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Nonequilibrium evolution of window overlaps in spin glasses
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We investigate numerically the time dependence of “window” overlaps in a three-dimensional Ising spin glass
below its transition temperature after a rapid quench. Using an efficient GPU implementation, we are able to
study large systems up to lateral length L = 128 and up to long times of t = 108 sweeps. We find that the data
scales according to the ratio of the window size W to the nonequilibrium coherence length ξ (t). We also show a
substantial change in behavior if the system is run for long enough that it globally equilibrates, i.e., ξ (t) ≈ L/2,
where L is the lattice size. This indicates that the local behavior of a spin glass depends on the spin configurations
(and presumably also the bonds) far away. We compare with similar simulations for the Ising ferromagnet. Based
on these results, we speculate on a connection between the nonequilibrium dynamics discussed here and averages
computed theoretically using the “metastate.”
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I. INTRODUCTION

Spin glasses [1–3] below their transition temperature are not
in equilibrium, except for very small sizes in some simulations.
One therefore needs to be able to describe nonequilibrium
behavior, and a lot of attention numerically [4–9] has been
focused on the evolution of the system after a rapid quench
to temperature T below the transition temperature Tc. Locally,
spins establish correlations so one anticipates that they will
be correlated up to some distance, the coherence length ξ (t),
which slowly increases with time. For distances longer than
ξ (t) correlations will decay exponentially, while at shorter
distances they will decay more slowly than that. Empirically
one finds [4–9] that the growth of ξ (t) is compatible with a
small power of t (although a logarithmic growth cannot be fully
excluded using the available data), written as ξ (t) ∼ t1/z(T )

where z(T ), a nonequilibrium dynamic exponent, is found to
depend on the ratio T/Tc.

To understand the nature of the spin glass state one needs
local probes; see, e.g. [10] and references therein. A useful
local probe is the distribution of the overlap q of the spins
in two copies of the system in a window of linear size W .
Equilibrium properties of window overlaps have been studied
numerically before [11], but here we focus on their nonequilib-
rium behavior, which has not received much attention before
apart from Ref. [6] which studied the nonequilibrium evolution
of a dimensionless ratio of cumulant averages evaluated in
windows of different size. In this paper we study the time
dependence of the window overlap distribution PW (q), in a
nonequilibrium situation. We find that the distribution scales
as a function of the ratio of the window size W to ξ (t). The
nonequilibrium window overlap distribution is very different
from the global equilibrium overlap distribution P (q) in the
mean field theory of Parisi [12–14]. In particular, PW (0)
depends quite strongly on W . However, if the system is run for
a time long enough for the system to globally equilibrate, i.e.,
ξ (t) � L/2, then we find a change in the form of PW (q), which
happens rapidly when viewed on a logarithmic time scale, such
that P (0) then has a rather weak dependence on W and is quite
similar to the q = 0 value of Parisi’s global equilibrium overlap
distribution [14] P (q). The strong change in behavior when

ξ (t) � L/2 indicates that local spin correlations are sensitive
to spin orientations, and presumably also to the values of the
interactions, at large (or at least intermediate) distances.

The theoretical description of spin glasses below Tc is
complicated. One approach developed in recent years is known
as the “metastate” [15–17]. In this paper we also speculate
on a possible connection between nonequilibrium correlations
following a quench, and averages computed according to the
metastate.

The plan of this paper is as follows. In Sec. II we describe
the metastate and a possible connection between quantities
calculated from it and nonequilibrium averages following a
quench. The model we simulate and the quantities we calculate
are described in Sec. III. The results of the simulations are
given in Sec. IV, together with corresponding results for a
pure Ising ferromagnet, and our conclusions summarized in
Sec. V.

