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Critical point scaling of Ising spin glasses in a magnetic field
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Critical point scaling in a field H applies for the limits t → 0 (where t = T/Tc − 1) and H → 0 but with the
ratio R = t/H 2/� finite. � is a critical exponent of the zero-field transition. We study the replicon correlation
length ξ and from it the crossover scaling function f (R) defined via 1/(ξH 4/(d+2−η)) ∼ f (R). We have calculated
analytically f (R) for the mean-field limit of the Sherrington-Kirkpatrick model. In dimension d = 3, we have
determined the exponents and the critical scaling function f (R) within two versions of the Migdal-Kadanoff
(MK) renormalization group procedure. One of the MK versions gives results for f (R) in d = 3 in reasonable
agreement with those of the Monte Carlo simulations at the values of R for which they can be compared. If there
were a de Almeida-Thouless (AT) line for d � 6, it would appear as a zero of the function f (R) at some negative
value of R, but there is no evidence for such behavior. This is consistent with the arguments that there should be
no AT line for d � 6, which we review.
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I. INTRODUCTION

Despite decades of research, the nature of the ordered
state of spin glasses remains controversial. There are two
main competing pictures. The first is based on the broken
replica symmetry (RSB) ideas of Parisi and co-workers [1],
which are indeed exact in the limit of infinite dimensions—the
Sherrington-Kirkpatrick (SK) model [2]. The other picture is
the droplet model [3–5], which is based on the properties of
excitations (droplets of reversed spins) in the ordered phase.

A key discriminator between the two pictures is the
existence or not of the de Almeida-Thouless (AT) line [6].
According to the RSB picture in an applied field H there
is a line in the H -T plane, hAT(T ), at which there is a
transition from the high-temperature replica symmetric state to
a low-temperature broken replica symmetry state. On the other
hand, in the droplet picture there is no such transition line.
The application of the field H removes the phase transition
completely just as does a uniform field applied to an Ising
ferromagnet. There is no AT line in the droplet picture as the
low-temperature phase in zero field is replica symmetric. It has
been argued [7,8] that d = 6 is the lower critical dimension
for the RSB state and that there is no AT line for d � 6. The
absence of RSB for d < 6 has been rigorously established for
a (unphysical) choice of the distribution function of the spin
couplings Jij [9].

The question of the existence or not of an AT line in three
dimensions can be investigated experimentally [10]. The chief
problem are those of achieving equilibration. There are also
extensive Monte Carlo simulations on the properties of spin
glasses in a field [11–15]. For simulations the chief problem is
that of finite-size effects: these can give rise an appearance of
RSB even if it is absent in the thermodynamic limit [16,17].

In this paper, we shall study critical point scaling. By
this we mean the scaling behavior in the limit of small
fields close to the transition temperature Tc. It is useful to
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introduce the reduced t = T/Tc − 1 as the measure of the
temperature difference from Tc. The crossover from the zero
field regime to the field dominated regime is measured by the
ratio R = t/H 2/� [18]. The exponent � is the gap exponent
and is such that � = β + γ = ν(d + 2 − η)/2. Above the
upper critical dimension, which is six for Ising spin glasses,
β = γ = 1, � = 2, and ν = 1/2. (The zero-field correlation
length varies as 1/tν .) The decay of the zero-field bond-
averaged spin-spin correlation function, 〈SiSj 〉2 with distance
at Tc is as 1/rd−2+η; η = 0 for d > 6. There is the usual failing
of hyperscaling for d > 6. For d < 6, all the exponents take
on nontrivial values and have been extensively studied [19]
in three dimensions and investigated via epsilon expansions
below six dimensions [20,21]. In the presence of a field,
there are many correlation lengths and the longest of these
is the replicon length scale ξ [6]. Right at Tc, this grows as
ξ ∼ 1/H 4/(d+2−η) and for d > 6 this reduces to ξ ∼ 1/H 1/2.
When t is nonzero, ξ becomes

1

ξH 4/(d+2−η)
∼ f

(
t

H 2/�

)
= f (R). (1)

The focus of this paper is on the form of the function f (R).
We shall refer to it as the crossover function as it describes
how the correlation length at T = Tc (i.e., t = 0) is modified
when t is nonzero. It is important to keep in mind that Eq. (1)
only strictly applies in the limits t → 0, H → 0, with the ratio
R fixed. For applications one always has t and H finite and
one needs to allow for corrections to scaling. We can determine
f (R) analytically in the mean-field limit, i.e., for the SK model
and this is done in Sec. II. For three dimensions we shall
calculate it with two different versions of the Migdal-Kadanoff
RG procedure in Sec. V and compare them with the results of
the Monte Carlo simulations of Ref. [15].

