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Quantized transport for a skyrmion moving on a two-dimensional periodic substrate
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We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations
of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the
driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning
transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there
is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an
angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction
of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching
the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of
skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps
corresponding to integer or rational ratios of the velocity components perpendicular (〈V⊥〉) and parallel (〈V||〉) to
the external drive direction: 〈V⊥〉/〈V||〉 = n/m, where n and m are integers. The skyrmion passes through a series
of directional locking phases in which the motion is locked to certain symmetry directions of the substrate for
fixed intervals of the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant
and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions into and out of
these locked phases take the form of pronounced cusps in the skyrmion velocity versus force curves, as well as
regions of negative differential mobility in which the net skyrmion velocity decreases with increasing external
driving force. The number of steps in the transport curve increases when the relative strength of the Magnus term
is increased. We also observe an overshoot phenomena in the directional locking, where the skyrmion motion
can lock to a Hall angle greater than the clean limit value and then jump back to the lower value at higher
drives. The skyrmion-substrate interactions can also produce a skyrmion acceleration effect in which, due to
the nondissipative dynamics, the skyrmion velocity exceeds the value expected to be produced by the external
drive. We find that these effects are robust for different types of periodic substrates. Using a simple model for
a skyrmion interacting with a single pinning site, we can capture the behavior of the change in the Hall angle
with increasing external drive. When the skyrmion moves through the pinning site, its trajectory exhibits a side
step phenomenon since the Magnus term induces a curvature in the skyrmion orbit. As the drive increases, this
curvature is reduced and the side step effect is also reduced. Increasing the strength of the Magnus term reduces
the range of impact parameters over which the skyrmion can be captured by a pinning site, which is one of the
reasons that strong Magnus force effects reduce the pinning in skyrmion systems.
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I. INTRODUCTION

Skyrmions were predicted to occur in certain magnetic
systems [1] and were subsequently experimentally identified
in the chiral magnet MnSi [2]. Since this initial discovery
there has been tremendous growth in the field as an increasing
number of materials have been found that can support a
skyrmion phase [3–10]. There are also numerous proposals
on how to stabilize skyrmion states by utilizing different
materials properties or bilayers [11–14]. Direct imaging of
skyrmions with Lorentz microscopy [3–5,7,10] and other
techniques [8,15,16] show that the skyrmions form a triangular
lattice and have particle-like properties similar to vortices in
type-II superconductors [17]. As an external magnetic field
is increased, skyrmions emerge from a spiral state and their
density initially increases and then decreases with field until
the sample enters a uniform ferromagnetic state [2,3,9]. In bulk
samples, skyrmions form three-dimensional (3D) line objects
and occur in a limited range of fields and temperatures [2,16],
while for thin samples the skyrmions exhibit two-dimensional
(2D) properties and are stable over a much larger range of fields
and temperatures extending close to room temperature [4–7].
Skyrmions can be set into motion through the application of

an external current [7,10,18–20], and it has been shown that
there is a critical current above which the skyrmions depin
into a sliding state [19–26]. Skyrmion motion can be directly
observed with Lorentz microscopy [7,10] or deduced from
changes in the transport properties, permitting the construction
of effective skyrmion velocity versus applied force curves that
show that the skyrmion velocity increases with increasing
current [20]. Other methods to move skyrmions include the
use of temperature gradients [27–31], electric fields [32,33],
and coupling to a magnetic tip [15].

From an applications standpoint, skyrmions are attracting
attention due to their potential use in racetrack memory devices
where they would play a role similar to that of magnetic
domain walls [34–36]. Skyrmions have several advantages
over domain walls due to their size and the fact that the current
needed to depin a skyrmion can be orders of magnitude smaller
than that needed to move domain walls [20,34]. It has been
experimentally demonstrated that individual skyrmions can
be created or annihilated with a magnetic tip, indicating that
it is feasible to read and write skyrmions [16]. Developing
applications of skyrmions will require an understanding of how
skyrmions interact with and move along tailored landscapes,

1098-0121/2015/91(10)/104426(13) 104426-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.104426


C. REICHHARDT, D. RAY, AND C. J. OLSON REICHHARDT PHYSICAL REVIEW B 91, 104426 (2015)

so examining skyrmion dynamics on periodic substrates is an
important step in this direction.