II. AVERAGING IN SPIN GLASSES; THE METASTATE
AND DYNAMICS

In systems undergoing phase transitions it is desirable to
know what are the various possible states to which the system
can evolve below the transition temperature Tc. A simple
example is the Ising ferromagnet in zero magnetic field for
which there is just a pair of states below Tc, related by flipping
all the spins, the “up” and “down” spin states. If the system is
in one of these states then “connected” correlation functions
vanish at large distances, e.g.,

lim
|Ri−Rj |→∞

[〈SiSj 〉 − 〈Si〉〈Sj 〉] = 0, (1)

which is known as “clustering” of the correlation functions.
The angular brackets 〈 〉 denote a thermal average, here
restricted to one of these states to capture the symmetry
breaking. By contrast if we simply perform the Boltzmann
sum we give equal weight to both of these states, the symmetry
is not broken so 〈Si〉 = 〈Sj 〉 = 0, and hence the two terms in
Eq. (1) do not cancel at large distances and the correlation
functions do not have a clustering property. States which do
not have a clustering property are called “mixed” states and
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those that do, like the up and down states of the ferromagnet,
are called “pure” states.

To keep the description of the system as simple as possible
it is desirable to use clustering (i.e., pure) states. In many
cases this is easy because they are just the different states
in which a global symmetry of the Hamiltonian is broken.
However, in more complicated situations such as spin glasses,
there can be pure states not related by any symmetry and
so characterizing them can be quite difficult. Nonetheless, it
is argued [10,15,16,18–23] to be important to describe spin
glasses in terms of pure states rather than by computing
the Boltzmann sum. The latter is done, for example, in
the Parisi [12–14] solution of the infinite-range Sherrington-
Kirkpatrick (SK) [24] model.

To define pure states in general, consider the situation in
Fig. 1. The overall system is of very large size L and has
free or periodic boundary conditions. We compute the thermal
average exactly, and determine the correlation functions in a
much smaller window of size W , somewhere in the bulk of the
system. These correlations may have the clustering property,
in which case the window is in a pure state, or they may not

LξM or    (t)W

FIG. 1. Length scales that are needed to discuss the Aizenman-
Wehr (AW) metastate. The overall size of the system is L, which is
assumed to be very large and has periodic or free boundary conditions.
We consider an outer region, of size between M and L, shown shaded,
where we average over different bond configurations, and an inner
region, unshaded, where we consider just a single set of bonds. Spin
correlations will be studied in a window of size W , less than M . In the
metastate, we require that the different length all ultimately tend to
infinity such that L 	 M 	 W 	 1. In our simulations, the length
scales are, of course, finite (actually quite small) but we shall still
view the situation in the simulations as analogous to the theoretical
discussion, in which, as for the metastate, L is the size of the system
(with periodic boundary conditions) and W is a small region where
we measure correlations, but now M , the intermediate scale, is the
nonequilibrium coherence length ξ (t), the scale to which correlations
have developed after a quench at time t = 0. In the simulations we
can run for long enough, and take sufficiently small window sizes, to
get data in the region where ξ (t) > W as shown.

in which case it is in a mixed state. In fact, since we consider
only zero field, states come in symmetry-related pairs, so the
simplest situation would be a single pair of pure states.

But for a system like a spin glass, the correlations in the
window could depend sensitively on the choice of interactions
in distant regions of the system, perhaps even in a chaotic
manner, an aspect first pointed out explicitly by Newman and
Stein (NS) [22]. To investigate this we divide the system of size
L into an inner region of size M , larger than the window of size
W which is in the middle of it, and an outer region between
L and M . We then change the bonds in the outer region and
recompute the correlation functions in the window. Eventually
we let all sizes tend to infinity with L 	 M 	 W 	 1. It
is possible that the state of the window is always the same
as one changes the bonds in the outer region. However, it is
also possible that the state changes, perhaps chaotically, as
one changes the bonds in the outer region. Several possible
situations have been discussed in detail.

(i) For each set of bonds in the outer region one has only
a single pair of pure states, and one finds the same pair for
every set of outer bonds. This is called the “droplet model,”
the theory for which has been developed in the greatest detail
by Fisher and Huse [18–21].

(ii) For each set of bonds in the outer region one has only a
single pair of pure states, but this pair varies chaotically as one
changes the outer bonds. This is the “chaotic pairs” picture of
NS [22].

(iii) For each set of bonds in the outer region one has a mixed
state, and this mix changes in a chaotic way as the outer bonds
are changed. This is called the “replica symmetry breaking”
(RSB) picture [25], since it is the generalization to finite-range
models of Parisi’s [12–14] solution of the infinite-range SK
model. The name arises because Parisi’s original solution used
the replica method to average over the disorder.

