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Superconducting fluctuations and large diamagnetism of low-Tc nanoparticles
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It is shown that nanoparticles made of very low-Tc superconductors have a large diamagnetic response
at temperatures several orders of magnitude above Tc. Most of the features of the recently observed giant
diamagnetism of Au nanorods are explained in terms of superconducting fluctuations, except for the huge
magnitude of the effect.
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Very recently [1], a novel nanoscale effect—a large average
diamagnetic susceptibility of rod-shaped, down to 10 nm scale,
gold nanoparticles—has been discovered experimentally. Such
a susceptibility should be due to persistent currents [2] flowing
in these nanoparticles in response to a magnetic field. In
fact, Ref. [3] proposed an explanation for this effect in terms
of the persistent currents flowing on the surfaces of these
nanoparticles in response to the magnetic flux, using a model
of ballistic, noninteracting electrons. According to Refs. [1,3],
the effect of Ref. [1] is intrinsic to the metal, and not due to
chemical interactions with a capping layer.

The experience [2,4,5] in explaining such mesoscopic
currents shows, however, that just finite-size effects due to
noninteracting electrons fall short in explaining them both in
sign and in magnitude. The reason is the alternating sign of the
response as a function of the azimuthal quantum number. This
yields a persistent current whose sign varies from sample to
sample (due to disorder and/or to minute changes in, say, the
sample’s radius). The resulting average over an ensemble of
many samples becomes very small. In fact, this average is on
the order of the level spacing [5], while the required persistent
current [3] is of the order of the Thouless energy. The ratio
of the latter to the former is on the order of several hundreds
for a compact nanoparticle with a linear size of 10 nm and a
comparable mean free path [6]. Therefore, electron-electron
interactions must be invoked to give the current a definite sign
and to account for the average current [2,7–9]. The diamagnetic
sign of the response demands attractive interactions, as in a
superconductor.

This work is motivated by the above experimental results,
but we believe that our study leads to a much more general
insight: As may be expected on general grounds, the effect
of fluctuations increases with decreasing sample size. On
the nanoscale, especially in superconductors with their large
coherence lengths, fluctuations may become dominant over
the averages.

The model we use here invokes superconducting fluc-
tuations, much above Tc, of the conduction electrons. We
state from the outset that, for gold, it gives “only” about an
order of magnitude increase of the susceptibility compared to
χL (the Landau diamagnetic susceptibility of the conduction
electrons). The results of Ref. [1] are three orders of magnitude
above χL. Thus, they are just an example and provide
motivation. Although the strength of the superconducting
fluctuations at such high temperatures is a truly general and
remarkable phenomenon, and it otherwise explains all other
features of the data, including the very weak temperature

dependence up to ∼105Tc, something (as far as explaining
the results of Ref. [1]) is still missing.

The inherent difficulty of this problem stems from the fact
that the bulk volume susceptibility of Au, χb ∼ several 10−5,
results from the dense core electrons, which should not change
very much with the arrangement and binding of the atoms
(for example, in the metal or the nanoparticle). The electrons
that do change and therefore should be expected to yield
the effect are the valence and/or conduction ones, whose
Landau susceptibility is around two orders of magnitude
smaller. Thus, to explain the observed nanorod effect, a
susceptibility roughly an order of magnitude larger than χb,
one needs, as stated, an around three orders of magnitude boost
over χL.

Here we start with the finding of Ref. [10], which states
that the magnitude of the persistent currents in Au (and other
noble metals) is explainable assuming that when they are
pure bulk, they are superconductors with Tc on the scale of
a mK or a fraction thereof [11]. We shall see that the same
assumption about the superconductivity of these metals, when
pure, qualitatively explains all trends of the giant diamagnetic
susceptibility of Au nanorods as well, the mechanism being
superconducting fluctuations much above Tc. However, as
stated, this explanation still falls short by about two orders
of magnitude (out of three) in yielding the magnitude of the
giant diamagnetism. We shall also mention here the further
change of sign of the susceptibility for the even smaller
size range [12–14]. This is actually in agreement with the
theoretical picture [12].

A set of ten colloidal spherically capped Au nanorod
systems was prepared in Ref. [1]. They were single crystalline,
with an electronic mean free path similar to the bulk (∼60 nm).
Their radii ranged from 7 to 31 nm, and aspect ratios from 2.4
to 7. Due to the large anisotropy of the magnetic susceptibility,
the rods were aligned by a large (33 T) magnetic field
with the cylinder axis parallel to the magnetic field. The
alignment was confirmed by the anisotropic optical response to
polarized light. Magnetic-field-induced linear dichroism and
birefringence were induced by the field and yielded magnetic
susceptibilities parallel (χ‖) and perpendicular (χ⊥) to the
cylinder axis and their difference, �χV > 0. These were
confirmed by superconducting quantum interference device
(SQUID) measurements.