Skyrmions have many similarities to vortices in type-II
superconductors, such as the effective skyrmion-skyrmion
interaction, which is repulsive and favors triangular ordering,
and the fact that both skyrmions and vortices can be driven
by an external current. In the presence of quenched disorder,
skyrmions exhibit pinning-depinning transitions [36], as ob-
served in experiments [20] and simulations [21–25], and these
are similar to the depinning transitions observed for vortices
in type-II superconductors [17,37–39]. There are important
differences between the two systems, particularly the dominant
role that nondissipative effects can take in skyrmion motion.
For superconducting vortices, nondissipative effects such as
a Magnus force are typically small, permitting the system
to be effectively described as obeying overdamped dynam-
ics [17,38]. In a skyrmion system, by contrast, the Magnus term
can strongly affect how the skyrmions interact with pinning
sites and how they move under an external drive [19,21,22].
Numerical simulations using continuum- and particle-based
models for skyrmions interacting with pinning have shown
that the Magnus term reduces the effective pinning in the
system by creating a velocity component that is perpendicular
to the force induced by a pinning site [19,21–23,25]. As a
result, skyrmions have a tendency to swing around the edge
of a pinning site and escape, while for overdamped systems a
particle moves toward the center of a pinning site and is much
more likely to be pinned.

Relatively little is known about how particles with a
strong Magnus term move over a periodic substrate, and
skyrmions are an ideal system to study such effects. In certain
limits, a skyrmion can be effectively modeled as a pointlike
particle utilizing an equation of motion [22,23] derived from
Thiele’s equation [40]. Comparison between continuum-based
models and particle-based models of skyrmions moving in the
presence of pinning have shown good agreement [22,23]. In
this work we examine the dynamics of a skyrmion moving over
a square periodic substrate using a particle-based description
given in Sec. II. We specifically examine the effect of changing
the importance of the Magnus term relative to that of the
damping term. Despite the apparent simplicity of this system,
we show in Sec. III that the Magnus term can induce a
remarkably rich variety of dynamical behaviors that are absent
in the overdamped limit. We find that the Hall angle for the
skyrmion motion is dependent on the external drive amplitude
and approaches the substrate-free limit only at higher drives.
Since the skyrmion is moving over a periodic substrate, as
the Hall angle changes the motion becomes locked to specific
symmetry directions of the substrate, producing a series of
steps in the transport curves corresponding to integer and
rational fractional ratios of the skyrmion velocity in the
directions parallel and perpendicular to the drive direction. At
the transitions into the different directional locking phases, the
skyrmion velocity exhibits a pronounced cusp accompanied by
negative differential mobility in which the skyrmion velocity
decreases with increasing external driving force. We map
the extent of the locking phase as a function of the external
drive and the ratio of the Magnus and dissipative terms, and
find a rich structure of integer and fractional locking effects.
We also describe a speedup effect for skyrmions interacting

with a substrate where the skyrmion velocity can be higher
than the external drive. This effect is most prominent just
above depinning and is caused by the Magnus term; it is
absent in the overdamped case. In Sec. IV we consider a
skyrmion scattering from a single pinning site for varied impact
parameters to show how the Hall angle is reduced by the
pinning due to a side-step phenomenon where the skyrmion
trajectory is shifted by the Magnus term as the skyrmion moves
through the pinning site. For increasing drive amplitude, the
skyrmion trajectories become less curved and the size of the
side step is reduced, so that the Hall angle approaches the
clean limit for higher drives. Our results for the speedup effect
and side steps are in agreement with recent theoretical and
computational studies by Müller and Rosch, who considered
a single skyrmion interacting with a defect site [26]. In that
work, the pinning potential is of a different form than the
pinning sites we consider; however, the consistency of the two
studies indicates that the Hall angle dependence on external
drive and the speedup phenomenon are generic features of
skyrmions interacting with pinning.