In order to describe the states of a spin glass one needs
to give a statistical description of the different states the
window can be in as the bonds in the outer region are varied.
NS [15,16] call this the metastate. The description that we give
here is actually a little different from that of NS and is due to
Aizenman and Wehr (AW) [17]. In NS’s approach there is no
intermediate scale M and one looks at the correlations in the
window as the system size L is grown leaving the bonds already
present unchanged. It is expected [26] that the two forms of
the metastate are equivalent. In agreement with Read [23] we
find that it is easier to discuss the AW metastate.

The AW metastate average is therefore performed by first
doing a thermal average for the whole system, denoted by
〈 〉, followed by an average over the bonds in the outer
region, denoted by [ ]out. Following Read [23] we call this the
metastate-averaged state (MAS). Hence, if i and j lie within
the window, the spin glass correlation function of their spins
in the MAS is given by

Cij = [〈SiSj 〉]2
out (2)

(note the location of the square). After this average is done one
can also average over the bonds in the inner region, which we
denote by [ ]in. We will present data for the window overlap
distribution for which averaging over the bonds in the inner
region is, strictly speaking, unnecessary since translation in-
variant MAS averages are self-averaging [15,16,27]. However,
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in practice, this last average is done in simulations to improve
statistics.

It is interesting to ask how the MAS average Cij varies
at large distance Rij (≡ |Ri − Rj |) according to the three
scenarios mentioned above.

(i) In the droplet picture one finds always the same pair of
thermodynamic states so presumably

lim
Rij →∞

Cij = q2, (3)

where q = 〈Si〉2 is the Edwards-Anderson order parameter,
which is well defined if we add a small symmetry-breaking
field to remove the degeneracy between the pair of pure states.
Equation (3) then follows because of clustering of correlations
in a single pure state; see Eq. (1). We should mention, though,
that the approach to the constant value of q2 is expected to be
quite slow, a power law rather than an exponential, and so, for
the values of Rij that one can simulate, one may be far from
the constant value [28].

(ii) In the chaotic pairs picture, correlations in the window
alter, in sign as well as magnitude, as the outer bonds are
varied. Hence, according to Read [23], it is expected that Cij

tends to zero, presumably as a power law, which is commonly
written as

Cij ∝ 1

R
d−ζ

ij

, (4)

for Rij → ∞, which defines the exponent ζ .
(iii) In the RSB picture, which also has many states, MAS

averaged correlations are similarly expected to decay as the
power law in Eq. (4). In fact ζ has been calculated in mean
field theory [23,29–31] (corresponding to d > 6) assuming
RSB, with the result ζ = 4.

A large spin glass system is not in thermal equilibrium
below Tc. Results from the Boltzmann sum do not, therefore,
correspond to experimental observations which are inevitably
in a nonequilibrium situation. Are MAS averages any better in
this regard? It is tempting to think so for the following reason.

Imagine quenching the spin glass to below Tc and observing
correlations in a local window of size W . Correlations will
develop up to some coherence length ξ (t) which grows slowly
with time. How does one expect the nonequilibrium correlation
function

Ct (i,j ) = [〈Si(t)Sj (t)〉2], (5)

where [ ] denotes an average over all the bonds, to vary as
a function of Rij ? Let us assume that time is large enough
that ξ (t) > W . We postulate that thermal fluctuations of the
spins outside the window at a distance ξ (t) and greater, which
are not equilibrated with respect to spins in the window,
effectively generate a random noise to the spins in the window
which plays a similar role to the random perturbation coming
from changing the bonds in the outer region according to
the AW metastate; see Fig. 1. Thus we suggest that ξ (t) is
analogous to the intermediate scale M , separating inside and
outside regions, in the construction of the metastate. This is
indicated in Fig. 1. After this work was submitted it was
brought to our attention that a similar picture of nonequilibrium
dynamics following a quench was discussed earlier by White
and Fisher [32]. They denote the state obtained after a quench

as the “maturation metastate” and the distribution of states in
the AW or NS picture as the “equilibrium metastate.” Here we
speculate that these might be the same. We thank Nick Read
for bringing this paper to our attention.

