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Nematicity from mixed S± + dx2− y2 states in iron-based superconductors
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We propose a novel mechanism for nematicity potentially relevant in some iron-based superconductors (SCs).
We demonstrate that the mixed S± + dx2−y2 SC state is a physically accessible state and may emerge under
generic conditions, lowering spontaneously the fourfold rotational symmetry C4 to C2. We provide a detailed
study of the mixed S± + dx2−y2 nematic state including its behavior under a Zeeman field. As a fingerprint of this
state, we predict at low temperatures a first-order Zeeman-field-induced transition from the mixed nematic SC
phase to the pure dx2−y2 SC phase. The Zeeman field–temperature phase diagram for a nodeless mixed nematic
state exhibits three distinct SC phases and a tetracritical point, remarkably reminiscent of the one observed in
UPt3. Our mechanism for nematicity may also be relevant for nonsuperconducting nematic states involving mixed
S± + dx2−y2 spin/charge density waves.
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I. INTRODUCTION

In iron-based superconductors (SCs), fundamental aspects
concerning the SC gap structure still remain controversial. In a
series of materials such as Ba1−xKxFe2As2, BaFe2−xCoxAs2,
FeTe1−xSex , and KxFe2−xSe2 there is experimental evidence
for nodeless SCs [1]. Apparently, this is not the conventional
isotropic s-wave gap but, instead, the extended S± gap
changing sign between the electron and hole pockets of the
Fermi surface (FS) [2]. On the other hand, in materials
such as KFe2As2, LiFeP, LaOFeP, BaFe(As1−xPx)2, and
BaFe2−xRuxAs2, diverse experiments including NMR, STM,
thermal conductivity, and penetration depth measurements all
point to the presence of gap nodes on the FS [3].

The above experiments advocate that iron-based SCs are a
family of materials that exhibit a pronounced fragility of the
gap symmetry. In fact, recent works have demonstrated the
possibility of gap symmetry transitions [4–8], independently
of the pairing mechanism. Although the spin-fluctuations sce-
nario [6–8] and the small-q electron-phonon interaction (EPI)
[4,5] are both compatible, gap symmetry transitions constitute
a characteristic feature of the latter mechanism, since it natu-
rally leads to a loss of rigidity of the gap function in momentum
space, a property called momentum decoupling [9]. Note that
small-q EPI can produce nodeless S± as well as nodal SC
states depending on doping [4], including chiral triplet p-wave
SC [5], observed recently in LiFeAs [10]. Moreover, recent
ARPES results on FeSe films deposited on SrTiO3 provide
evidence for the relevance of small-q phonon processes [11].

Apart from the unclear SC gap symmetry, recent STM
measurements on FeSe revealed another puzzling feature of
iron-based SCs. Iron selenide has been considered as one
of the simplest iron-based SCs [12,13] with most probably
EPI-mediated SC [14] and Tc ∼ 9 K. Tunneling conductance
measurements by Song et al. [15] on crystalline FeSe
films report sharp evidence for nematicity. Nematicity in iron
pnictides is a highly debated issue, following numerous reports
for a possible electronic nematic phase transition [16,17] that
often coincides and possibly drives the orthorhombic distortion
[18–20] which sometimes accompanies an antiferromagnetic

(AFM) transition in undoped and underdoped compounds.
Because of the near coincidence of nematicity and AFM in
some compounds, it has been suggested that the magnetism
itself may drive an electronic nematic phase transition [21–24].

However, in other compounds such as in the case of
FeSe, there are no such AFM phases involved [25]. The
AFM-independent orbital ordering scenario [26,27] has been
invoked recently [28] for interpreting the nematic findings in
SC FeSe films. In fact, a tiny orthorhombic distortion has
been observed by synchrotron x-ray power diffraction at about
90 K in FeSe [25], which according to other experiments may
indicate orbital ordering [29], in which case the orthorhombic
character of the electronic system is enhanced and this could
explain in that case nematic SC. It is unclear whether the
observed nematic SC phase is nodal or nodeless. The STM
experiments that reported nematicity have also explicitly
revealed the existence of line nodes in the nematic SC gap
function [15], in agreement with previous NMR data [30].
These findings however contradict thermal conductivity [31]
and specific-heat [32] measurements that indicate a nodeless
SC gap.

Here we put forward an approach to the phenomenon
of nematicity that may be relevant in some iron-based SCs
in which strong nematicity is not evident in the normal
state. Motivated by their tendency towards gap symmetry
transitions, we demonstrate (Fig. 1) that the S± and dx2−y2

gap symmetries may broadly coexist and the resulting mixed
S± + dx2−y2 SC is a prominent nematic phase that may emerge
spontaneously in some of these materials. Note that this is not
the global minimum of the free energy within our mean-field
approach. In fact, the T -breaking S± + id tetragonal mixed
state has a slightly lower free energy. However, it is nearly
degenerate with the mixed S± + d nematic state and additional
phenomena such as nematic fluctuations [33], spontaneous
edge currents in a finite sample of a T -breaking mixed state
[34], and induced nematicity phenomena may all contribute to
lift the degeneracy in favor of the mixed nematic state.

Depending on the relative strength of the gap in each
contributing symmetry channel of our mixed nematic state,
the resulting nematic SC can be either nodal or nodeless.
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FIG. 1. (Color online) Landscape of the possible SC phases
obtained by varying the effective interaction potentials of S± and
dx2−y2 from t to 4t , at T = 0. Solid line boundaries correspond to
μ = 0.05 and dashed line boundaries to μ = 0.4. We find three
distinct regions S±, S± + dx2−y2 , and dx2−y2 . Notice the extended
region over which S± and dx2−y2 coexist leading to a nematic SC
phase. The nematic region expands with electron doping in expense
to the pure dx2−y2 region while the pure S± region remains essentially
the same.

Within a minimal two-band model, we show that at low
temperatures a Zeeman field can induce a first-order transition
from the nematic S± + dx2−y2 phase to the pure dx2−y2 phase.
We therefore propose an experimental strategy for confirming
the eventual presence of mixed S± + dx2−y2 states in films by
applying an in-plane magnetic field in which case the Zeeman
effects will dominate [35]. Remarkably, our self-consistent
study for a nodeless S± + dx2−y2 phase provides a Zeeman
field–temperature phase diagram which exhibits three distinct
SC regions and a tetracritical point in complete analogy to the
situation encountered in UPt3 [36]. This type of phase diagram
is thus reproduced self-consistently within a microscopic
two-band picture.

II. THE MODEL

For our general discussion, we qualitatively model iron-
based SCs with a minimal two-band model exhibiting a
hole pocket around the �(0,0) point and an electron pocket
around the M(π,π ) point, described by the energy disper-
sions εe(k) = γ (k) + δ(k) − μ and εh(k) = γ (k) − δ(k) − μ,
respectively, where we introduce the nearest-neighbor hopping
γ (k) = t(cos kx + cos ky), the next-nearest-neighbor hopping
δ(k) = C − t ′ cos kx cos ky , and the chemical potential μ. We
also set t = 1, t ′ = 0.5, C = 2. Notice that since we are
working in the folded Brillouin zone (FBZ) with two Fe atoms
per cell, each band must preserve C4 symmetry separately in
contrast to previously proposed band models [24,37] defined
in the extended BZ. In spite of this difference, the present
model captures the necessary FS characteristics allowing for
the S± state to emerge, namely well separated electron and
hole FS sheets. As a matter of fact, the general concept of
nematicity driven by mixed SC gap symmetries, proposed here,

will be still valid even if we consider other sophisticated band
structure models [38]. Even more, to keep our analysis also
independent of the detailed pairing mechanism, we consider a
separable effective interaction, allowing for a broad discussion
concerning a large number of compounds.