There are other examples of particles moving over ordered
substrates, such as vortices in type-II superconductors with
periodic pinning arrays [41–43] or colloids placed on optically
created periodic substrates [44,58]. In these systems the
dynamics is overdamped; however, there can be directional
locking effects in which the particles preferentially move
along symmetry directions of the underlying substrate as the
direction of drive is rotated with respect to the substrate
lattice [45–52]. Such directional locking effects can be
exploited to perform particle separation in colloidal systems
by setting up a system in which one particle species locks
to the substrate while the second species does not, causing
the two species to move at an angle with each other [47,48].
The direction of motion of the locked particles undergoes a
series of steps as a function of the effective angle of drive with
respect to the substrate. The steps are centered at integer and
rational ratios of the angle of drive and form a devil’s staircase
structure [46–48,50,51,53,54]. In the skyrmion system, we
observe directional locking effects when the direction of
external drive is fixed with respect to the substrate and the drive
amplitude is varied. The directional locking and transitions
into the locking states in the skyrmion system exhibit a
number of features that have not been observed in overdamped
systems, such as an overshoot effect in the locking direction
and negative differential mobility at the locking transition.
The steps in the transport response are also distinct from
the Shapiro steps found in systems that can be effectively
described as a particle moving over a periodic substrate under
superimposed ac and dc drives [55,56]. In the system we
consider in this work, there is no imposed ac drive.

II. SIMULATION AND SYSTEM

We consider a skyrmion moving over a 2D square peri-
odic substrate and utilize a particle-based description of the
skyrmion from a recently developed equation of motion for
skyrmions [22,23]. The dynamics of the skyrmion is obtained
by integrating the equation of motion:

αdvi = Fs
i + αmẑ × vi + FD

i . (1)
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Here dRi

dt
= vi is the skyrmion velocity, and αd is a damping

term representing spin precession and dissipation of electrons
localized in the skyrmion.

The substrate force Fs
i is applied by placing N skyrmions

in a square lattice with lattice constant a and fixing them in
place. These skyrmions interact repulsively with the mobile
skyrmion. Such a substrate could be created experimentally
by placing an array of magnetic dots on the sample to create a
background of effectively immobile skyrmions. Alternatively,
in recent continuum-based simulations it was shown that a
defect site formed by removing a single spin creates a potential
with a long-range repulsion and a short-range attraction [26].
Our system can then be viewed as containing a periodic array
of such pinning sites in the limit where the moving skyrmion
does not experience the shorter range attraction of the pins.
We also consider a model in which the substrate potential
is represented by a 2D sinusoidal array and find behavior
very similar to that of a skyrmion moving through a pinned
skyrmion lattice, indicating that our results are robust and
capture the general features of skyrmions moving over periodic
substrates. The force from the pinned skyrmions has the form
Fs

i = ∑N
j=1 K1(Rij/ξ )R̂ij , where Rij is the distance between

the driven skyrmion i and an immobile skyrmion j . Here K1

is the modified Bessel function, which falls off exponentially
for large Rij , and ξ is a screening length which we take to
be 1.0 in dimensionless units. The sample size is L × L with
L = 36, and the lattice constant of the substrate is a = 3.26. In
the second system we model the substrate with the 2D periodic
form Fs

i = Fp[cos2(πx/a)x̂ + cos2(πy/a)ŷ], where a = 3.26
is the substrate lattice constant and Fp is the amplitude of
the substrate force. In Sec. IV we describe the interaction
of a skyrmion with a single parabolic pinning site located at
xp = L/2, yp = L/2 with radius Rp = 0.35. Here the pinning
force is given by Fs

i = (Fprip/Rp)�(rip − Rp)r̂ip, where rip is
the distance from the skyrmion to the center of the pinning site,
r̂ip is a unit vector oriented along the line between the skyrmion
and the pin center, and � is the Heaviside step function. In all
systems we employ periodic boundary conditions.

The Magnus term FM
i = αmẑ × vi produces a force that

is perpendicular to the skyrmion velocity, where αm is the
magnitude of the Magnus term. The driving force is FD

i = FDd̂
where d̂ is the direction of the applied drive. Such a force
could arise due to the application of an external current
to the skyrmion [22,23]. In most of this work, we take
d̂ = x̂. We measure the skyrmion velocity parallel, 〈V||〉, and
perpendicular, 〈V⊥〉, to the drive. In the absence of a substrate
or in the overdamped limit αm/αd = 0.0, the skyrmion moves
in the direction of the drive, while for a finite αm/αd the
skyrmion moves at an angle � with respect to the drive, where
� = arctan(〈V⊥〉/〈V||〉) = arctan(αm/αd ). Increasing αm/αd