This analogy suggests that the decay of correlations
determined from the metastate may be the same as the decay of
correlations following a quench, on scales shorter than the co-
herence length. We note that NS have also discussed dynamics
following a quench [33,34] from a rigorous point of view.

There have been many simulations which investigate the
time dependence of correlations following a quench [4–9].
Interestingly these papers do see a power law decay of the
correlation function in Eq. (5) for sufficiently long times that
ξ (t) > Rij , i.e.,

Ct (i,j ) ∝ 1

Rα
ij

for Rij � ξ (t) � L. (6)

The exponent α is found to be about 1/2 in three dimen-
sions [4–9]. Equation (6) is of the same form as Eq. (4)
which is obtained from metastate calculations for the Edwards-
Anderson model [23,31] in the mean field approximation,
assuming the RSB picture. The droplet theory predicts a
different result, namely Eq. (3), though, of course, the
numerical data may not be at large enough length scales to
be in the asymptotic scaling regime.

III. MODEL AND QUANTITIES TO BE CALCULATED

We simulate the Edwards-Anderson [35] Ising spin glass
model with Hamiltonian

H = −
∑
〈i,j〉

JijSiSj , (7)

where the spins Si take values ±1 and are on the sites of a
simple cubic lattice with N = L3 spins with periodic boundary
conditions. The quenched interactions Jij are between nearest
neighbors and take values ±1 with equal probability. The latest
determination of the transition temperature of this model is
Tc = 1.102(3) [36]. Here we work at a fixed temperature of
T = 0.8 � 0.73Tc. Most of the simulations are for system
size L = 128, which cannot be brought to equilibrium in
available computer time, but we also perform some simulations
at smaller sizes to investigate the change in behavior when the
system reaches global equilibrium. The number of samples
simulated for each size is shown in Table I.

We run two copies of the system with the same bonds but
different initial random spin configurations, which we quench

TABLE I. Number of samples studied for different system sizes.

Nsamp

L Spin glass Ferromagnet

128 192 64
64 512
32 512
20 512
16 768 2048
12 1024
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to T = 0.8 at time t = 0, and then let the system evolve.
To perform long runs on large lattices we have implemented
an efficient Monte Carlo code on GPUs; see [9] for details.
At a logarithmically increasing set of times we store the
spin configurations from which we calculate the correlation
function in Eq. (5) as a function of Rij at different times.

We also compute the time-dependent window overlap
distribution defined by

PW (q) = [〈δ(q − q1,2)〉], (8)

where q1,2, the window overlap between replicas “(1)” and
“(2),” is

q1,2 = 1

Wd

Wd∑
i=1

S
(1)
i S

(2)
i , (9)

in which the sum is over the sites in the window and, for
ease of notation, we have suppressed an index t on PW (q)
which would indicate that it also depends on time. To improve
statistics we average over all nonoverlapping windows of size
W . The number of these is L/W �d where  � indicates
rounding down to the nearest integer. In addition, we smooth
the data by computing, for each discrete value of the overlap,
q0 say, an average of the distribution on neighboring q values
weighted by a normalized kernel which falls to zero as |q − q0|
increases [37].

IV. RESULTS

A. Spin glass

An example of our data for the window overlap distribution
is shown in Fig. 2 for W = 4. One sees an evolution from a
single peak structure at short times, presumably Gaussian, to
a two-peaked structure at long times. For larger window sizes,

0
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 0.4

 0.6

 0.8

1

 1.2

-1 -0.5 0  0.5 1

P
4(

q)

q

t = 101

t = 108

FIG. 2. (Color online) Representative set of results for the win-
dow overlap distribution, for window size W = 4 for lattice size
L = 128 at T = 0.8. Data is shown for times t = 10k , where
k = 1,2, . . . ,8.
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FIG. 3. (Color online) Results for the weight in the window
overlap distribution at q = 0 for different window sizes as a function
of time. The lattice size is L = 128 and T = 0.8.

the distribution evolves more slowly, as shown in the data for
PW (0), the weight of the distribution at q = 0, for different
sizes in Fig. 3.