Since there is an AT line for d > 6 and in the SK model we
need to understand why there is no trace of it in the crossover
function f (R). The answer lies in the scaling form of the
AT line, i.e., the behavior of hAT as |t | → 0. When d > 8
h2

AT ∼ |t |3, but for 8 > d > 6, h2
AT ∼ |t |d/2−1 [6,18,22]. Then

for all d > 6, R goes to −∞ at the AT line in the limit |t | → 0.
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However, for d < 6, if there is an AT line, it would occur at
a finite value of −R as h2

AT ∼ |t |� [18]. Because ξ diverges
at the AT line, f (R) has to have a zero if there is an AT line.
However, we shall see no evidence for such a zero in the work
for d = 3 reported in Sec. V. The absence of an AT line for
d = 3 is consistent with the argument of Ref. [7] that the AT
line only exists when d > 6. This argument is sketched in
Sec. III; it is because for 8 > d > 6, h2

AT ∼ (d − 6)4|t |d/2−1,
when |t | → 0, which indicates that in the scaling limit, the
AT line is going away as d approaches 6. The comments of
Ref. [23] on this argument will be reviewed.

II. THE CROSSOVER FUNCTION f (R) IN THE SK LIMIT

The Hamiltonian for the SK Ising spin glass in a field [2] is
given by

H = −
∑
〈ij〉

JijSiSj − H
∑

i

Si, (2)

where the Ising spins Si take the value ±1 and 〈ij 〉 means that
the sum is over all pairs i and j . The couplings Jij are chosen
independently from a Gaussian distribution with zero mean
and a standard deviation (width) J/N1/2. We shall calculate
for this Hamiltonian the scaling function f (R). This is easy to
do as the calculation is done in the region where there is replica
symmetry. There the Edwards-Anderson order parameter q =
1/N

∑
i〈Si〉2 is obtained by solving the equation

q =
∫ ∞

−∞

dx√
2π

e−x2/2tanh2(βJ
√

qx + βH ). (3)

It is convenient to introduce the notation Q = β2J 2q + β2H 2,
and t = T/Tc − 1, where for the SK model Tc = J . Then to
order t2 and h2(= H 2/T 2

c ), one can obtain by expanding the
argument of tanh in Eq. (3) the following approximation to the
equation of state:

H 2/T 2
c ≡ h2 = 2tQ + 2Q2. (4)

To determine the crossover function f (R), we need to
determine the replicon correlation length. This is the length
scale associated with the decay of the (bond-averaged) replicon
correlation function GR(ij ),

GR(ij ) = (〈SiSj 〉 − 〈Si〉〈Sj 〉)2. (5)

For the replica symmetric state, de Almeida and Thouless [6]
calculated the eigenvalues of the Hessian associated with the
replica symmetric solution. The smallest eigenvalue was that
in the replicon sector and is given by

λR = 1 − β2J 2
∫ ∞

−∞

dx√
2π

e−x2/2sech4(βJ
√

qx + βH ).

(6)
To order t and h, this reduces to λR = 2t + 2Q. Eliminating
Q using Eq. (4) gives

λR ≈ t +
√

t2 + 2h2. (7)

We next use the Ornstein-Zernike approximation to deter-
mine the replicon correlation length by setting 1/ξ 2 ∼ λR .
Then we get on using the notation R = t/h, which is what

R = t/h2/� becomes for � = 2,

1

ξh1/2
= f (R) ∼ (R +

√
2 + R2)1/2. (8)

Note that the power of H in Eq. (1), 4/(d + 2 − η), can be
re-written as 2ν/�, which reduces to 1/2 for the SK model
where ν = 1/2, and � = 2. Equation (8) is the mean-field
approximation for f (R). Exactly the same result for the
crossover function f (R) is obtained for a Gaussian distribution
of fields whose variance is H 2, so there are universality features
associated with it. In Sec. V, the form of f (R) is studied in
three dimensions, and it is found to be at least qualitatively
similar to that of the mean-field limit in Eq. (8).