Under the aforementioned assumptions we have

H =
∑
k,σ

[εe(k)c†k,σ ck,σ + εh(k)d†
k,σ dk,σ ]

− 1

N

∑
k,k′

V (k,k′)D̂†
kD̂k′ , (1)

where c
(†)
k,σ and d

(†)
k,σ are annihilation (creation) operators

for the electron εe(k) and hole εh(k) bands, respectively,
of spin projection σ =↑ , ↓, while N denotes the number
of lattice points. We also introduced the pairing operator
D̂k ≡ c−k,↓ck,↑ + d−k,↓dk,↑. Notice that for the specific choice
of the interaction, where intraband and interband strengths
are equal, electron and hole bands share the same SC order
parameter �(k), which is defined in the following manner:

�(k) = − 1

N

∑
k′

V (k,k′)〈D̂k′ 〉. (2)

The order parameter �(k) = ∑
n �nfn(k) consists of irre-

ducible representations (IRs) fn(k) of the relevant point group
for the non-SC tetragonal phase, which is D4h for bulk systems
and C4v for films, that both include C4 as a subgroup. Here we
shall restrict our analysis to the following on-site and nearest-
neighbor IRs: fs(k) = 1 (A1), fs± (k) = cos kx + cos ky (A1),
and fd (k) = cos kx − cos ky (B1). By studying here the SC
phase competition via separable potentials we report generic
results that are broadly relevant, and independent of the exact
microscopic mechanism of SC.

Within the aforementioned subspace of IRs, there are only
two minimal schemes to achieve a nematic state. These are
the mixed states S + dx2−y2 and S± + dx2−y2 . Of course, the
cases S + S± + dx2−y2 , iS + S± + dx2−y2 , S + iS± + dx2−y2

are also possible but not minimal. In all these symmetry-
breaking patterns the subgroup C4 reduces to C2. Notice that
for a minimal nematic phase, the two IRs involved must lock
in the same phase. If the two phases lock in phases with π/2
difference then the mixed state leads to broken T but unbroken
C4. These states are also important and for completeness we
shall also discuss features of their phase diagram and their
phenomenology (see also [33,39]).

We consider first the minimal configurations in which
nematicity emerges and T is preserved. In these cases the order
parameter �(k) is the sum of two order parameters �1,2(k)
corresponding to the two coexisting IRs. For simplicity we
shall consider that �1,2(k) are real. At this point, we introduce
the spinor 	

†
k = (c†k,↑,d

†
k,↑,c−k,↓,d−k,↓) and employ the τ and

ρ Pauli matrices acting on particle-hole and band spaces,
respectively. The mean-field Hamiltonian can be rewritten
compactly as H = ∑

k 	̂
†
kĤ(k)	̂k with

Ĥ(k) = [γ (k) − μ] τ̂3 + δ(k)τ̂3ρ̂3 + �(k)τ̂1 − B, (3)

where we also incorporated the effect of a Zeeman fieldB. With
the usual techniques we calculate the corresponding Matsubara
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FIG. 2. (Color online) Typical temperature-induced first-order
transition from S (red) to dx2−y2 SC (green) for various chemical
potentials μ obtained when VS < Vd

x2−y2 < 1.5VS . Free energy
calculations not reported here confirm this transition. A mixed
S + dx2−y2 state is not accessible.

Green’s function, which exhibits four quasiparticle branches,
and then solve the coupled self-consistent equations, which
provide the two gaps �1,2(k).

III. THE MAIN RESULTS

To illustrate the fact that achieving mixed states is not a
trivial task, we start with the competition between the isotropic
S IR and the dx2−y2 IR. As expected, S and dx2−y2 SC phases
are highly competitive and coexistence cannot be achieved
at any value of the respective potentials. Remarkably, when
VS < Vdx2−y2 < 1.5VS we observe a first-order transition from
dx2−y2 to S gap symmetry as we lower the temperature (Fig. 2).
We confirmed the validity of this transition by verifying that
it constitutes a global minimum solution of the free energy
calculated as described in Appendix A.

While the isotropic S SC phase cannot coexist with the
dx2−y2 SC phase, the S± phase that is widely considered
relevant for iron-based SCs coexists with dx2−y2 over a wide
range of the effective potentials (Fig. 1). The reason for
this different behavior is deeply rooted in the nonisotropic
momentum structure of the S± IR. In Fig. 3 we report typical
self-consistent solutions of the SC gap function in the mixed
nematic S± + dx2−y2 SC phase in the case of nodal [Fig. 3(a)]
and nodeless [Fig. 3(b)] SC gaps. We insist that all the
effective potentials and dispersions used in our self-consistent
calculations preserve C4 symmetry. Only because S± and
dx2−y2 coexist, fourfold rotational symmetry is spontaneously
broken and nematicity emerges. The essential ingredients
leading to the nematic S± + dx2−y2 state is on one hand the well
separated electron and hole pockets that favor the stabilization
of the S± phase and on the other, some weak tendency towards
the formation of the dx2−y2 gap symmetry that is not suppressed
by the presence of S±.

The detailed characteristics of the FS topology are not
crucial for the formation of the nematic state but mainly
determine, along with the exact ratio of the S± and dx2−y2 order
parameters, the nodal or nodeless type of the quasiparticle exci-
tation spectrum (this is detailed in Appendix B). Depending on

FIG. 3. (Color online) The self-consistently obtained total SC
gap amplitude in the nematic S± + dx2−y2 phase for the case when
(a) the dominating component is the dx2−y2 and (b) the S±. The
color grade shows the momentum structure of the gap over the whole
FBZ [red (blue) is for positive (negative) values]. The magenta lines
denote the area where the SC gap vanishes, i.e., the SC gap nodes.
In the same plots is shown the FS for two cases of electron doping
μ = (0.05,0.4), drawn with dotted and solid lines, respectively. Note
that for both dopings the SC gap structure remains unaltered. (a)
Dominating dx2−y2 component. In this case the nematic SC state
can be either nodal or nodeless depending on the doping level. (b)
Dominating S± component. In this case the nematic SC state can
only be nodeless. Note that in both cases the fourfold rotational C4

symmetry is reduced to C2.

the nature of the spectrum a peculiar quantum critical behavior
can emerge [40]. Even more, a nodal nematic S± + dx2−y2 SC
phase, which was self-consistently obtained within the small-q
phonon pairing mechanism, was also reported in Figs. 2(f) and
4(d) of Ref. [4]. A recent spin-fluctuations model also appears
compatible [33]. These small-q results confirm that the present
findings of the separable potentials analysis are generic. The
occurrence of the nematic S± + dx2−y2 SC phase is indeed a
detail-independent phenomenon, not requiring fine-tuning on
a particular microscopic model.

More importantly, the distinctive behavior of the mixed
S± + dx2−y2 state in the presence of a Zeeman field may
provide additional routes for its experimental identification.
At low temperatures, we obtain a characteristic first-order
field-induced transition from the nematic S± + dx2−y2 phase
to the pure dx2−y2 phase (Fig. 4). The transition exists only
at sufficiently low temperatures. By exploring the higher
temperature regime in the presence of the field, we construct
the self-consistent Zeeman field–temperature phase diagram.
Quite remarkably, for the T = B = 0 nodeless nematic solu-
tion shown in Fig. 3, we obtain aB-T phase diagram exhibiting
three distinct SC regions and a tetracritical point [Fig. 4(a)].
The latter is analogous to the well known phase diagram of
UPt3, obtained also in the presence of in-plane fields [36].