We would like to perform a scaling collapse of the data
in Fig. 3 to ascertain the dependence of PW (0) on t and W .
However, rather than scaling with respect to t we find it better
to scale with the dynamic coherence length ξ (t). At long times,
where ξ (t) 	 Rij , the time-dependent correlation function in
Eq. (5) varies with an inverse power of Rij as shown in Eq. (6),
so a natural scaling ansatz is

Ct (i,j ) = 1

Rα
ij

g

(
Rij

ξ (t)

)
. (10)

The coherence length ξ (t) can be taken from a ratio of moments
of Ct (i,j ) [8], e.g.,

ξ (t) =
∫ L/2

0 r2Ct (r)dr∫ L/2
0 r Ct (r)dr

. (11)

In practice the integral is performed along x, y, and z axes.
The data for ξ (t) obtained in this way in Ref. [9] is shown in
the inset to Fig. 4.

Note that this calculation of ξ (t) did not make any reference
to a window. However, if we compute the second moment of
the window overlap distribution, [〈q2〉], we note first that it is
just the average of Ct (i,j ) over all sites i and j in the window
since

[〈q2〉] = 1

W 6

∑
i,j

[〈
S

(1)
i S

(2)
i S

(1)
j S

(2)
j

〉]

= 1

W 6

∑
i,j

[〈
S

(1)
i S

(1)
j

〉〈
S

(2)
i S

(2)
j

〉]

= 1

W 6

∑
i,j

Ct (i,j ). (12)
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FIG. 4. (Color online) Main figure shows a scaling plot of
PW (0)/Wα/2 against ξ/W , in which we used the results for ξ (t)
shown in the inset, which are obtained in Ref. [9], and took the value
α = 0.438 also from Ref. [9]. The data collapse is excellent. The data
is for system size L = 128 and T = 0.8.

Using Eq. (10) this can be written as

[〈q2〉] = 1

W 6

∫
R,R′

dR dR′|R − R′|−αg(|R − R′|/ξ )

∼ 1

W 6

∫
R

∫ W/2

0
dr 4πr2r−αg (r/ξ )

= W−α4π

∫ 1/2

0
dx x2−αg(xW/ξ )

= W−αf

(
W

ξ

)
, (13)

where we used the substitution x = r/W in the next to last
line.

If we divide q by an arbitrary scale factor λ the distribution
of q ′ (= q/λ) is P (q ′) where P (q) = λ−1P (q/λ) because
both distributions are normalized. If we take λ = σ , the
standard deviation of P (q), then P (0) = σ−1P (0). But P (q ′)
has standard deviation unity, and so, if the distribution is
smooth and extends down to the origin, we have P (0) ∼ 1 and
hence P (0) ∼ σ−1. Consequently, from Eq. (13), the expected
scaling of PW (0) is

PW (0) = Wα/2F

(
ξ

W

)
. (14)

For t large but still smaller than the time to equilibrate the
whole system, the dependence on ξ must drop out and so

PW (0) ∝ Wα/2 for W � ξ (t) � L . (15)

For short times where ξ (t) � W the spins in the window
are random, so the mean square window overlap goes like
1/Wd (in d dimensions) and consequently PW (0) ∝ Wd/2.

1

100 102 104 106 108 1010

P
W

(0
)

t

W = 4
W = 6
W = 8

FIG. 5. (Color online) Data for PW (0) for different values of W

for size L = 16. At time in the range 107–109 this rather small system
fully equilibrates leading to a decrease in the data which is quite rapid
on this log scale. The dashed line shows the equilibrium value of the
bulk order parameter distribution for L = 16, i.e., W = L = 16. One
sees that the equilibrium values of PW (0) for W < L are very similar
to that of the bulk overlap.

Presumably we then have F (x) ∝ x−(d−α)/2 for x → 0. This
actually gives PW (0) ∝ Wd/2/ξ (d−α)/2 but when ξ (t) � 1
corrections to scaling occur which cause ξ to be replaced by a
cutoff of order unity and so one obtains the desired result.

We take ξ (t) from Ref. [9], evaluated according to Eq. (11),
and also use the value of α from Ref. [9], α = 0.438(11).
This exponent has also been computed in Ref. [8] with a very
similar value, α = 0.442(11). The result of scaling the data in
Fig. 3 according to Eq. (14) is shown in the main part of Fig. 4.
Clearly the scaling collapse works very well.