produces a larger angle � for the skyrmion motion with respect
to the external drive. To quantify the direction of motion we
measure R = 〈V⊥〉/〈V||〉 so that the Hall angle � is given by
arctan(R). We increase the external drive in small increments
of δFD = 0.001 to 0.005 and wait several thousand simulation
time steps before measuring the average velocity in order to
ensure that the skyrmion velocity is in a steady state. We find
that for smaller increments δFD our results do not change.
Throughout this work we impose the constraint α2

d + α2
m = 1

in order to maintain a constant magnitude of the skyrmion
velocity for varied ratios of αm/αd .

III. VELOCITY-FORCE CURVES AND DIRECTIONAL
LOCKING

In Fig. 1 we plot 〈V||〉 and 〈V⊥〉 versus FD for a skyrmion
moving over a periodic substrate in the overdamped case
where αd = 1.0 and αm = 0.0. Figure 2 shows the system
geometry, highlighting the motion of the mobile skyrmion
through the background of potential maxima. In Fig. 1 there
is a depinning transition to a sliding state for FD > 0.1 as
indicated by 〈V||〉 > 0. Here the skyrmion moves strictly in
the direction of the applied drive so that 〈V⊥〉 = 0 for all
FD and R = 〈V⊥〉/〈V||〉 = 0. The dashed line in Fig. 1 is
the expected value of 〈V||〉 in the clean limit, and we find
that as FD increases, 〈V||〉 gradually approaches the clean
limit value. Figure 2 shows the skyrmion trajectory for fixed
FD = 0.5, where motion occurs in a straight line along the
driving direction.

A. Directional locking

In Fig. 3 we illustrate the transport behavior in a sample
with αm/αd = 0.45, αm = 0.41, and αd = 0.912085. In the
absence of a substrate the skyrmion would move at an angle
of |�| = 24.227◦ with respect to the drive direction and
would have R = 〈V⊥〉/〈V||〉 = −0.45. Figure 3(a) shows 〈V||〉
and 〈V⊥〉 vs FD , and in Fig. 3(b) we plot R vs FD . Here
there is a transition from a pinned to sliding state just above
FD = 0.1. The skyrmion moves strictly in the direction of
the drive for 0.1 < FD < 1.28, which corresponds to the
R = 0 regime shown in Fig. 3(b) for the same interval of
FD . Figure 4(a) shows the skyrmion trajectory in the R = 0
region for FD = 1.0 for the system in Fig. 3(a). The skyrmion
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FIG. 1. (Color online) (a) The velocity for a skyrmion under a dc
driving force FD in the overdamped limit with αm/αd = 0 moving
over a periodic substrate. The drive is applied in the x direction; the
system geometry is illustrated in Fig. 2. 〈V||〉 is the velocity component
parallel to the applied drive and 〈V⊥〉 is the velocity component
perpendicular to the drive. Here there is a depinning transition into
a sliding state where the skyrmion moves strictly in the direction of
the applied drive. The Hall term R = 〈V⊥〉/〈V||〉 = 0.0 in this case.
Dashed line: 〈V||〉 response in the absence of a substrate.
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x
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FIG. 2. (Color online) The geometry for the system in Fig. 1 with
αm/αd = 0 where the skyrmion (large red dot) is driven in the x

direction under an applied drive FD . The black line is the skyrmion
trajectory and the smaller blue dots indicate the locations of the
potential maxima in the periodic square substrate lattice.

no longer passes through the centers of the potential minima
but its trajectory shifts closer to the bottom row of potential
maxima and develops an oscillation in the y direction that
was absent in the αm/αd = 0 case shown in Fig. 2. As FD
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FIG. 3. (Color online) (a) 〈V⊥〉 and 〈V||〉 vs FD for the same
system as in Fig. 1 but with αm/αd = 0.45. (b) R vs FD in the same
sample. The dashed line indicates that in the clean limit R = −0.45.
There are a series of dips in the velocity-force curves correlated
with jumps in R, indicating that the skyrmion undergoes a series of
transitions between locking to different symmetry directions of the
substrate. The largest steps in R, corresponding to n/m ratios of 0/1,
1/4, 1/3, 2/5, 3/7, and 1/2, are marked; there are also additional
smaller higher order steps at other integer values of n and m.
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FIG. 4. (Color online) The skyrmion trajectories and substrate
maxima for the system in Fig. 3 with αm/αd = 0.45. (a) |R| = 0/1
state at FD = 1.0. (b) |R| = 1/4 state at FD = 1.3. (c) |R| = 2/5
state at FD = 2.2. (d) |R| = 1/2 state at FD = 2.75.