In our case this phase diagram can be understood as follows:
the S± gap symmetry is dominant for the particular case, owing
the higher Tc at zero field. On the other hand, in the presence of
a large Zeeman field, the dx2−y2 gap symmetry with nodes on
the FS is energetically more favorable than a nodeless SC phase
[41] and thus the nodal gap exhibits a higher critical field at
zero temperature. Therefore, the reason for such a complicated
phase diagram lies in the extraordinary fact that at zero field, a
fully gapped SC phase like S± allows at lower temperatures its
coexistence with an emergent nodal dx2−y2 phase. This phase
diagram occurs only for fully gapped nematic phases at zero
field. In the case when the T = B = 0 nematic solution is
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FIG. 4. (Color online) Zeeman field–temperature phase dia-
grams resulting from our self-consistent calculations for μ = 0.4.
Solid (dashed) lines denote first (second) order phase transitions. (a)
Case shown in Fig. 3(b). It exhibits three distinct superconducting
regions and a tetracritical point. A similar diagram has been
experimentally observed in UPt3 [36]. (b) Case of mixed S + idx2−y2

states that break time-reversal invariance but preserve the tetragonal
symmetry. Note that in both cases there is a low-temperature first-
order transition from mixed to pure dx2−y2 SC states as the field
increases.

nodal, the phase diagram has the same qualitative form as in
Fig. 4(b). In both cases, an experimental method for identifying
the mixed character of the proposed S± + dx2−y2 nematic SC
phase is the observation of a Zeeman-field-induced first-order
transition from the mixed nematic S± + dx2−y2 state to the pure
dx2−y2 state that is nodal and preserves C4.

Mixed states may also lead to T breaking, if the coexisting
order parameters lock in a π/2 phase difference. In that case C4

symmetry is preserved, rendering theT -breaking S± + idx2−y2

mixed phases clearly distinguishable from the nematic S± +
dx2−y2 in experiments sensitive to the in-plane anisotropy.
Within our mean-field approach the T -breaking S± + idx2−y2

phase has slightly lower free energy than the nematic
S± + dx2−y2 state. However, from our systematic numerical
exploration we conclude that this difference may be so small
that the S± + dx2−y2 and S± + idx2−y2 mixed states may be
regarded as nearly degenerate (see Appendix A). Note that the
phase diagram related to the S± + idx2−y2 SC phase exhibits
no qualitative difference compared to the previously presented

phase diagrams for the nematic S± + dx2−y2 . Moreover, the
presence of induced electronic nematicity phenomena and
nematic fluctuations [33] contributes to stabilize the nematic
SC phase. This is substantiated in Appendix C. In addition, the
states that break T are disfavored by spontaneous currents and
other mesoscopic phenomena [34] that we will not treat here.

On the other hand, the T -violating S + idx2−y2 SC phase
is always characterized by a phase diagram as in Fig. 4(b)
and can never exhibit a tetracritical point, because according
to our self-consistent calculations and in agreement with prior
studies [42], the mixed S + idx2−y2 phase only appears for
sufficiently large dx2−y2 potentials Vd

x2−y2 > 1.2VS . Therefore,
the nodal dx2−y2 phase with the higher critical field owes at the
same time the higher Tc at zero field. Note that here as well we
obtain at low T a first-order Zeeman-field-induced transition
from the mixed S + idx2−y2 phase to the pure dx2−y2 phase.

IV. DISCUSSION AND CONCLUSION

A mechanism for nematicity is demonstrated here. Our re-
sults indicate that the mixed nematic SC state S± + dx2−y2 may
be accessible under generic conditions within our two-band
mean-field model. Similar results can be obtained if we include
the next-nearest-neighbor IRs: fs ′ (k) = 2 cos kx cos ky (A1)
and fd ′ (k) = 2 sin kx sin ky (B2) (see Appendix D). Moreover
our mechanism is not restricted to nematic superconducting
phases. Our findings can be directly extrapolated to unconven-
tional density wave (DW) phases as well. In fact, when the
two bands are perfectly nested, our results for the interplay
of S± and dx2−y2 SCs hold identically for the corresponding
interband S± + dx2−y2 spin density wave (SDW) case, based
on the mappingBsc → μsdw. This is illustrated in Appendix E.
Moreover, in the particle-hole asymmetric case the situation
changes, with the basic feature being that a spin DW and
a charge DW exhibiting the same momentum structure are
coupled in the presence of a Zeeman field [43] because they
form a quartet [44]. Note that a spontaneously emerging
mixed nematic charge DW may as well drive an orthorhombic
distortion to the lattice in the form of a Peierls instability.

An eventual identification of some iron-based materials in
which our mechanism may be the origin of nematicity in
a SDW phase would have serious implications even about
the nature of the eventual nonnematic SDW phases. In fact,
since the S + dx2−y2 SDW state is not accessible, if the mixed
nematic SDW state S± + dx2−y2 is responsible for nematicity
in the AFM phase then we may indirectly conclude that
nonnematic AFM phases are most likely of S± type and
not S type as is usually assumed. In fact in both S and S±
symmetry channels for an interband SDW we deal with a
nodeless real SDW order parameter of the same wave vector
and it is almost impossible to distinguish between them directly
from experiments. However, these are two different states: S

is a conventional and S± an unconventional SDW state, which
behave differently for example in the proximity of a d-wave
condensate. In particular, modeling of coexisting SDW and SC
states should treat the SDW phase in the S± channel and not
in the usual S channel and this will affect the results.

If indeed unconventional SCs in an iron-based compound
lie in the proximity of unconventional DW phases of the same
order parameter symmetry, then a fundamental analogy to
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high-Tc cuprates emerges, where there are reports of a d-wave
DW (orbital AFM) phase associated with the pseudogap [45].
In the d-wave DW phase, the orbital coupling to an externally
applied magnetic field [46] induces a chiral d-density wave
phase [47], which can account for the anomalous Nernst
signal [48] observed in the pseudogap phase of cuprates [49].
Note that such anomalies in the Nernst signal are apparently
present also in some underdoped iron-pnictides, as well as
at temperatures where nematicity emerges [50], leaving the
possibility of a chiral mixed nematic spin DW open. We should
finally note here that to an unconventional charge density wave
particle-hole condensate in momentum space corresponds
effectively in the strong-coupling limit an orbital ordering
state in real space, exactly as Bose condensation of polarons
corresponds to the strong-coupling limit of BCS pairing or
localized ferromagnetism corresponds to the strong-coupling
limit of a Stoner ferromagnet. Therefore our picture is not
totally incompatible with those involving orbital ordering for
the nonsuperconducting states. However, additional dedicated
work is needed in order to identify firmly mixed nematic SC
or DW phases in some iron-based materials, and the search
for the low-T Zeeman-field-induced first-order transition from
the mixed nematic state to the d-wave tetragonal state may
represent a useful approach. To make the link between our
microscopic approach and the Landau approach adopted by
many authors for related studies, we provide in Appendix F
a detailed Landau expansion of our microscopic free energy
translating some of our findings in that framework as well.

In conclusion, we introduce a mechanism for nematicity in
the SC state and potentially in the antiferromagnetic/charge-
ordered state. It consists of the spontaneous emergence of
mixed dx2−y2 + S± symmetries in the corresponding SC or
DW order parameters. We predict an in-plane field-induced
melting of nematicity in films exhibiting such mixed states, via
an abrupt first-order transition at low temperatures, to a nodal
dx2−y2 phase preserving C4. This transition can be regarded as
the fingerprint of the presence of a mixed state. Note that these
mixed SC-DW states have a quartet coupling with electronic
nematic or Pomeranchuk phases [44] that can therefore be
induced stabilizing the mixed nematic SC state (Appendix C).
Finally, mixed SC states that break time-reversal symmetry but
preserve C4 are also accessible and should be taken into con-
sideration in the analysis of experiments. Those T -breaking
states are very rare in nature and precious because they
may eventually constitute an element for engineering, with a
proper choice of proximity effects in nanostructures, relevant
topological states. The near degeneracy of our mixed nematic
states with the mixed T -breaking states makes any materials
in which our mixed nematic states are eventually observed po-
tentially relevant platforms for engineering the corresponding
SC T -breaking states in properly designed nanostructures. We
will examine this possibility in a future work.
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APPENDIX A: FREE ENERGY CALCULATIONS