Notice that when t is negative, f (R) decreases to zero as
R → −∞.

f (R) ∼ 1/|R|x, R → −∞, (9)

where in the SK limit the exponent x takes the value 1
2 .

We would expect the same value for x to hold from infinite
dimension down to the upper critical dimension, d = 6.

III. THE AT LINE FOR d > 6

Since we are essentially studying the replicon correlation
length ξ , one might have expected to see in the scaling function
f (R) behavior associated with the AT line. The AT line is the
line in the H -T plane at which ξ goes to infinity. Near Tc,
the AT line for the SK model is given by h2

AT ∼ |t |3 [6], so
on the AT line R = t/H 2/� = t/hAT. This diverges to −∞ in
the critical scaling limit |t | → 0: the AT line is thus outside
the critical scaling limit for the SK model, which explains its
absence from f (R).

We next review how the AT line evolves with dimension
d. The SK form for the AT line as |t | → 0 is expected to
hold down to d = 8, and changes for 8 > d > 6, to h2

AT ∼
|t |d/2−1 [18,22]. Provided d > 6, R at the AT line is outside
the critical scaling limit. However, as d → 6+, the value of R

on the AT line is diverging to infinity less and less strongly
(as 1/|t | d−6

4 ). A change must occur at d = 6. If there were an
AT line for d � 6, it would be in the critical scaling region
and occur at a finite value of R. In Sec. V, we shall study
the computer simulations of the Janus group [15] and the
MK approximation for f (R) in three dimensions for evidence
for such a zero at a finite value of R and find none. The
more detailed calculation of Ref. [7] provide a clue as to what
happens: the AT transition does not occur for d � 6.

The more detailed calculations started from the replicated
Ginzburg-Landau-Wilson free-energy functional for the Ising
spin glass which, written in terms of the replica order parameter
field Qαβ , is

F [{Qαβ}] =
∫

ddx

⎡
⎣1

2
r
∑
α<β

Q2
αβ + 1

2

∑
α<β

(∇Qαβ)2

+ w

6

∑
α<β<γ

QαβQβγ Qγα

− h2
∑
α<β

Qαβ + O(Q4)

⎤
⎦ . (10)
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The coefficient r is essentially a measure of the distance
from Tc, i.e., it is basically t . When d < 8, the Q4 terms are
irrelevant. Conventional RG methods were applied [20], but
the calculation was done above the upper critical dimension,
du = 6. It is useful to define ε = d − 6. Then for small ε [7,23],

h2
AT ∼ w|r|d/2−1

[(2w2/ε)(1 − |r|ε/2) + 1]5d/6−1
. (11)

In Moore and Bray [7], it was argued that Eq. (11) implied that
near six dimensions in the limit when |r| → 0,

h2
AT ∼

(
ε

2w2

)4

w|r|d/2−1. (12)

This result strongly suggests that the AT line will disappear as
d → 6 in the critical scaling limit, |r| → 0. At fixed |r| in the
limit of ε → 0, Eq. (11) gives

h2
AT ∼

(
1

w2 ln |r| + 1

)4

w|r|d/2−1, (13)

which agrees with the expression for the AT line in six
dimensions given by Parisi and Temesvári [23]. However,
Eq. (11) is not valid for this limit.

To see that, it is useful to note that the general form of the
AT line (at least for 6 < d < 8) is

h2
AT = |r|2

w
g(w2|r|ε/2). (14)

At small values of y = w2|r|ε/2, one can construct the
perturbative expansion for g(y) [22]. The renormalization
group calculation that leads to Eq. (11) is effectively just a
resummation of the perturbative calculation and will only be
useful and valid at small values of y, which means only for the
critical scaling limit |r| → 0 at fixed ε.