The susceptibilities were negative (diamagnetic), increas-
ing with decreasing size, larger than that of the bulk by an
order of magnitude (depending on the size and aspect ratio),
and temperature independent in the whole measurement range
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of 5–300 K. We emphasize that |χ⊥| is larger than |χ‖|. Their
ratio increases with the aspect ratio of the cylinder.

These results are rather unexpected and quite difficult
to understand, especially the huge size and the temperature
independence of the mesoscopic effect. Here we show that
the superconducting fluctuations much above Tc qualitatively
explain, except for the already mentioned order of magnitude,
all the trends of these results. More generally, the importance
of fluctuations on the nanoscale is highlighted.

The most straightforward way to understand these ef-
fects qualitatively is by employing the physical picture of
Schmid [15], based on the Ginzburg-Landau (GL) theory for
the fluctuations. His results for bulk two-dimensional (2D) and
three-dimensional (3D) systems are consistent with those of
the microscopic calculations [7,16]. We believe that this theory,
with appropriate parameters (dropping the approximation of
being close to Tc), is qualitatively valid even much above Tc.
There, actually, the Gaussian approximation (retaining only
quadratic terms in the order parameter) is very well valid.
Moreover, as long as the dimensions of the nanoparticle are
much smaller than the relevant coherence length (see below),
only fluctuations in which the order parameter ψ is uniform
over the whole nanoparticle, matter [17,18]. The Gaussian
free energy density of such a fluctuation is given by a|ψ |2,
where a is the appropriate GL parameter. The evaluation
of the integral over the zero-dimensional (0D) fluctuations
was done in Refs. [17,18], and far above Tc it reduces
to the Gaussian approximation, as does the full calculation
of the susceptibility [18]. Following Schmid, we adopt the
normalization of ψ , where |ψ |2 is the fluctuating superfluid
density. Then, a = �

2/[2mξ (T )2], where ξ (T ) is the coherence
length in the bulk. For the nanorod volume ∼=πR2L, the
total free energy of the fluctuation is ∼=πR2La|ψ |2. This
(over the temperature T ) sets the Gaussian probability for
the fluctuation, which implies that the average fluctuating
superfluid density is

〈|ψ |2〉 = kBT

2πR2La
= kBT mξ (T )2

πR2L�2
. (1)

We shall later use kB = 1.
Adopting the Langevin expression for the diamagnetic

susceptibility per unit volume of a finite, mobile-charge
carrying entity,

χd,L = nq2〈r2〉
4mc2

, (2)

where n is the density of charge carriers, q their charge, m their
mass, and 〈r2〉 their typical radius of motion squared. For ξ (T )
we take the “normal-metal coherence length” which agrees
for T � Tc with the GL length. It is also the characteristic
scale for interaction effects [2]. For a dirty metal [19],

ξ 2(T ) = π�D

8T
. (3)

For T ∼ Tc this yields the dirty limit T = 0 GL coherence
length, which is of the order of 1000 nm for the gold used
in Ref. [1]. Putting the above together, we get for χd much
above Tc,

χd = e2D〈r2〉
8�c2R2L

. (4)

Expressing this in terms of the Landau susceptibility
for a normal metal, χL = e2kF

12π2mc2 , we find, allowing for
D = vF �/3, where � is the elastic mean free path,

χd

χL

= π2�〈r2〉
2R2L

. (5)

Taking the typical orbit radii 〈r2〉parallel,perp to be AparallelR
2 and

AperpRL, where Aparallel,perp are numerical constants of order
unity, and the indices parallel and perp referring to the direc-
tions of the magnetic field versus the cylinder’s axis, we find

χd,parallel

χL

= π2Aparallel�/2L,
χd,perp

χL

= π2Aperp�/2R. (6)

In the bulk, � ∼= 60 nm, and because the rods are single
crystalline [1], they should have values of � similar to
that of the bulk. Thus, both χd ’s are larger than χL by
sizable numerical factors which increase with decreasing
nanocylinder size. Moreover, χd,perp is larger than χd,parallel

by the aspect ratio L/R of the cylinder. The most remarkable
feature of these simple results is the temperature independence,
which simply follows from the cancellation of the T factor
of the fluctuations (equipartition theorem) and the 1/T one
of ξ 2(T ). As we shall see, this is valid for temperatures below
the effective Thouless energy.