Defining the spinor 	
†
k = (c†k,↑,d

†
k,↑,c−k,↓,d−k,↓) we take

the Hamiltonian

H =
∑

k

	
†
k{γkτ̂3ρ̂0 + δkτ̂3ρ̂3 − μτ̂3ρ̂0 − Bτ̂0ρ̂0

+�1(k)τ̂1ρ̂0 + �2(k)τ̂1ρ̂0}	k, (A1)

and the corresponding Green’s function reads

Ĝ(k,iωn) = (iωn − γkτ̂3ρ̂0 − δkτ̂3ρ̂3 + μτ̂3ρ̂0 + Bτ̂0ρ̂0

−�1(k)τ̂1ρ̂0 − �2(k)τ̂1ρ̂0)−1

with the poles at EB
±±(k) = −B ± E±(k) with E±(k) =√

[γk ± δk − μ]2 + [�1(k) + �2(k)]2. The free Green’s func-
tion is just Ĝ0(k,iωn) = (iωn − γkτ̂3ρ̂0 − δkτ̂3ρ̂3 + μτ̂3ρ̂0

+ Bτ̂0ρ̂0)−1 and the self-consistent equation for
the �1(2)(k) SC order parameters is �1(2)(k) =
1
4T

∑
k′,n V

1(2)
kk′ Tr{τ̂1Ĝ(k′,iωn)}. The free energy difference

between the condensed and the normal system with the above
Hamiltonian can be obtained via the Feynman-Hellmann
theorem as

δF = �2
1

V1
+ �2

2

V2
− 1

2
T

∑
n

∑
k′

Tr

{
ln

Ĝ−1(k′,iωn)

Ĝ−1
0 (k′,iωn)

}
. (A2)

This provides the exact free energy at all temperatures within
our approach. In the left panel of Fig. 5 we show as an
example the free energy shape that results from our self-
consistent calculations in the low-T and zero-field regime of
Fig. 4(a) where the physical ground state is the mixed nematic
S± + dx2−y2 phase.

As we mention in the main text, the T -violating phases
are also accessible over a wide range of potentials and
they may even appear very marginally favored compared to
the nematic phase. We report here the results of systematic
numerical calculations of both condensation free energies and
we conclude that theT -violating and nematic phases are nearly
degenerate especially for the range of potentials Vd � 2.5 and
Vs± � 2 (in units of t = 1). Indeed, even for T = 0 where the
relative difference takes maximal values, one can see that this
relative difference is nevertheless negligible, lower than 0.3%
for potentials Vd � 2.5 and Vs± � 2 [Figs. 5(b) and 5(c)].

This near degeneracy is lifted in favor of the nematic
phase by phenomena not taken into consideration here. Such
important phenomena are the following:

(1) The unavoidable emergence of spontaneous currents in
finite samples with T -violating condensates will renormalize
these condensates. In the nematic phase instead, these phe-
nomena are absent.

(2) Nematic superconductivity induces electronic nematic-
ity phenomena that are cooperative, contributing to stabilize
the nematic superconducting phase.

The study of the influence of spontaneous currents in
finite samples of T -violating superconductors is beyond the
possibilities of the present approach and will be explored
elsewhere. On the other hand, in Appendix C is illustrated
how induced Pomeranchuk or electron nematicity phenomena
cooperate with nematic superconductivity.
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FIG. 5. (Color online) In (a) are shown free energy results as a function of the dx2−y2 and S± gaps (�d
x2−y2 and �S± , respectively) exhibiting

four degenerate total minima for which both order parameters are finite confirming the mixed nematic S± + dx2−y2 state. The dashed contour
lines in (b) and (c) are equal free energy difference lines between the T -violating SC phase and the nematic S± + dx2−y2 SC phase as a
percentage of the free energy of the system in the S± + idx2−y2 state for μ = 0.05 and μ = 0.4, respectively. Note that the relative free energy
difference for small values of the effective potentials is negligible and therefore nematic and T -violating states are effectively degenerate.

APPENDIX B: NODAL VERSUS NODELESS SPECTRUM
IN THE MIXED NEMATIC S± + dx2− y2 PHASE

In the nematic S± + dx2−y2 SC phase the quasiparticle en-
ergy spectrum becomes EB

λ,l(k) = λ
√

[εl(k)]2 + [�(k)]2 −B
with λ = ±, l = e,h, and �(k) = �s± (cos kx + cos ky) +
�d (cos kx − cos ky). The lth band will have nodes when
the conditions εl(k) = 0 and �(k) = 0 are simultaneously
satisfied. We consider here |μ| < 0.5 and we obtain the
following:

(1) Nodes in both bands: |�d | � 10+4|μ|
2−4|μ| |�s±|.

(2) Nodes only in the electron (hole) band for μ < 0
(μ > 0): 10+4|μ|

2−4|μ| |�s±| > |�d | � 10−4|μ|
2+4|μ| |�s±|.

(3) Nodeless mixed S± + dx2−y2 SC phase: 10−4|μ|
2+4|μ| |�s±| >

|�d |.
The coordinates of the nodes are shown to be defined from

the equations cos kx = ±A/B+ and cos ky = ±A/B− with

A = −2|�d | +
√

(2�d )2 + 2(2 ± μ)(�2
d − �2

s±) and B± =
|�s± ± �d |. Here + (−) give the nodes for the electron (hole)
band. Two different equations for cos kx and cos ky reflect the
symmetry reduction C4 → C2 in the nematic S± + dx2−y2 SC
phase. Our numerical results naturally verify the above and
have led to the blue and green lines in the phase diagrams
of Fig. 6.

FIG. 6. (Color online) Phase diagram obtained with T = B = 0
for (a) μ = 0.05 and (b) μ = 0.4. Solid line boundaries define the
region over which the S± + dx2−y2 nematic phase is accessible. The
green dashed line is the boundary above which the S± + dx2−y2

nematic SC phase exhibits nodes in both bands while the blue dash-
dotted line is the boundary above which the S± + dx2−y2 nematic SC
phase exhibits nodes only in the electron band for μ > 0 or only in
the hole band for μ < 0.

APPENDIX C: INDUCED ELECTRONIC NEMATICITY
EFFECTS COOPERATE WITH THE MIXED NEMATIC

SUPERCONDUCTING PHASE AND STABILIZE IT

We can include the possibility of the formation of an
electron nematic state by adding a term in the Hamiltonian
that corresponds to a charge Pomeranchuk phase:

H =
∑

k

	
†
k{γkτ̂3ρ̂0 + δkτ̂3ρ̂3 − μτ̂3ρ̂0 − Bτ̂0ρ̂0

+�s± (k)τ̂1ρ̂0 + �d (k)τ̂1ρ̂0 + Pkτ̂3ρ̂0}	k, (C1)

where Pk corresponds to d-wave Pomeranchuk deformation:
Pk = Pf P

k and f P
k = (cos kx − cos ky). We chose this

specific Pomeranchuk state because Pk, �s± , �d , and γk
form a quartet [44]. If a finite potential was present in this
Pomeranchuk channel, we should have to study the mixed
nematic superconducting state on the same footing with
this charge Pomeranchuk order parameter adding an extra
dimension in our phase maps. This demanding task will be
attempted in a future work. However, even if we suppose that
the potential in the Pomeranchuk channel is negligible, the
emergence of a Pomeranchuk field induced by γk, �s± , and �d

lowers the free energy of the superconducting nematic state.
The presence of a Pomeranchuk order parameter modifies the
nearest-neighbor hopping matrix elements according to the
corresponding symmetry breaking scheme C4 → C2, yielding
t(cos kx+ cos ky) → t(cos kx+ cos ky)−P(cos kx− cos ky) =
t(1 − P/t) cos kx + t(1 + P/t) cos ky . Essentially, the
initially isotropic nearest-neighbor hopping matrix element
t ≡ tx2+y2 decomposes into two nearest-neighbor hoppings:
tx2 = t (1 − P/t) and ty2 = t (1 + P/t), which transform
according to the trivial irreducible representation of the
remaining point group symmetry after the C4 → C2

symmetry breaking is effected. The presence of the nematic
order parameter also affects the interactions that mediate the
S± + dx2−y2 nematic superconductivity. Starting from the
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effective interaction considered earlier,