However, we would agree with the authors of Ref. [23] that
it would be good to have an argument that at any fixed value
of |t |, hAT went to zero in the limit d → 6, rather than just for
the scaling limit |t | → 0. This is a nonperturbative task, but
perhaps not impossible. In Ref. [8], a 1/m expansion of the
value of the AT field, HAT, at zero temperature was undertaken,
for an m-spin component spin glass (m = 1 is the Ising spin
glass, m = 3 is the Heisenberg spin glass). It was found that
the first term in the 1/m expansion went to zero around d = 6.

IV. DROPLET SCALING AND f (R) FOR d � 6

In Sec. V, we find that there is no evidence that there is an AT
line in d = 3. In other words, the crossover function f (R) has
no finite zero on the negative axis. In the limit when R → −∞,
it decays towards zero, as 1/|R|x . In this section, we show that
this behavior for the crossover function is predicted by droplet
scaling and determine how the exponent x depends on the
critical exponents and θ .

According to the droplet picture the length scale ξ is
determined by an Imry-Ma argument [3,4] where the energy
cost of flipping a region of linear extent ξ , ϒξθ , is balanced
against the magnetic field energy which could be gained,√

qHξd/2. The interface energy term ϒ scales as |t |νθ and
q scales as |t |β ∼ |t |ν(d−2+η)/2 at small |t |. Thus, according to

the droplet picture,

1

ξ
∼

(√
q

ϒ
H

) 1
d/2−θ

∼
[

H

|t |ν[θ−(d−2+η)/4]

] 1
d/2−θ

. (15)

The Imry-Ma argument for ξ is a scaling argument itself,
which should hold for all T < Tc in the limit H → 0. As a
consequence, it should coincide with the R → −∞ limit for
the critical scaling function, at least for d � 6. This enables
us to relate the exponent x for the decay of f (R) as 1/|R|x
to the other exponents. Multiplying both sides of Eq. (15) by

1/H
4

d+2−η gives

1

ξH 4/(d+2−η)
=

[
1

|t |ν[θ−(d−2+η)/4]

] 1
d/2−θ

H
( 1

d/2−θ
− 4

d+2−η
)
. (16)

This will approach 1
|R|x as R → −∞. Note that

1

|R|x =
[

H
4

ν(d+2−η)

|t |

]x

. (17)

The exponents of both |t | and H in Eqs. (17) and (16) must
both agree. This happens if

x = ν

d/2 − θ

(
θ − d − 2 + η

4

)
. (18)

We shall give numerical estimates of the value of x for
d = 3 in Sec. V. For d > 6, x = 1

2 . We do not expect that
Eq. (18) should necessarily give x = 1

2 as d → 6−. This
is because for d > 6, x is associated with the Gaussian
perturbative fixed point, while for d � 6, it is associated with
the zero-temperature fixed point of droplet scaling (see Sec. VI
for a further discussion of fixed points).

V. THE CROSSOVER FUNCTION f (R) IN THREE
DIMENSIONS

In this section, we shall study two variants (called scheme
I and scheme II) of the Migdal-Kadanoff RG procedure to
first get the critical exponent η and then the crossover function
f (R). We find the Janus result for η lies between the values
of scheme I and that of scheme II. The MK results for f (R)
have been obtained over a much wider range of R than those of
the Janus group [14,15,19]. For scheme II, there is reasonable
agreement on f (R) with that of the Janus group at the R values
at which they they can be directly compared. Scheme I is less
satisfactory; it also leads to a value for η > 0 and a value for
x < 0, both of which seem rather unlikely. There is no good
evidence of a zero of f (R) at a finite value of R in either
scheme, which means they provide no evidence for an AT line
in three dimensions.

The Edwards-Anderson Hamiltonian for the Ising spin glass
in a field is given by

H = −
∑
〈ij〉

JijSiSj − H
∑

i

Si, (19)

where the Ising spins Si take the value ±1 and 〈ij 〉 means that
the sum is over all nearest neighbor pairs i and j . The couplings
Jij are chosen independently from a Gaussian distribution with
zero mean and a standard deviation (width) J . The temperature
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FIG. 1. (Color online) Bond-moving scheme in the Migdal-
Kadanoff approximation. In the first step two sets of four bonds are
moved together. The renormalized couplings and fields are assigned
in the second step according to the given scheme. Finally, a trace is
taken over the middle spin.