is further increased the skyrmion shifts even closer to the
row of potential maxima and its velocity parallel to the drive
decreases, as indicated by the dip in 〈V||〉 near FD = 1.28. As
FD increases further, both 〈V⊥〉 and 〈V||〉 increase, indicating
that the skyrmion is now translating in the y direction as
well as in the x direction. Additional dips in both 〈V||〉 and
〈V⊥〉 occur at higher FD , with occasional regions containing
multiple closely spaced smaller dips. Figure 3 indicates that
these dips correlate with the jumps in R, and that between
the dips, R remains constant. This means that the direction of
motion or Hall angle of the skyrmion changes in a discrete
fashion with increasing FD . The steps in R appear at values
that are rational ratios of 〈V⊥〉/〈V||〉 of the form n/m, where
n and m are integers. In Fig. 3(b) we highlight the steps at
|R| = 1/4, 1/3, 2/5, 3/7, and 1/2. There are also numerous
additional steps in R for smaller intervals of FD for higher
order rational ratios of R = n/m. In general, the larger the
values of n and m, the smaller the interval in FD over which
the step appears.

During each step interval in R, the skyrmion follows an
ordered periodic orbit, translating n substrate plaquettes in the
direction perpendicular to the drive for every m plaquettes
it translates in the direction parallel to the drive. Figure 4(a)
shows the orbit of a skyrmion in the |R| = 0/1 state, while
Fig. 4(b) illustrates the orbit in the |R| = 1/4 state at FD = 1.3.
Here the skyrmion moves periodically through the system at
an angle � = arctan 1/4 = 14.036◦ with respect to the drive
direction. In each period of the motion, the skyrmion translates
to the right by four plaquettes in the drive or x direction and
down by one plaquette in the perpendicular or y direction,
giving n/m = 1/4. At the transition out of the |R| = 1/4 state,
the skyrmion slows down, producing a cusp in the velocity
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curves in Fig. 3(b) and a dip in the net velocity near FD =
1.327. A similar ordered orbit occurs in the |R| = 1/3 state,
where the skyrmion moves three plaquettes in the x direction
and one plaquette in the y direction during every period. There
is another dip in the net skyrmion velocity near FD = 2.0
that occurs when the system transitions to the |R| = 2/5 state.
Figure 4(c) illustrates the orbit at this value of R for FD = 2.2.
Here the periodic orbit is more extended and the skyrmion
moves two plaquettes in the negative y direction for every five
plaquettes in the x direction. Above the |R| = 2/5 state, the
system enters the |R| = 3/7 state, followed by some higher
order steps which occur over small intervals of FD as shown
in Fig. 3(a) near FD = 2.55. The system then reaches the
|R| = 1/2 state illustrated in Fig. 4(d) at FD = 2.75, where
the skyrmion moves two plaquettes in the x direction for every
one plaquette in the y direction. At the other higher order
locking steps, similar ordered orbits appear.

The dips in 〈V||〉 and 〈V⊥〉 in Fig. 3 are associated with
transitions in the skyrmion orbit from one directionally locked
state to another, with a corresponding change in the Hall angle.
The symmetry of the square lattice determines the specific
directions along which the skyrmion motion locks, so that for
other geometries such as a triangular substrate, the locking
directions will be different. At the transitions between locking
steps, the net skyrmion velocity 〈V 〉 = (〈V||〉2 + 〈V⊥〉2)1/2

decreases with increasing external drive FD . This phenomenon
is known as negative differential mobility, and it has been
observed in other systems where particles are driven over a pe-
riodic substrate, such as superconducting vortices moving over
periodic pinning arrays where there are transitions between
different dynamical phases [43]. Negative differential mobility
is also a common feature in semiconductor devices [57] and
can be useful for creating logic devices. The ability to control
differential mobility in skyrmion systems could open new
approaches for applications.