The power law decay of correlation in Eq. (6), and the
resulting behavior of the window order parameter distribution
in Eq. (14), are for a nonequilibrium situation where ξ (t) � L.
However, we shall now see that a dramatic change occurs
at sufficiently long times that global equilibrium occurs,
i.e., when ξ (t) ∼ L/2. In this region, we will find that the
correlation function no longer decays to zero because there is
spin glass order in equilibrium, and the weight of the window
distribution at q = 0 [11,31] becomes roughly independent of
window size rather than increasing with window size in the
manner shown in Eq. (14).

We demonstrate this change in behavior for the window
overlaps explicitly as a function of time in Figs. 5 and 6.
Since equilibrating size L = 128 is completely infeasible we
show data for smaller sizes which we can bring to global
equilibrium. Figure 5 shows results for L = 16 with window
sizes W = 4, 6, and 8. A rapid decrease is seen for t in the
region 107–109 to a value which is independent of window
size. As will be confirmed in Fig. 6, the data after the drop
represents global equilibrium. The dashed line in Fig. 5 is the
bulk value of the equilibrium overlap distribution at q = 0 and
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FIG. 6. (Color online) Data for P4(0) for different system sizes at
T = 0.8. For the three smaller sizes, L = 12, 16, and 20, the system
equilibrates, leading to a pronounced drop in the data, at a time which
increases with L. The inset plots the same data against ξ/L where
for ξ we use a fit to the data in the inset of Fig. 4. The collapse of
the data in the region where it decreases, which is quite rapid on this
log scale, shows that the decrease occurs when ξ is a fixed fraction
(about 1/2) of the system size, indicating full equilibration.

we see that this value is very similar to that of equilibrium
window overlaps, as was also found earlier [11,31].

To confirm that this change in behavior occurs when
ξ ∼ L/2 we plot results for PW (0) for a fixed window size
but different system sizes in Fig. 6. For short times the
data is independent of L indicating that ξ � L, but at later
times a more rapid decrease occurs at a time which increases
with L. The inset shows the data plotted against ξ/L clearly
demonstrating that the region with rapid decrease occurs when
ξ/L is about 1/2. This confirms that the decrease is associated
with complete equilibration of the system.

B. Ferromagnet

For comparison we also did simulations of the ferromagnet,
p = 1.0, at temperature T = 3.6. Since Tc � 4.51 for the
ferromagnet, this corresponds to T = 0.80Tc, a similar fraction
of Tc as used in the spin glass simulations. The number
of samples is detailed in Table I. It should be pointed out
that we are still using a single random number for multiple
samples (due to multispin coding techniques) but with different
initial configurations, as is common practice for spin-glass
simulations. But in ferromagnetic equilibrium this causes the
samples to become almost completely correlated. However,
before equilibration, due to the different initial configurations,
the dynamics of the different samples is different.

Data for the window overlap for window size W = 6 and
different lattice sizes are shown in Fig. 7. Even our largest
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100 101 102 103 104 105 106 107

P
6(
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t
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L=128
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100
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P
(N

C
=

2)

t

FIG. 7. (Color online) Data for P6(0) for different system sizes
at T = 3.6 � 0.80Tc for the ferromagnet. The plateau at intermediate
times becomes longer for larger L. The explanation is that a fraction
of the runs gets stuck in a state with two big domains for a long time,
thus contributing a certain number of overlaps with q � 0. The inset
shows the probability that two large domains coexist.

systems can be equilibrated, as indicated by the data dropping
to a very small value (<10−3) at the longest times. Note that
the value of PW (0) is not exactly zero even when the system
has fully equilibrated because of rare thermal fluctuations.
At short times the decay is roughly t−1/2 as expected from
coarsening [38], according to which ξ (t), the typical domain
size, grows proportional to t1/2. However, in addition, a plateau
appears at intermediate times. We shall see that this plateau
occurs because in some runs, even when the correlation length
has grown to the size of the system, a single domain with
straight walls persists for a much longer time. Evidence for
this is shown in the inset to Fig. 7 which plots the probability
of finding two large clusters of oppositely oriented spins. This
quantity has plateaus for the same range of time as the data for
P6(0) shown in the main part of the figure.

Figure 8 plots data for different system sizes and window
sizes, and shows that the height of the plateau is proportional
to W/L which has a straightforward interpretation as the prob-
ability that a straight domain wall passes through the window.

