only the c-f pairing field is considered).
In the first case (i), we found only a trivial solution h′

cc =
h′

ff = 0, namely, no superconducting solution is obtained
(	cc = 	ff = 	cf = 0). This indicates that the occurrence
of the s-wave superconductivity requires the c-f pairing field
h′

cf , i.e., the c-f pairing plays a crucial role in the mechanism
for the s-wave superconductivity. Indeed, in the second case
(ii), we find a solution with h′

cf 
= 0 and 	cf 
= 0. Note that
the other order parameters 	cc and 	ff also have finite values
even though the corresponding Weiss fields h′

cc and h′
ff are

not taken into account. This stems from the hybridization V

between c and f states. Due to the existence of h′
cf and V ,

the self-energy �′(t′) has the off-diagonal components �′
cc(t′)

for the c-c pairing and �′
ff (t′) for the f -f pairing as well as

�′
cf (t′) for the c-f pairing, through the diagonalization of H ′

�,2.
Thus, all the superconducting order parameters, 	cc, 	ff , and
	cf , have finite values although H ′

�,2 does not include h′
cc and

h′
ff . This comparative study indicates that the pair potential

for the c-f pairing is essential for the occurrence of the s-wave
superconductivity.

Let us discuss the mechanism giving rise to the effective c-f
pair potential in the periodic Anderson model (1). When the
Coulomb repulsion U is quite strong, the physics of the system
may be understood in a perturbative fashion [23]. Assuming
that the repulsion U is much larger than the hybridization
V , we derived an effective Hamiltonian of the periodic
Anderson model through the Schrieffer-Wolff transformation
in the previous work [23]. The effective Hamiltonian includes
the direct and spin-exchange interactions between c and f

electrons. The first one describes the charge fluctuation in the
c orbital depending on the occupation state in the f orbital and
the second one represents the spin fluctuation between c and f

orbitals. We concluded in Ref. [23] that these interorbital per-
turbative processes play the role of a glue for the c-f pairing.

Finally, we consider the reason why the s-wave supercon-
ductivity can coexist with the long-range antiferromagnetic
order near the half filling (see Fig. 1). In usual single-orbital
systems, on-site Cooper pairing and antiferromagnetism
compete with each other since the local spin polarization is
incompatible with the formation of local spin singlets [see
Fig. 5(a)]. However, the interorbital pairing in the present case
does not suffer from such incompatibility. As seen in Fig. 5(b),
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(a)  single-orbital system

(b)  multiorbital system

site i site i+1

s-wave Cooper pair

s-wave superconducting state

site i site i+1

antiferromagnetic state

antiferromagnetic order

s-wave c-f  Cooper pair

site i site i+1

c orbital

f orbital

antiferromagnetic 
order

coexistence state of the s-wave c-f pairing
and antiferromagnetic orders

FIG. 5. Schematic pictures on the relationship between s-wave
superconductivity and antiferromagnetism. Panels (a) and (b) cor-
respond to the cases of single-orbital and multiorbital systems,
respectively.

antiferromagnetic order occurs in each of the c and f orbitals,
between which on-site s-wave Cooper pairs can be formed.
Note that since the antiferromagnetic order breaks the local
spin up-down symmetry, the anomalous average 〈ci↓fi↑〉 and
its time-reversal counterpart −〈ci↑fi↓〉 have different values.
For example, in Fig. 5(b), |〈ci↑fi↓〉| > |〈ci↓fi↑〉| for site i

and |〈ci+1↓fi+1↑〉| > |〈ci+1↑fi+1↓〉| for site i+1. Therefore,
the difference δcf defined in Eq. (15) has a finite value in the
coexistence phase of the c-f pairing and antiferromagnetic
orders.

V. CONCLUSION

We have investigated s-wave superconductivity in heavy-
fermion systems in terms of the variational cluster approach
(VCA) to the periodic Anderson model. In the VCA, we
have taken into account all the three types of s-wave Cooper
pairings: the intraorbital pairings between c electrons and
between f electrons, and the interorbital pairing between c

and f electrons. We have shown that s-wave superconducting
states appear when electrons or holes are doped to the system
at half filling. In a region close to half filling, the s-wave
superconductivity coexists with long-range antiferromagnetic
order. The VCA comparative analysis with different reference
systems indicated that the c-f pairing plays a dominant
role in the formation of the s-wave superconducting state.
These results might advance the understanding of the fully
gapped superconducting states observed in several Ce-based
materials [7–13].

Recently, s-wave superconductivity in heavy-fermion sys-
tems has also been studied with the Kondo-lattice model [41],
in which f electrons are assumed to be almost localized and

have only spin degrees of freedom. The authors of Ref. [41]
have shown that the correlation between the localized spins and
conduction electrons through the Kondo exchange coupling
gives rise to local pairing interaction, leading to s-wave
superconductivity. It is known that the periodic Anderson
model studied in the present work is mapped onto the Kondo
lattice model in the so-called Kondo limit [42–44]. The relation
between the s-wave superconducting states proposed in the two
models remains an intriguing issue for future work.
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APPENDIX: EVALUATION OF THE GRAND POTENTIAL

We evaluate the grand potential given by Eq. (9) at T = 0.
We first introduce the matrices Q(e) and Q(h) whose elements
are given by [36]