The two main features which appear in the microscopic
theory and are neglected in the simplest classical (static) and
uniform (q = 0) fluctuation theory are the finite wave number
q and Matsubara frequency [ων = ν(2πT ), with ν an integer].
As to the former, we note [17,18] that the reason that finite
wave number q fluctuations are expected to be negligible (at
low temperature) for our nanosystem is the following: In a
dirty superconductor, D/ξ 2 ∼ Tc. For Au, our estimate for Tc

is a fraction of a mK (and much smaller estimates exist) and
the L’s of Ref. [1] are on the order of 10 nm, which leads
to D/L2 ∼= 100–200 K (the Thouless energy). Thus, at 10Tc,
the smallest energy of a nonzero q fluctuation is larger than T

by four orders of magnitude. As to the latter, these quantum
fluctuations are not expected to be important at temperatures
much above Tc. They may still produce significant corrections
for very small systems [20], as we shall see below.

To understand the essence of the differences between the
fluctuation GL and the microscopic theory, we compare the
results for the paradigmatic case of the orbital response of a
thin, small [2,8] ring to a magnetic field, or flux. For a thin ring
of radius R and small height L, adaptation of the Schmid [15]
approach, as in Eq. (4), gives

χd,GL = e2D

8�c2L
. (7)

Reference [8] calculated the persistent current of such a
ring, using the microscopic perturbation theory. We get the
magnetic moment by multiplying with πR2/c and hence, for
the dominant first harmonic in the flux,

χd,AE = 4e2D

π2�c2L ln(T1/Tc)
, (8)

where T1 = �D
(2πR)2 is the Thouless energy. Both results are

for T � T1. We see that the microscopic result is approx-
imately given by the fluctuation GL one multiplied by
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32/[π2 ln(T1/Tc)] ∼ 1/4 for the Au samples of Ref. [1].
The 1/ ln factor describes (see below) the renormalized
attractive (below the Debye energy) interaction at the “physical
scale” T1. This is the relevant scale for these mesoscopic
phenomena [2,10] at temperatures �T1. With this reduction,
the susceptibility, especially the perpendicular one, can still be
larger, but now by more modest factors, than χL. All trends of
the GL results are of course still satisfied. This includes the
unusual temperature independence below T1.

A very satisfying feature of the microscopic result of Eq. (8)
is the, albeit weak, dependence on Tc. χ vanishes as 1

ln(T1/Tc)
with Tc. Tc = 0 is the normal metal limit.

To explain the scale dependence of the interaction, we recall
briefly how it is derived. By integrating over thin shells in
momentum (or energy) space, one obtains the well-known
(see, e.g., Refs. [19,21,22]) variation of the electron-electron
interaction coupling g, be it repulsive or attractive, from a
high-energy scale ω> to a low-energy one ω<,

1

g(ω<)
= 1

g(ω>)
+ log

(
ω>

ω<

)
. (9)

Notice that a repulsive/attractive interaction is “renormalized
downwards/upwards” with decreasing energy scale ω<. What
makes superconductivity possible is that at ωD the renor-
malized repulsion is much smaller than its value on the
microscopic scale. At ωD the attraction may win and then at
lower energies the total interaction increases in absolute value,
until it diverges at some small energy scale, the conventional
Tc of the given material. Choosing ω< = Tc (where the inverse
interaction vanishes) and ω> to be the “physical scale” gives

1

g(ω>)
= ln

(
ω>

Tc

)
. (10)

The physical scale for the (dominant) first moment of the
flux dependence of the persistent current in a ring is the
Thouless energy T1 (in the notation of Ref. [8]). Thus, the
1/ ln( T1

Tc
) factor in the Ambegaokar and Eckern [8] result is just

the appropriate renormalized interaction, replacing the bare
interaction of Ref. [9], as hinted in Ref. [8]. This interaction

is attractive for a superconductor when the physical scale is
below the Debye energy. However, it should change sign for
physical scales above ∼=ωD [12].

For T1 � T , the physical scale becomes T . This gives the
usual GL temperature dependence of the various quantities,
especially relevant when T approaches Tc.

We mention that the above change of sign has serious
consequences for the magnetic response. As mentioned in
Ref. [1], in the even smaller size range (a few nm), gold
nanoparticles become paramagnetic [13,14]. This is not treated
here. However, it should be mentioned that this change of sign
was explained in Ref. [12] in terms of the scale dependence
of the renormalized interaction, as briefly mentioned above.
Very interestingly, then, when noble (and other low Tc) metal
nanoparticles decrease in size towards the 10 nm scale,
their average diamagnetic susceptibility becomes stronger.
A further decrease in size, to the few nm scale, will give
a change to a paramagnetic orbital response. All this is
very qualitatively consistent with existing experiments. A
systematic examination of this rich behavior for nanoparticles
of the same material as a function of size should be instructive.

We conclude this paper with speculation on the origin of
the giant diamagnetic susceptibility [1]. Its order of magnitude
is on a scale that suggests the importance of the dense atomic
cores. Can these be sensitive to superconducting correlations
of the conduction electrons? This might be due to a proximity
effect between these two types of electrons.
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