Vint = − 1

N

∑
k,k′

D̂†
k(fs±(k) fd (k))

(
Vs± 0
0 Vd

)

×
(

fs± (k′)
fd (k′)

)
D̂k′ , (C2)

the irreducible representations entering the effective inter-
action above become modified in the following manner:
f P

s± (k) = vx2 cos kx + vy2 cos ky and f P
d (k) = vx2 cos kx −

vy2 cos ky , with vx2,y2 = 1 ± ηP (with η an experimentally
measurable coupling constant), providing

Vint = − 1

N

∑
k,k′

D̂†
k(fs± (k) fd (k))

×
(

Vs± ηP(Vs± + Vd )

ηP(Vs± + Vd ) Vd

) (
fs± (k′)
fd (k′)

)
D̂k′ ,

(C3)

where we have kept only linear terms of η. The free energy
functional assumes the form

FP = 1

2
�̂†

(
Vs± ηP(Vs± + Vd )

ηP(Vs± + Vd ) Vd

)−1

�̂

+ 1

2
PT

∑
k,n

fp(k)Tr{τ̂3ρ̂0Ĝ(k′,iωn)}

− T
∑
k,n

Tr{ln Ĝ−1(k,iωn)}, (C4)

where �̂† = (�∗
s± ,�∗

d ) and P = T Vp

∑
k,n fp(k)

Tr{τ̂3ρ̂0Ĝ(k,iωn)} = VpN . Extremizing the free energy
with respect to the Pomeranchuk order parameter and taking
the limit of zero potential in the Pomeranchuk channel we
obtain the induced Pomeranchuk field,

Pind =
⎡⎣η

(
1

Vs±
+ 1

Vd

)
(�∗

s±�d + �s±�∗
d )

+ T
∑
k,n

fp(k)Tr{τ̂3ρ̂0Ĝ(k,iωn)|P=0}
⎤⎦/

χp = Nind

χp

,

(C5)

where χP = −T [fp(k)]2Tr{[τ̂3ρ̂0Ĝk]2} is the Pomeranchuk
susceptibility and Nind is the induced Pomeranchuk ordering.
The change in free energy brought about by the additional
ordering of the charge Pomeranchuk in the system is given by

δFP = 1

2
�̂†

(
0 ηP(Vs± + Vd )

ηP(Vs± + Vd ) 0

)−1

�̂

+ T
1

2
P

∑
k,n

fp(k)Tr{τ̂3ρ̂0Ĝ(k′,iωn)}

− T
∑

k

Tr

{
ln

Ĝ−1(k′,iωn)

Ĝ−1(k′,iωn)|P=0

}
. (C6)

Assuming the induced Pomeranchuk ordering is sufficiently
small we expand the above expression in P up to second order

FIG. 7. (Color online) The relative free energy difference
(dashed contour lines) between T -violating and nematic SC phases
for T = 0, μ = 0.05, and (a) η = 0.055, (b) η = 0.08. Note that
modification of the interactions due to the induced Pomeranchuk
field stabilizes the nematic SC phase over a wide range of the
phase diagram (cyan area). Notice that for η = 0.08 the nematic
SC phase is stabilized for potentials Vs± = Vd = 3 corresponding to
the tetracritical point case presented in the main text.

and again taking the limit of zero potential in the Pomeranchuk
channel we obtain

δFP == −P
1

2

⎡⎣η

(
1

Vs±
+ 1

Vd

)
(�∗

s±�d + �s±�∗
d )

+ T
∑
k,n

fp(k)Tr{τ̂3ρ̂0Ĝ(k,iωn)|P=0}
⎤⎦ = − [Nind]2

2χPd

,

(C7)

where we have substituted the expression Eq. (C5) for the
induced charge Pomeranchuk field. Utilizing Eq. (C7) we
recalculated again the relative free energy difference between
the nematic S± + dx2−y2 and the T -violating SC phase pre-
sented in Fig. 6 taking into account the free energy correction
due to the induced charge Pomeranchuk field. For finite but
small values of the coupling constant η the modification of the
interaction lowers the free energy of the nematic S± + dx2−y2

phase enough in order to be stabilized with respect to the
T -violating S± + idx2−y2 SC phase (Fig. 7).

APPENDIX D: A UNIFIED DESCRIPTION OF SHEAR AND
ORTHORHOMBIC SUPERCONDUCTIVITY INDUCED
NEMATICITY IN IRON-BASED SUPERCONDUCTORS

In the main discussion we have focused on nematic
superconductivity originating from the S± + dx2−y2 SC phase
which leads to an induced nematic order parameter with
fnem(k) = fd (k) which corresponds to an orthorhombic dis-
tortion in the FBZ and a shear distortion in the BZ. In
order to describe orthorhombic distortion in the BZ we have
to study nematic superconductivity in the FBZ involving
the dxy superconducting order parameter instead of dx2−y2

(see Fig. 8). Below we present some self-consistently ex-
tracted calculations for intraband superconducting pairing
with identical gaps for both bands �(k) involving the irre-
ducible representations fs± (k) = cos kx + cos ky and fd ′ (k) =
2 sin kx sin ky . In addition, within the Landau formalism and in
the absence of nematic fluctuations, we find for S± and dxy the
following: |c − g|/√β1β2 = 0.23 (S± + idxy accessible) and
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FIG. 8. (Color online) Phase diagram of the possible SC phases
obtained by varying the effective interaction potentials of S± and dxy

from t to 4t at T = 0. Solid line boundaries correspond to μ = 0.05
and dashed line boundaries to μ = 0.4. The extended region over
which the two phases coexist corresponds to the nematic SC phase.
The phase diagram is very similar to the corresponding diagram for
S± and dx2−y2 presented in the main text; however in this case the
chemical potential just shifts the nematic region to lower effective
potentials of the dxy phase.

|c + g|/√β1β2 = 0.69 (S± + dxy accessible). Furthermore,
since g > 0 for this case, the T -breaking phase will be favored
in the absence of nematic fluctuations.

In the presence of nematic fluctuations, we have to
include the appropriate correction to the free energy which
can trip the balance towards a nematic phase. However,
a complete investigation of the respective phase diagram
including fd ′ (k) SC additionally requires the consideration
of the fs ′ (k) = 2 cos kx cos ky (A1) SC order parameter. Since
the order parameters �s , �s± , and �s ′ belong to the same
representation, bilinear couplings of the form �∗

m�n + �m�∗
n

with n,m = {s,s±,s ′} are allowed, implying that all of these
order parameters will be generally present if at least one
of them is stabilized. The unavoidable presence of order
parameters with the irreducible representation fs ′ (k) is crucial
since the latter will become mixed with the fd ′ (k), relevant
for shear nematicity in the FBZ. In this case, primarily the

combination s ′ + dxy induces shear nematicity in the FBZ
and orthorhombic nematicity in the BZ. Consequently, in
this extended model which will be presented in more detail
elsewhere, both types of superconductivity induced nematicity
are accessible in a unified description.