T enters into the problem through exp(−H/T ) and the flows
of the couplings Jij /T and the fields H/T are studied in the
Migdal-Kadanoff RG.

We use the approximate bond moving schemes. For a three-
dimensional cubic lattice, 2d−1 = 4 (when d = 3) bonds are
put together to form a new bond. The coupling constant of this
new bond is just given by the sum of the coupling constants of
the four bonds. Using the notations in Fig. 1, we have

J ′
1 =

4∑
i=1

J
(i)
1 , J ′

2 =
4∑

i=1

J
(i)
2 . (20)

As for the external field, however, there is a certain freedom
in how the on-site field variables are moved in the bond-moving
scheme. In this paper, we employ two different schemes for
moving the fields. The first one, which we call scheme I, is due
to Ref. [24]. In this scheme, when three bonds are moved to
combine with a bond, the fields on the three bonds are moved
to the site that is to be traced over. This procedure prevents the
fields from increasing indefinitely, and allows us to work with
the uniform applied field. In terms of the notations in Fig. 1,
we have

H ′
1 = H

(1)
1 , H ′

2 = H
(1)
4 , (21)

and

H ′
3 =

4∑
i=2

H
(i)
1 +

4∑
i=1

H
(i)
2 +

4∑
i=1

H
(i)
3 +

4∑
i=2

H
(i)
4 . (22)

In the other scheme, scheme II, the fields stay with the bonds
when moved. This kind of field moving method was used in
Ref. [25] for the random field Ising model. From Fig. 1, we
assign in this case

H ′
1 =

4∑
i=1

H
(i)
1 , H ′

2 =
4∑

i=1

H
(i)
4 , (23)

and

H ′
3 =

4∑
i=1

H
(i)
2 +

4∑
i=1

H
(i)
3 . (24)

Since the field grows indefinitely as the iteration continues, the
uniform external field is not appropriate in this case. Instead,
we use a random external field of zero mean and the standard
deviation H . In both schemes, once the renormalized fields,
H ′

n are determined, a trace is performed over the spins at the
site connecting the two new bonds. The decimation procedure
can be continued n times for a system of size L = 2n.

We perform the MK RG numerically for given temperature
T and given uniform field H (scheme I) or given field width
H (scheme II). All these quantities are measured in units of
J . In the numerical calculations, we prepare 106 bonds. On
each bond, the couplings are chosen independently from the
Gaussian distribution with zero mean and width 1/T . On each
end of the given bond, we either assign H/(2dT ) for scheme I
or choose the field from the Gaussian distribution of zero mean
and width H/(2dT ). The factor of 1/(2d) is used to account
for the coordination number in the d-dimensional cubic lattice.
We then randomly select two sets of 4 bonds out of 106 to form
two new bonds, and follow the procedure described in Fig. 1
to obtain renormalized couplings and fields. This procedure is
continued until we get 106 new bonds, which completes the
first iteration. As we iterate the same procedure, we can obtain
the flow of the couplings and fields as a function of iteration
number n.

At each step of the iteration, we measure the standard
deviations of the couplings, J (n). The RG flow of these widths
of the couplings at fixed external field is shown in Fig. 2.
For a finite field, the coupling strength always flows to zero
in all cases we studied indicating the absence of a phase
transition. In general, the decay of the coupling strength is
slower at low temperatures. The decaying part of J (n) can
be described as exp[−L/ξ (T ,H )] with L = 2n, where the
ξ (T ,H ) is interpreted as the correlation length at temperature
T and field H . Note that the decay in the scheme II is slower
than that in scheme I, so the correlation length in scheme II is
generally larger than that in scheme I.

In Fig. 3, the RG flow of the couplings is shown at fixed
temperature. The results at zero field are also included in
these figures. We can see that the coupling strength flows
to infinity if T < Tc for H = 0. We estimate the zero-field
transition temperature as Tc = 1.77. Note that the presence of
the external field makes the correlation length decrease.