Q(e)
m,n = 〈0|�m|n〉, Q(h)

m,n = 〈n|�m|0〉, (A1)

with

H ′
�|0〉 = E0|0〉, H ′

�|n〉 = En|n〉. (A2)

Here, |0〉 (|n〉) is the ground (nth excited) state of the cluster
Hamiltonian H ′

� and �m is the mth component of the Nambu
spinor �. Note that the excited states with even (odd) numbers
of electrons can be ignored when the ground state |0〉 consists
of even (odd) numbers of electrons. Thus, the number of
excited states that have to be considered is Ne = 44/2 and
the size of the matrices Q(e) and Q(h) is 8×Ne in the present
two-site reference system with two orbitals per site. Using Q(e)

and Q(h), we define the 8 × 2Ne Q-matrix Q which has the
following elements:

Qm,l =
{

Q
(e)
m,l (1 � l � Ne),

Q
(h)
m,l−Ne

(Ne + 1 � l � 2Ne).
(A3)

We also introduce the 2Ne × 2Ne diagonal matrix � whose
diagonal elements are given by

�l,l =
{
El − E0 (1 � l � Ne),
−El−Ne

+ E0 (Ne + 1 � l � 2Ne). (A4)

In the Lehmann representation, the cluster Green’s function
G′(ω) can be written as [36,37]

G′(ω) = Q g(ω) Q†, (A5)

where g(ω) = (ω − �)−1.
Note that the Tr in Eq. (9) includes the summation over

the fermionic Matsubara frequencies [34]. We can rewrite
the second term on the right-hand side of Eq. (9) as
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follows [36,37]:

−N

2
Tr ln [−G′] = −N

2

2Ne∑
l=1

ω′
l�(−ω′

l) + R, (A6)

where ω′
l is the pole of the cluster Green’s function (A5),

and �(x) is Heaviside step function defined by �(x) = 1 for
x � 0 and �(x) = 0 for x < 0. The last term R represents the
contribution from the poles of the self-energy �′. We note that
since ω′

l is given by the diagonal elements of �, the first term
of Eq. (A6) is simplified as

−N

2

2Ne∑
l=1

ω′
l�(−ω′

l) = −N

2

Ne∑
l=1

(E0 − El). (A7)

In a similar way, the third term on the right-hand side of Eq. (9)
is rewritten as follows [36,37]:

∑
k̃

Tr ln [−GVCA(k̃)] =
∑

k̃

2Ne∑
l=1

ωl(k̃)�[−ωl(k̃)] − R, (A8)

where ωl(k̃) is the pole of the VCA Green’s function GVCA(k̃)
with k̃ being the wave vector in the Brillouin zone of the
reference system. The details of the numerical method to find
ωl(k̃) will be given in the next paragraph. With the help of
Eqs. (A6)–(A8), we obtain the following expression for the
grand potential per site:

�

N
= E0

2
− 1

2

Ne∑
l=1

(E0 − El)

+ 1

N

∑
k̃

2Ne∑
l=1

ωl(k̃)�[−ωl(k̃)] − 2 (μ − μ′). (A9)

Here, the summation 1
N

∑
k̃ is replaced by the integration

1
(2π)2

∫ π/2
−π/2 dk̃x

∫ π

−π
dk̃y in thermodynamic limit N → ∞.

We finally present the numerical method to find the poles
of the VCA Green’s function GVCA(k̃). The VCA Green’s
function GVCA(k̃) is given by [36,37]

GVCA(k̃) = 1

G0(k̃)−1 − �′

= 1

G0(k̃)−1 − (
G′

0
−1 − G′−1

)

= 1

(ω − T(k̃)) − (ω − T′ − G′−1)

= 1

G′−1 − V(k̃)
, (A10)

where the matrices T(k̃) and T′ are

T(k̃) =
(

A(k̃) 0
0 −A(k̃)

)
, T′ =

(
B C
C D

)
, (A11)

with

A(k̃) =

⎛
⎜⎜⎝

−μ ε(k̃) −V 0
ε∗(k̃) −μ 0 −V

−V 0 εf −μ 0
0 −V 0 εf −μ

⎞
⎟⎟⎠ , (A12)

ε(k̃) = −t
(
1 + e−i2k̃x + e−i(k̃x−k̃y ) + e−i(k̃x+k̃y )

)
, (A13)

B =

⎛
⎜⎝

−μ′ −t −V 0
−t −μ′ 0 −V

−V 0 εf −μ′−h′
AF 0

0 −V 0 εf −μ′+h′
AF

⎞
⎟⎠ ,

(A14)

C =

⎛
⎜⎜⎝

−h′
cc 0 h′

cf 0
0 −h′

cc 0 h′
cf

h′
cf 0 h′

ff 0
0 h′

cf 0 h′
ff

⎞
⎟⎟⎠ , (A15)

and

D =

⎛
⎜⎝

μ′ t V 0
t μ′ 0 V

V 0 −εf +μ′−h′
AF 0

0 V 0 −εf +μ′+h′
AF

⎞
⎟⎠ .

(A16)
The matrix V(k̃) ≡ T(k̃) − T′ denotes the intercluster hop-
ping. By substituting Eq. (A5) into Eq. (A10), we obtain

GVCA(k̃) = Q
1

g−1 − Q† V(k̃) Q
Q†. (A17)

This expression shows that the poles of the VCA Green’s
function are given as the eigenvalues of the matrix L(k̃) =
� + Q† V(k̃) Q.
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