We find that the time at the beginning of the plateau varies
as L2, which is expected since it is the time for the coherence
length to grow to the system size according to the coarsening
picture in which ξ (t) ∝ t1/2. The time at the end of the plateau
grows more rapidly and we find empirically it is roughly
proportional to L4.8. We presume that this is the time scale
needed for a random walk of the (straight) domain walls to
cause the domains to meet and form one big domain. Redner
[39] has argued that this exponent is exactly four, and our data
is consistent with this value.

The rich dynamics of three-dimensional Ising ferromagnets
after a quench have been studied in great detail, see, e.g. [40],
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FIG. 8. (Color online) Plot of PW (0) multiplied by the ratio of
the system size L to the window size W for different values of W and
L at T = 3.6 � 0.80Tc for the ferromagnet. On this plot the height
of the plateau at intermediate times seems to be independent of L

and W showing that PW (0) itself is proportional to W/L, which we
interpret as the probability that a straight domain wall goes through
the window. The dashed horizontal line is a guide to the eye.

at very low and zero temperature. By contrast, our results are
for a much higher temperature, though still below Tc. Based
on the preliminary findings presented here, we feel it would
be interesting to study this region in more detail in the future.

V. CONCLUSIONS

We have shown that the nonequilibrium window overlap
distribution of a spin glass following a quench to below Tc can
be well characterized by the ratio of the dynamic coherence
length ξ (t) to the window size W . For a fixed W the distribution
tends to a well defined limit at long times such that ξ (t) 	 W

but where ξ (t) is still much less than the system size L. This
distribution depends strongly on W ; for example, PW (0) ∝
Wα/2 where α � 0.44.

However, if we can run the simulation for sufficiently long
times that the system globally equilibrates, i.e., ξ (t) � L/2,
then there is a change in behavior, which is abrupt when plotted
on a logarithmic time scale, see Fig. 6, such that PW (0) then
only depends weakly on W and is very similar to the value
at zero overlap of Parisi’s global overlap distribution P (q).
Though a similar looking plateau was found for the not-quite
fully equilibrated ferromagnet, characterized by the existence
of domain walls, it was qualitatively different since the height
of the plateau depends on the overall system size L for the
ferromagnet. By contrast, for the spin glass, the data in Fig. 6,
while admittedly not fully in the plateau region, does not show
any dependence on L until the final equilibrium is reached (the
end of the plateau).

The strong change in behavior for the spin glass when
ξ (t) � L/2 indicates that local spin correlations are sensitive
to spin orientations, and presumably also to the values of the
interactions, at large distances. According to the droplet theory,
the local state of the system does not depend on the values
of the interactions sufficiently far away. If the droplet theory
is correct asymptotically, the length scale beyond which this
independence occurs must be much larger than the system sizes
we have been able to equilibrate below Tc (namely L = 16).

In addition, we have speculated on a possible connection
between the nonequilibrium dynamics discussed here and
averages computed theoretically using the metastate. For a
future better understanding of this possible connection via
numerical simulations a more intense use of powerful yet
rather cheap devices as GPUs, like in the present work [9],
or the application of new algorithms like population annealing
to spin glasses [41,42] might be useful.
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Sherrington-Kirkpatrick model, in Spin Glasses and Random
Fields, edited by A. P. Young (World Scientific, Singapore,
1998), pp. 119–160.

[30] C. De Dominicis and I. Giardina, Random Fields and Spin
Glasses (Cambridge University Press, Cambridge, UK, 2006).

[31] E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. J. Riuz-Lorenzo,
and F. Zuliani, Replica symmetry breaking in short range spin
glasses: A review of the theoretical foundations and of the
numerical evidence, J. Stat. Phys. 98, 973 (2000).

[32] O. L. White and D. S. Fisher, Scenario for spin-glass phase with
infinitely many states, Phys. Rev. Lett. 96, 137204 (2006).

[33] C. M. Newman and D. L. Stein, The effect of pure state structure
on nonequilibrium dynamics, J. Phys.: Condens. Matter 20,
244132 (2008).

[34] C. Newman and D. L. Stein, Equilibrium pure states and
nonequilibrium chaos, J. Stat. Phys. 94, 709 (1999).