APPENDIX E: ANALOGY BETWEEN INTERBAND MIXED
NEMATIC SPIN DENSITY WAVES AND MIXED NEMATIC

SUPERCONDUCTIVITY

In this subsection, we demonstrate how the phase diagrams
obtained in the main discussion concerning the coexistence
and competition of intraband S± and dx2−y2 SCs suitably
apply for mixed S± and dx2−y2 interband SDWs occurring
from the nested electron and hole bands with wave vec-
tor Q = (π,π ) in the folded Brillouin zone. For SDWs,
we consider the following z-axis polarized interband al-
lowed terms:

∑
σ σ [Meh(k)c†k,σ dk+ Q,σ + M∗

eh(k)d†
k+ Q,σ ck,σ ]

and
∑

σ σ [Mhe(k)d†
k,σ ck+ Q,σ + M∗

he(k)c†k+ Q,σ dk,σ ]. Since
Q = (π,π ) is commensurate, we obtain the important re-
lation Meh(k + Q) = M∗

he(k). To describe the particular
model microscopically we make use of the spinor 	̂

†
k,σ =

(c†k,σ ,c
†
k+ Q,σ ,d

†
k,σ ,d

†
k+ Q,σ ). The general Hamiltonian for the

particular type of SDWs reads H = ∑
k,σ 	̂

†
k,σ Ĥσ (k)	̂k,σ

with

Ĥσ (k) = γ (k)κ̂3+δ(k)ρ̂3−μ + σ [M�,+(k)ρ̂1κ̂1

−M,+(k)ρ̂2κ̂1 − M�,−(k)ρ̂2κ̂2−M,−(k)ρ̂1κ̂2],

(E1)

where κ act on the k,k + Q space. The ± index denotes
the behavior of the order parameter under the translation
k → k + Q. Notice that since [ρ̂3,γ (k)κ̂3 + δ(k)ρ̂3 − μ] = 0
we can arbitrarily choose the phase of the order parameters
(when a single IR is present). Consequently the SDW order
parameters behave as U (1) order parameters in ρ-band space
similar to the SC order parameters in τ -Nambu space. The only
constraint imposed here, due to the commensurate nature of the
nesting vector, is that order parameters even under translation
k → k + Q take the κ̂1 matrix, while the odd ones take the κ̂2

matrix. The energy spectrum reads

E±,+,σ (k) = −μ ±
√

[γ (k) + δ(k)]2 + [M�,+(k) + M�,−(k)]2 + [M,+(k) + M,−(k)]2, (E2)

E±,−,σ (k) = −μ ±
√

[γ (k) − δ(k)]2 + [M�,+(k) − M�,−(k)]2 + [M,+(k) − M,−(k)]2. (E3)

Note that there is a spin degeneracy. Below we write the spectra which determine the self-consistency equations and the related
phase diagrams for both SDW and SC phases. We observe that if we set μ = 0 in the SC case (μsc = 0) and B = 0 in the SDW
case (Bsdw = 0), there is a mapping between the SC and SDW phase diagrams by considering μsdw = Bsc.

s± + d:

Esdw
±,±,σ (k) = −μ ±

√
[γ (k) ± δ(k)]2 + [Ms±(k) + Md (k)]2, (E4)

Esc
±,±(k) = −B ±

√
[γ (k) ± δ(k) − μ]2 + [�s± (k) + �d (k)]2. (E5)

s± + id:

Esdw
±,±,σ (k) = −μ ±

√
[γ (k) ± δ(k)]2 + [Ms±(k)]2 + [Md (k)]2, (E6)
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Esc
±,±(k) = −B ±

√
[γ (k) ± δ(k) − μ]2 + [�s± (k)]2 + [�d (k)]2. (E7)

It is straightforward that in the case of a zero field, exactly the same equations hold for a charge density wave (CDW) as well.

APPENDIX F: LANDAU EXPANSIONS OF THE FREE
ENERGY IN A MIXED SUPERCONDUCTING STATE

1. Landau expansion when the SC order
parameters have the same Tc

Starting from Eq. (A2), we can construct a Landau theory
by expanding in terms of �1 and �2 the second term on the
right-hand side. In what follows, we focus on the interplay
between real s± and dx2−y2 SC order parameters (OPs),
since it is their coexistence that leads to nematicity and
sets B = 0. The derivation of the Landau theory from our
microscopic model allows us to systematically identify any
possible anomalous coupling terms of linear or higher order
that may acquire nonzero values, as well. After some algebra,
and observing that both SC OPs share the same representation
in this basis, the expression for the lowest-order cross-term
is

δF1 = 1

2
T

∑
k,n

Tr{(τ̂1Ĝ0(k,iωn))2}�1(k)�2(k)

= −1

2

∑
k,±

�1(k)�2(k)

γk ± δk − μ
tanh

γk ± δk − μ

2T −
c

.

Clearly, whether this term is nonzero or not depends on the
symmetry of the two SC OPs. For the specific case, the two
form factors are orthogonal, since they correspond to different
irreducible representations of the tetragonal point group, and
the linear term identically vanishes.

Hence, the first coupling term that survives is the usual
biquadratic (fourth order) term of the general form

δF2 = 3

4
T

∑
k,n

Tr{(τ̂1Ĝ0(k,iωn))4}�2
1(k)�2

2(k).

This result explains why in all our self-consistent calculations

we find T
s±
c �= T

d
x2−y2

c except from the tetracritical point shown
in Fig. 4(a).

We can write the effective free energy in the following form:

Fsc =
∑

m=1,2

(
αm

|�m|2
2

+ βm

|�m|4
4

)

+ [c + g cos(2ϕ)]
|�1|2|�2|2

2
, (F1)

where �m = |�m|eiϕm and ϕ = ϕ1 − ϕ2. We obtain βm = Smm,
c = 2S12, and g = S12 = c/2 with

Sab = 1

N

∑
k,l

[fa(k)fb(k)]2

εl(k)

∂

∂εl(k)

× nF [εl(k) − B] − nF [−εl(k) − B]

2εl(k)

∣∣∣∣
T =Tc

. (F2)

(1) If |c − g|/√β1β2 < 1 the two order parameters can in
principle coexist with ϕ = π/2, yielding a T -violating phase
with C4 unbroken.

(2) If |c + g|/√β1β2 < 1 the two order parameters can in
principle coexist with ϕ = 0 yielding a T -invariant phase with
C4 → C2.

(3) If g > 0 (g < 0), the preferred coexistence phase is the
T -violating (C4-violating) phase.

With this expansion our findings can be summarized as
follows:

(1) For the pair of S and dx2−y2 : For potentials Vm � 4,
we find 0.4 � |c − g|/√β1β2 � 0.63 (S + idx2−y2 accessible)
and 1 < |c + g|/√β1β2 (S + dx2−y2 forbidden).

(2) For the pair of S± and dx2−y2 : For potentials
2 � Vd � 4 and 0.6 � VS± � 4 we obtain 0.12 � |c − g|/√

β1β2 < 0.33 (S± + idx2−y2 accessible) and therefore |c + g|/√
β1β2 < 1 (S± + dx2−y2 accessible) (Fig. 9).

2. Landau expansion when the SC OPs have different Tc

Similar results are obtained if we expand only about one

of the OPs near its Tc, thus assuming T
s±
c �= T

dx2−y2

c from
the beginning. The bilinear coupling term again averages
to zero and the first finite-coupling term is the quadratic
one: δF2 = 1

4T
∑

k,n Tr{[τ̂1Ĝ�2=0(k,iωn)]2}�2
2(k). Interest-

ingly, the above term splits into two parts: the usual biquadratic
term and another one that is a product between the square of the
low Tc and a function of the higher Tc SC gap. Moreover, our
calculations indicate that the conventional biquadratic term
is in general positive, whereas the second term is negative.
Thus, there can exist a point where the overall term becomes
negative, leading to a coexisting phase between the two SC
OPs at T < Tc2 < Tc1 .