In scheme I, we start from the uniform external field. As
the iteration continues, however, the field becomes no longer
uniform but shows a random distribution. The mean value of
the fields is not changed, but the standard deviation σH keeps
increasing until it saturates after the coupling drops to a small
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0 1 2 3 4 5 6 7 8 9
n

0

0.5

1

1.5

J(
n)

Scheme I
H=0.1

0 1 2 3 4 5 6 7 8 0
n

0

0.5

1

1.5

2

2.5

J(
n)

Scheme II
H=0.1

FIG. 2. The coupling strength J (n) at iteration step n at fixed
external field H = 0.1 in scheme I (top) and scheme II (bottom).
The temperatures are T = 0.1, 1.0, 1.6, 2.0, 2.6, and 3.0 from top to
bottom.

value as can be seen in Fig. 4. In scheme II, the standard
deviation σH also increases from the initial value σH (0) = H

for the random external field as shown in the lower figure of
Fig. 4. But it does not saturate in this case, but increases at
a slower rate. In both cases, the initial increase of σH is well
described by σH ∼ Ld/2 as T → 0.

Finally, we use our results for the critical exponents and
ξ to determine the crossover function f (R). The results are
displayed in Fig. 5 for scheme I and in Fig. 6 for scheme II.

Also on the plots are the results of the Janus collabora-
tion [15]. In neither case is there good agreement between the
MK results and the Janus simulation. However, the apparent
discrepancy is just an artifact due to using different definitions
of ξ . We extracted ξ by studying the decay of the couplings
J with iteration number. The Janus ξ was obtained from a
particular moment of the replicon correlation function GR . A
different choice of moment would alter their estimate of ξ .
However, one expects the different definitions of ξ to have
essentially the same t and H dependence, i.e., they differ

0 2 4 6 8 10
0

1

2

3

J(
n)

Scheme I

0 2 4 6 8 10
n

0

0.5

1

J(
n)

0 2 4 6 8 10
0

1

2

3

J(
n)

Scheme II

0 2 4 6 8 10
n

0

0.5

1

J(
n)

FIG. 3. The flow of the coupling J (n) at fixed temperature and
varying fields in schemes I and II. The upper panel for each scheme
is at T = 1.0 and the lower one is for T = 2.0. From top to bottom,
H = 0, 0.02, 0.05, 0.1, 0.2, and 0.3.

mostly by a multiplicative constant. We chose that constant
to make ξJanus(t = 0,H = 0.2) = ξMK(t = 0,H = 0.2). For
scheme I, that constant is 3.79, while for scheme II it is
7.13. We then multiplied the Janus data by that factor and
the resulting plots are as shown in the lower panels of Figs. 5
and 6. The Janus data are now in reasonable agreement with the
MK results over the ranges of R for which there is overlapping
scaling data at least for scheme II. However, it is only for
the MK results that we have data over a large enough range
to see the decay of f (R) as 1/|R|x at large values of −R.
There is no evidence that f (R) has a zero at any finite negative
value of R, which implies that there is no AT line. We end
this section by summarizing the values found or used for the
various exponents.

Critical point scaling exponents. (1) The exponent η was
evaluated from Fig. 7. From ξ (Tc,H ) ∼ H−4/(d+2−η), we have
η ∼ 0.18 for scheme I and η ∼ −0.56 for scheme II. The Janus
collaboration [19] estimate is η ∼= −0.39. (2) The MK value
for 1/ν = 0.356 [26] for both schemes I and II. The Janus
estimate [19] is 1/ν = 0.39.
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Scheme I
T=0.1
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n

0.01

0.1

1

10

100

1000

σ H
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Scheme II
T=0.1

FIG. 4. (Color online) The standard deviation of the fields as a
function of iteration in scheme I (top) for fixed temperature T = 0.1
and varying initial uniform field H . The solid line in the upper figure
is the fit σH ∼ L1.47. The lower figure is for scheme II also for fixed
temperature T = 0.1 and varying standard deviation H of the initial
random field. The solid line is a fit to σH ∼ L1.46.