[35] S. F. Edwards and P. W. Anderson, Theory of spin glasses, J.
Phys. F 5, 965 (1975).

[36] M. Baity-Jesi et al., Critical parameters of the three-dimensional
Ising spin glass, Phys. Rev. B 88, 224416 (2013).

[37] R. Alvarez Baños et al., Nature of the spin-glass phase
at experimental length scales, J. Stat. Mech. (2010)
P06026.

[38] A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 51,
481 (2002).

[39] S. Redner (private communication).
[40] J. Olejarz, P. L. Krapivsky, and S. Redner, Zero-temperature

relaxation of three-dimensional Ising ferromagnets, Phys. Rev.
E 83, 051104 (2011).

[41] J. Machta, Population annealing with weighted averages: A
Monte Carlo method for rough free-energy landscapes, Phys.
Rev. E 82, 026704 (2010).

[42] W. Wang, J. Machta, and H. G. Katzgraber, Evidence against
a mean-field description of short-range spin glasses revealed
through thermal boundary conditions, Phys. Rev. B 90, 184412
(2014).

104430-8

http://dx.doi.org/10.1088/0305-4470/31/26/001
http://dx.doi.org/10.1088/0305-4470/31/26/001
http://dx.doi.org/10.1088/0305-4470/31/26/001
http://dx.doi.org/10.1088/0305-4470/31/26/001
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.76.4821
http://dx.doi.org/10.1103/PhysRevLett.76.4821
http://dx.doi.org/10.1103/PhysRevLett.76.4821
http://dx.doi.org/10.1103/PhysRevLett.76.4821
http://dx.doi.org/10.1103/PhysRevE.55.5194
http://dx.doi.org/10.1103/PhysRevE.55.5194
http://dx.doi.org/10.1103/PhysRevE.55.5194
http://dx.doi.org/10.1103/PhysRevE.55.5194
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1088/0305-4470/20/15/012
http://dx.doi.org/10.1088/0305-4470/20/15/012
http://dx.doi.org/10.1088/0305-4470/20/15/012
http://dx.doi.org/10.1088/0305-4470/20/15/012
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1103/PhysRevLett.96.137204
http://dx.doi.org/10.1103/PhysRevLett.96.137204
http://dx.doi.org/10.1103/PhysRevLett.96.137204
http://dx.doi.org/10.1103/PhysRevLett.96.137204
http://dx.doi.org/10.1088/0953-8984/20/24/244132
http://dx.doi.org/10.1088/0953-8984/20/24/244132
http://dx.doi.org/10.1088/0953-8984/20/24/244132
http://dx.doi.org/10.1088/0953-8984/20/24/244132
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1103/PhysRevB.88.224416
http://dx.doi.org/10.1103/PhysRevB.88.224416
http://dx.doi.org/10.1103/PhysRevB.88.224416
http://dx.doi.org/10.1103/PhysRevB.88.224416
http://dx.doi.org/10.1088/1742-5468/2010/06/P06026
http://dx.doi.org/10.1088/1742-5468/2010/06/P06026
http://dx.doi.org/10.1088/1742-5468/2010/06/P06026
http://dx.doi.org/10.1080/00018730110117433
http://dx.doi.org/10.1080/00018730110117433
http://dx.doi.org/10.1080/00018730110117433
http://dx.doi.org/10.1080/00018730110117433
http://dx.doi.org/10.1103/PhysRevE.83.051104
http://dx.doi.org/10.1103/PhysRevE.83.051104
http://dx.doi.org/10.1103/PhysRevE.83.051104
http://dx.doi.org/10.1103/PhysRevE.83.051104
http://dx.doi.org/10.1103/PhysRevE.82.026704
http://dx.doi.org/10.1103/PhysRevE.82.026704
http://dx.doi.org/10.1103/PhysRevE.82.026704
http://dx.doi.org/10.1103/PhysRevE.82.026704
http://dx.doi.org/10.1103/PhysRevB.90.184412
http://dx.doi.org/10.1103/PhysRevB.90.184412
http://dx.doi.org/10.1103/PhysRevB.90.184412
http://dx.doi.org/10.1103/PhysRevB.90.184412