We consider that the dominant order parameter is real
(�1 = |�1| ∈ R) and constant within the whole region where
the subdominant (�2 = |�2|eiϕ) appears with a relative phase
either ϕ = 0 (C4-violating) or ϕ = π/2 (T -violating phase).
Equivalently we can consider as independent variables the
�

�,
2 (real, imaginary) components. The free energy expansion

with respect to �
�,
2 assumes the following form:

Fsc =
∑

j=�,

[
αj

(
�

j

2

)2

2
+ βj

(
�

j

2

)4

4

]
(F3)

with

α� = 2

V2
− 1

N

∑
k,λ,l

[
�1f1(k)f2(k)

E1
l (k)

]2

×
{

λnF

[
E

1,B
s,l (k)

]
E1

l (k)
− n′

F

[
E

1,B
λ,l (k)

]}

− [f2(k)]2λnF

[
E

1,B
λ,l (k)

]
E1

l (k)
, (F4)
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α = 2

V2
+ 1

N

∑
k,λ,l

[f2(k)]2snF

[
E

1,B
λ,l (k)

]
E1

l (k)
, (F5)

where E
1,B
λ,l (k) = λ

√
[εl(k)]2 + [�1(k)]2 −B= λE1

λ,l(k) −B.
We introduce the generalized susceptibilities χ�, ≡ 1/

V2 − α�,/2. As expected, for �1 = 0 the two expressions co-
incide. When �1 �= 0 we can write χ� = χ + δα/2, with δα =
α − α�. Note that n′

F [E1,B
λ,l (k)] < 0 and

∑
s λnF [E1,B

λ,l (k)] <

0 ∀k,l. For δα > 0 the critical temperature T �
c,2 for the

C4-violating SC phase is higher than the critical temperature
T 

c,2 for the T -violating phase, stabilizing the former. In the
opposite case δα < 0 we obtain T �

c,2 < T 
c,2 and theT -violating

phase becomes favored.

3. Stabilization of the nematic S± + dx2− y2 SC phase
from an induced Pomeranchuk order parameter

which only modifies the band structure

In the mixed S± + dx2−y2 nematic SC phase a dx2−y2

nematic order parameter is spontaneously induced, which
leads to a correction of the free energy. In order to calculate this
correction, we need to infer the coupling between the nematic
and SC order parameters. A nematic order parameter P which
only modifies the band structure acts in the following way:
E

B,�
λ,l (k) = λ

√
[εl(k) − �fd (k)]2 + |�1(k) + �2(k)|2 − B,

where we introduced the nematic field � = P/χp, with χp

denoting the relevant nematic susceptibility. Once again we
distinguish the cases:

(1) Different critical temperatures (Tc,1 �= Tc,2). The total
free energy reads

Fsc-nem = P 2

2χp

+
∑

j=�,

[
αj

(
�

j

2

)2

2
+ βj

(
�

j

2

)4

4

]
− ψBS�

�
2

P

χp

,

(F6)

where the coupling ψ reads

ψBS = − ∂2F̃sc

∂��
2 ∂�

∣∣∣∣
��

2 =�=0

= �1

N

∑
k,λ,l

εl(k)f2(k)fnem(k)f1(k)

E2
k,1

×
[
n′

F

[
E

1,B
λ,l (k)

] − λ
nF

[
E

1,B
λ,l (k)

]
E1

λ,l(k)

]
, (F7)

where we have χp = −∂2Fsc/∂�2 calculated at T = Tc,2,
� = 0, and �2 = 0, yielding

χp = − 1

N

∑
k,λ,l

fp(k)2

{[
εl(k)

E1
l (k)

]2

n′
F

[
E

1,B
λ,l (k)

]
+ λ

(
�1(k)

E1
l (k)

)2 nF

[
E

1,B
λ,l (k)

]
E1

l (k)

}
, (F8)

with E
1,B
λ,l (k) = λ

√
[εl(k)]2 + [�1(k)]2 − B = λE1

l (k) − B.
Extremization of the free energy with respect to the nematic
order parameter provides P BS

ind = ψBS�
R
2 which leads to a

renormalized free energy for superconductivity

F̃sc =
(

α� − ψ2
BS

χp

) [
��

2

]2

2
+ α

(
�

2

)2

2
+

∑
j=R,I

βj

(
�

j

2

)4

4
.

(F9)
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FIG. 9. (Color online) Left: The susceptibility for the dx2−y2 SC phase emerging in ϕ = 0 (green solid line) and in ϕ = π/2 (red solid

line) where the dominant order parameter is �S± = 0.5. The green dashed line corresponds to the susceptibility χ̃� = χ� + ψ2
BS

2χp
including the

correction due to the induction of a nematic order parameter modifying the band structure, when the nematic fluctuations are taken into account.
The blue dash-dotted line corresponds to the susceptibility of dx2−y2 SC phase for �S± = 0. For VS± = 1.45 the critical temperature for the pure

S± phase is T
S±
c = 0.415 and for T < 0.2 the order parameter acquires the value �S± = 0.5 which remains constant until T = 0. For Vd � 2.06

(which corresponds to a susceptibility χ̃ d
� � 0.485) the nematic S± + dx2−y2 will be stabilized at least near the T �

c � 0.2 due to the presence of
nematic fluctuations. Middle: The normalized |c − g|/√β1β2 term for the S + idx2−y2 (red line) and S± + idx2−y2 (blue line) with respect to
the critical temperature Tc. The value remains always lower than 1 and therefore S + idx2−y2 and S± + idx2−y2 are both accessible for potentials
leading to common Tc. For g > 0 (which is always the case when nematic fluctuations are not considered) |c + g|/√β1β2 = 3|c − g|/√β1β2.
Therefore S + dx2−y2 with common Tc is never accessible while S± + dx2−y2 is accessible for 1.97 � Vd � 4 and 0.6 � VS± � 4 yet not favored
with respect to the T -violating S± + idx2−y2 phase (g > 0). Even in the presence of nematic fluctuations the nematic S± + dx2−y2 phase is
always accessible as |c̃ + g̃|/√β1β2 < 1 (blue dashed line). Right: The term g for the S± and dx2−y2 with (solid green line) and without (dashed
green line) considering nematic fluctuations. Including nematic fluctuations leads to g̃ < 0 (red line) for common 0.05 < Tc < 0.28 and nematic
S± + dx2−y2 phase is favored with respect to the T -violating S± + idx2−y2 . In the range of potential 1.96 � Vd � 2.06 and 0.65 � VS± � 1.19
there is always a combination of potentials leading to common critical temperature 0.05 < Tc < 0.28.
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The induced nematic order parameter effectively leads to an
enhancement of the ��

2 susceptibility and therefore to an
increase of T �

c . If ψ2
BS/χp > δα, the critical temperature of the

nematic SC phase becomes higher than the critical temperature
for the T -violating phase, stabilizing the nematic. In Fig. 9
we present a particular case: according to our microscopic
calculations the nematic fluctuations stabilize the nematic over
the T -violating phase.

(2) The same critical temperature (Tc). When �1,2 are both
small in the vicinity of Tc we obtain

Fsc-nem = P 2

2χp

+
∑

m=1,2

(
αm

|�m|2
2

+ βm

|�m|4
4

)

+ [c + g cos(2ϕ)]
|�1|2|�2|2

2

−ψBS |�1||�2| P

χp

cos(ϕ), (F10)

where in this case the nematic susceptibility reduces
to the normal phase nematic susceptibility χp = −(1/N)∑

k,λ,l fp(k)2{n′
F [−B + λεl(k)]} and the expression for the

coupling constant ψBS in this case takes the form

ψBS = − ∂Fsc−nem

∂(��1�
∗
2)

∣∣∣∣
�1=�∗

2=�=0

= 1

N

∑
k,λ,l

f2(k)fnem(k)f1(k)

εl(k)

×
[
n′

F [−B + λεl(k)] − λ
nF [−B + λεl(k)]

εl(k)

]
. (F11)

We obtain P BS
ind = ψBS |�1||�2| cos(ϕ) leading to the corrected

free energy Fsc-nem = ∑
m=1,2(αm|�m|2/2 + βm|�m|4/4) +

[c̃ + g̃ cos(2ϕ)]|�1|2|�2|2/2 with c̃ = c − ψ2
BS/(2χp) and

g̃ = g − ψ2
BS/(2χp) where ψBS and χp are calculated for

T = Tc. If |c̃ − g̃|/√β1β2 < 1 the two order parameters can
in principle coexist with ϕ = π/2, yielding a T -violating
phase with C4 unbroken. Since |c̃ − g̃| = |c − g| the energy
correction due to the presence of nematic fluctuations does
not bring any modification here. If |c̃ + g̃|/√β1β2 = |c +
g − ψ2

BS/χp|/√β1β2 < 1 the two order parameters can in
principle coexist with ϕ = 0 yielding a T -invariant nematic
phase. If g̃ > 0 (g̃ < 0) the preferred coexistence phase is the
T -violating (C4-violating) phase. In the presence of nematic
fluctuations we find that the nematic phase is accessible and
preferred compared to the T breaking, only for an intermediate
coupling (a similar result was found in Ref. [33]), since only
in the latter case the conditions g̃ < 0 and |c̃ + g̃|/√β1β2 < 1
are simultaneously satisfied. Within our microscopic model
we were able to identify the range of potentials for which the
coupling ψBS is sufficient for the nematic S± + idx2−y2 SC
phase to be accessible and also preferred with respect to the
T -violating phase (Fig. 9).