B. Overshoot effect at αm/αd = 0.45

At FD = 3.0 in Fig. 3(b), |R| = 0.5, indicating the
skyrmion is moving at a Hall angle of � = 25.565◦, which
is higher than the clean limit value of |R| = 0.45 or � =
24.23◦. This phenomenon occurs when the clean value of
� is oriented close to but slightly below a strong symmetry
locking direction of the substrate. The skyrmion locks to the
substrate and its Hall angle slightly exceeds that expected
for the clean limit. As FD is increased, the effectiveness
of the substrate is reduced and the direction of motion of
the skyrmion gradually approaches the clean limit value, as
shown in Fig. 5, where we plot a portion of the R vs FD

curve for the same system from Fig. 3(b) but for drives up
to a higher value of FD = 12.0. The dashed line in Fig. 5
indicates the clean value limit of |R| = 0.45. For FD > 4.2,
there is a jump from the |R| = 0.5 = 1/2 state to a lower
value of |R| = 0.46143 = 6/13, followed by another jump to
the |R| = 0.4545 = 5/11 state. There is then a small region
where the system locks to the |R| = 0.45 = 9/20 state before
jumping to |R| = 0.444 = 4/9. As FD increases further, R

gradually approaches the clean limit value, as indicated by
the dashed line in Fig. 5(b). This shows that there can be an
overshoot effect in the locking behavior for a certain range of

2 4 6 8 10 12
FD

-0.5

-0.45

-0.4

R

αm/αd = 0.45

1/2

6/13
5/11

4/9

FIG. 5. (Color online) A detailed view of the R vs FD curve for
the same system in Fig. 3 at αm/αd = 0.45, where we examine the
locking for drives up to FD = 12.0. The system is locked to the |R| =
1/2 value but then jumps to |R| = 6/13 and 5/11 before reaching
|R| = 4/9. As FD is further increased, R gradually approaches the
clean limit value, indicated by the dashed line.

drives, giving rise to nonmonotonic behavior of R as a function
of FD . We have observed similar overshoot effects for other
values of αm/αd .

C. Higher order steps

The specific features in the velocity force curves are
strongly dependent on the value of αm/αd . In Figs. 6(a)
and 6(b) we show 〈V⊥〉 and 〈V||〉 for αm/αd = 1.28 and
1.91, respectively, while in Figs. 6(c) and 6(d) we plot the
corresponding R vs FD curves. For αm/αd = 1.28, the system
is predominantly locked to the |R| = 1/1 step as shown
in Fig. 6(c). On this step, the skyrmion moves along the
45◦ direction as illustrated in Fig. 7(a) for FD = 1.0. Here
the skyrmion follows a sinusoidal trajectory, moving by one
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FIG. 6. (Color online) (a), (b) 〈V⊥〉 and 〈V||〉 vs FD for (a)
αm/αd = 1.28 and (b) 1.91. (c), (d) The corresponding R vs FD

curves. Dashed line in (d): the clean limit value for R. In (c) we
highlight the |R| = 0/1 and |R| = 1/1 steps, and in (d) we highlight
the |R| = 1/1, 4/3, 3/2, 5/3, 7/4, 5/9, and 33/18 steps.
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FIG. 7. (Color online) The skyrmion trajectories and substrate
maxima. (a) The |R| = 1/1 step for αm/αd = 1.28 for the system
in Figs. 6(a) and 6(c). (b) The |R| = 5/3 step for αm/αd = 1.91
for the system in Figs. 6(b) and 6(d). (c) The |R| = 2/1 state
for αm/αd = 4.925 for the system in Figs. 8(a) and 8(c). (d) The
|R| = 3/1 state for αm/αd = 4.925 in Figs. 8(a) and 8(c).