Droplet scaling exponents. (1) We found by studying the
growth of J (L) ∼ Lθ at zero field and at very low temperature
that θ = 0.26. The value obtained for d = 3 in Ref. [27] was
θ = 0.24. (2) Using Eq. (18) in d = 3 for MK scheme I, x =
−0.079, for scheme II, x = 0.34. For the Janus exponents,
x = 0.18.

VI. DISCUSSION

In Figs. 5 and 6, the MK results include data points right
down to T = 0, which are well outside the critical regime.
Some of the points from low T have departures from the
universal curve, which are visible if the large |R| region is
put on an expanded scale, as in Fig. 8. The reason for this is
that the critical scaling forms ϒ ∼ |t |νθ and q ∼ |t |β do not
hold accurately right down to T = 0. However, despite this,
the critical scaling collapse of the data is surprisingly good.

Critical scaling strictly applies only for the limit t → 0,
H → 0, with the ratio R = t/H 2/� fixed. One always hopes

-3 -2 -1 0 1 2

t/H
4/(ν(d+2-η))

0

1

2

3

ξ−1
H

 -
4/

(d
+

2-
η)

H=0.02
H=0.05
H=0.1
H=0.2
H=0.3
H=0.1 (Janus)
H=0.2 (Janus)
H=0.3 (Janus)

Scheme I

-3 -2 -1 0 1 2

t/H
4/(ν(d+2-η))

0

1

2

ξ−1
H

 -
4/

(d
+

2-
η)

H=0.02
H=0.05
H=0.1
H=0.2
H=0.3
H=0.1 (Janus)
H=0.2 (Janus)
H=0.3 (Janus)

Scheme I

FIG. 5. (Color online) The upper panel is ξ−1H
4

d+2−η ≡ f (R) vs
t/H 4/(ν(d+2−η)) = R for MK scheme I and Janus data [15]. The lower
panel is the same but with the Janus data for ξ rescaled by the factor
3.79, as described in the text.

though that there is a sizable critical region where the scaling
forms are good approximations. We have seen that when T <

Tc the critical region extends to a good approximation down to
T = 0. However, the figures show the critical region is much
smaller when T > Tc. Many of the MK and Janus data points
are off the scaling line, indicating that they were calculated
from values of t and H , which were too large to be in the
scaling region.

Another surprise is that when d < 6, the critical scaling
function f (R) involves the exponent θ , which is an exponent
of the zero-temperature fixed point. The RG flows near the
AT line were first investigated by Bray and Roberts [28] in a
perturbative treatment appropriate for d → 6− and no stable
fixed point was found. It has been suggested from time to time
that such runaway flows perhaps indicate that the behavior is
controlled by a zero temperature fixed point. Within the MK
approximation it is possible to follow the flows of the fields
H and the couplings J under the RG iterations. If one starts
out at a temperature below Tc, when the fields H are very
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FIG. 6. (Color online) The upper panel is ξ−1H
4

d+2−η ≡ f (R) vs
t/H 4/(ν(d+2−η)) = R for MK scheme II and Janus data [15]. The lower
panel is the same but with the Janus data for ξ rescaled by the factor
7.13, as described in the text.
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FIG. 7. The correlation length ξ (Tc,H ) at zero-field transition
temperature Tc for small external field H . The dashed lines are fits,
ξ ∼ H−0.83 for scheme I and ξ ∼ H−0.72 for scheme II.
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FIG. 8. (Color online) The log-log plot of ξ−1H
4

d+2−η ≡ f (R) vs
−t/H 4/(ν(d+2−η)) = −R for MK scheme I (upper panel) and scheme
II (lower panel) to illustrate the power-law behavior f (R) ∼ 1/|R|x ,
which is predicted to set in at large values of −R. The straight line is
the expected slope if x is predicted by Eq. (18).

small, the flows take one very close to the zero temperature
fixed point associated with H = 0 before they finally run off
to large H/J values. Thus it may be that the RG runaway
flows found by Bray and Roberts are related to the effects
produced by a zero-temperature fixed point. A role for a zero-
temperature fixed point has also been suggested recently by
Angelini and Biroli [29] in a very unconventional scenario for
the high-dimensional behavior of spin glasses in a field.
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