4. Stabilization of the nematic S± + dx2− y2 SC phase from
an induced Pomeranchuk order parameter which modifies

the band structure and the interaction potentials

In the most general case, a nematic field � and
consequently a nematic order parameter P couple to the
nematic SC phase via the nearest-neighbor hopping matrix
elements according to the corresponding symmetry-breaking
scheme C4 → C2, yielding t(cos kx + cos ky) →
t(cos kx + cos ky) − �(cos kx − cos ky) = t(1 − �/t) cos kx+
t(1 + �/t) cos ky . Essentially, the initially isotropic
nearest-neighbor hopping matrix element t ≡ tx2+y2

decomposes into two nearest-neighbor hoppings:
tx2 = t(1 − �/t) and ty2 = t(1 + �/t), which transform
according to the trivial irreducible representation of the
remaining point group symmetry after the C4 → C2

symmetry breaking is effected. The presence of the
nematic field also affects the interactions that mediate the
S± + dx2−y2 nematic superconductivity (see also [33]).
Starting from the effective interaction considered earlier
Vint = −(1/N)

∑
k,k′

∑
m=s±,d Vmfm(k)fm(k′)D̂†

kD̂k′ the
irreducible representations entering the effective interaction
above become modified in the following manner: f �

s± (k) =
vx2 cos kx + vy2 cos ky and f �

d (k) = vx2 cos kx − vy2 cos ky ,
with vx2,y2 = 1 ± η� (with η an experimentally measurable
coupling constant), providing

Vint = − 1

N

∑
k,k′

D̂†
k(fs± (k) fd (k))

×
(

Vs±+ (η�)2 Vd η�(Vs±+Vd )

η�(Vs±+Vd ) Vd+ (η�)2 Vs±

)(
fs± (k′)
fd (k′)

)
D̂k′ .

(F12)

By introducing the order parameters

�s± = − 1

N

∑
k

{[Vs± + (η�)2Vd ]fs± (k)

+η�(Vs± + Vd )fd (k)}〈D̂k〉, (F13)

�d = − 1

N

∑
k

{[Vd + (η�)2Vs± ]fd (k)

+η�(Vs± + Vd )fs± (k)}〈D̂k〉, (F14)

we obtain the mean-field decoupled interaction Vint �
N�̂†V̂−1(�)�̂ + ∑

k[�(k)D̂†
k + H.c.] with �(k) =

�s±fs± (k) + �dfd (k), �̂† = (�∗
s±�∗

d ), and

V̂(�) =
(

Vs± + (η�)2Vd η�(Vs± + Vd )

η�(Vs± + Vd ) Vd + (η�)2Vs±

)
. (F15)

The free energy of the system F̃sc−nem assumes then the form

F̃sc-nem = �̂†[V̂−1(�) − V̂−1(0)]�̂

− 1

Nβ

∑
k,λ,l

ln[1 + e−βE
B,�
λ,l (k)], (F16)

with E
B,�
λ,l (k) = λ

√
[εl(k) + �fp(k)]2 + |�(k)|2 − B. We

distinguish the two cases:
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(1) Different critical temperatures (Tc,1 �= Tc,2). Based on
Eq. (F16) we obtain

F̃sc-nem= P 2

2χ̃p

+
∑

j=R,I

[
αj

(
�

j

2

)2

2
+ βj

(
�

j

2

)4

4

]
− ψ̃��

2
P

χ̃p

,

(F17)

where only the nematic susceptibility and the cou-
pling constant ψ acquire additional terms χ̃p = χp −
η2 (2/V1 + 1/V2) �2

1 � χp [according to our approximation
η� small, the diagonal correction term in the matrix of
modified potentials Eq. (F15) is negligible] and ψ̃ = ψBS +
2η (1/V1 + 1/V2) �1. We obtain the induced nematic or-
der P̃ind = ψ̃��

2 leading to F̃sc = (α� − ψ̃2/χp)(��
2 )2/2 +

α(�
2 )2/2 + ∑

j=R,I βj (�j

2)4/4.
(2) The same critical temperature (Tc). Starting from

Eq. (F16) in the vicinity of Tc we obtain the additional
contribution to the coupling constant ψ

ψV = 2η

(
1

Vs±
+ 1

Vd

)
, (F18)

while the nematic susceptibility is not modified. Due to
the inclusion of the additional contribution arising from the
modified interactions we obtain |c̃′ + g̃′|/√β1β2 = |c + g −
(ψ + ψV )2/χp|/√β1β2 and g̃′ = g − (ψ + ψV )2/2χp for the
nematic S± + dx2−y2 phase. In the case in which the conditions
g̃′ < 0 and |c̃′ + g̃′|/√β1β2 < 1 are simultaneously satisfied,
as mentioned in the previous paragraphs the nematic S± +
dx2−y2 phase is accessible and also favored with respect to
the T -violating S± + idx2−y2 phase. Again for intermediate
coupling and therefore small values of the coupling constant
η, both conditions above are simultaneously satisfied and the
nematic S± + idx2−y2 phase is stabilized at least at the vicinity
of the critical temperature. We find that adding the contribution

to coupling ψ due to modified interaction, the nematic
S± + idx2−y2 phase can be stabilized for a wider range of
potentials. Particularly for Vs± = Vd = 3 which corresponds to
the case of the tetracritical point discussed in the main text, we
find βs± = 0.07, βd = 0.057, cs±−d = 0.015, and χp = 0.39.
For this case the coupling is between the superconducting and
nematic order parameters without considering modification
of interaction ψ � 0, leading to g̃ > 0, and the T -violating
phase is stabilized. Considering now that the induced nematic
order parameter modifies interactions as described above, the
coupling constant ψ̃ � ψV acquires the necessary values for
the nematic phase to be accessible |c̃′ + g̃′|/√β1β2 < 1 and
preferred g̃′ < 0 for 0.057 < |η| < 0.127.

Since the coupling constant η is crucial for determining
the phase diagram which is realizable in the iron-based
superconductors, it is necessary to retrieve experimentally the
value of η introduced in the previous paragraph. For η �= 0
the effect of a nematic field � is to enhance the critical
temperature [33]. The modified equation that provides the
critical temperature is given from the zeros of the determinant∣∣∣∣(Vs± + (η�)2Vd η�(Vs± +Vd )

η�(Vs± + Vd ) Vd + (η�)2Vs±

)−1

−
(

χs± 0

0 χd

)∣∣∣∣= 0,

(F19)
where we have introduced the susceptibilities

χm = 1

N

∑
k,l

[fm(k)]2 nF [−εl(k) − B] − nF [εl(k) − B]

2εl(k)
,

(F20)

with m = s±,d. If we assume that we apply orthorhombic
strain in the FBZ then � will become finite and can be
determined through the resistivity anisotropy ρxx − ρyy . For
known � and the difference T �

c − T 0
c in the presence and

absence of strain, one can retrieve η from the equation above.
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