plaquette in the x direction and one plaquette in the y direction
in a single period. At values of FD higher than those plotted
in Fig. 6(a), further locking steps occur as |R| approaches
|R| = αm/αd = 1.28. At αm/αd = 1.91, a larger number of
steps occur, as indicated in Fig. 6(d) where we highlight the
|R| = 1/1, 4/3, 3/2, 5/3, 7/4, 5/9, and 33/18 steps. For FD

values higher than those shown in Fig. 6(d), additional steps
appear as |R| approaches the clean limit value. Figure 7(b)
illustrates the skyrmion trajectory on the |R| = 5/3 step for the
system in Fig. 6(b). The skyrmion moves five plaquettes in the
direction perpendicular to the drive for every three plaquettes
in the direction parallel to the drive during a single period.
Figure 8(a) shows 〈V||〉 and 〈V⊥〉 versus FD for a sample with
αm/αd = 4.925, and the corresponding R vs FD curve appears
in Fig. 8(c). In this case, the clean limit Hall angle is large,
and there is no longer a phase where the skyrmions move only
in the direction of the drive, so the 0/1 step is lost. Instead,
above depinning the motion jumps straight into the |R| = 1.0
state. This is followed by steps at |R| = 2/1, 3/1, 7/2, 4/1,
17/4, and 9/2. There are also numerous smaller intermediate
steps corresponding to higher order fractions. In Fig. 7(c) we
plot the skyrmion orbit on the |R| = 2/1 step for the system
in Figs. 8(a) and 8(c), while Fig. 7(d) shows the skyrmion
orbit at |R| = 3/1 for the same system. In general, as αm/αd

increases, more steps become visible. In Fig. 8(b) we plot only
〈V||〉 versus FD for a sample with αm/αd = 9.962 to show more
clearly the increased number of features in the velocity-force
curve. Figure 8(d) shows the corresponding R vs FD curve,
where we highlight the steps at |R| = 5/1, 6/1, 7/1, 8/1, 17/2,
and 9/1. The largest observable integer step has a value of n
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FIG. 8. (Color online) (a) 〈V||〉 and 〈V⊥〉 vs FD at αm/αd =
4.925. (b) 〈V||〉 vs FD for αm/αd = 9.962. (c) R vs FD for the sample
in panel (a) with αm/αd = 4.925. The steps at |R| = 2/1, 3/1, 7/2,
4/1, 17/4, and 9/2 are highlighted. (d) R vs FD for the sample in
panel (b) with αm/αd = 9.962, where the steps at |R| = 5/1, 6/1,
7/1, 8/1, 17/2, and 9/1 are highlighted.

that is the largest integer which is smaller than or equal to the
value of αm/αd .

In Fig. 9(a) we plot the skyrmion trajectories at |R| = 5.0
for the system in Figs. 8(b) and 8(d) with αm/αd = 9.962,
showing that the skyrmions circle around every fifth substrate
maximum. At |R| = 8.0, shown in Fig. 9(b), the trajectories
are much straighter and the skyrmion moves at an angle that
causes it to translate by eight plaquettes in the negative y

direction for every one plaquette in the positive x direction.

D. Arnol’d tongues

By conducting a series of simulations for varied αm/αd

we can examine the evolution of the different locking phases.
In Fig. 10 we show the evolution of the pinned phase and the
|R| = 0/1, 1/1, 2/1, and 3/1 locking phases for 0 � FD � 2.7
and 0 � αm/αd � 5.0. The depinning threshold for the pinned
phase remains roughly constant as a function of αm/αd . For
small αm/αd , the skyrmion motion is strictly in the x direction
as indicated by the presence of the |R| = 0/1 phase. As FD

increases, the range and the width of the lower order locking

x(a)

y

x(b)

y

FIG. 9. (Color online) Skyrmion trajectories and substrate max-
ima for (a) the |R| = 5.0 state for the system in Figs. 8(b) and 8(d) at
αm/αd = 9.962, and (b) the |R| = 8.0 state for the same system.
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FIG. 10. (Color online) The regions of FD vs αm/αd where the
pinned phase and the |R| = 1/0, 1/1, 2/1, and 3/1 locking states
occur.

phases decreases while new locking phases appear. The regions
in which the locking occurs have the characteristic features
of Arnol’d tongues, which occur in dynamical systems when
there are two competing frequencies [53,54]. In our system,
the two frequencies arise from the inverse rate of translation
along the x direction and the inverse rate of translation along
the y direction when the system is on a locking step. These
frequencies are quantized on the step due to the periodicity of
the substrate; unlike the case of Shapiro steps, we do not apply
any ac drive and the frequencies arise from the combination of
dc motion and the substrate. If the substrate were rectangular
instead of square, a different set of Arnol’d tongues would
arise. At higher values of αm/αd , a larger number of locking
steps appear in the velocity-force curves. For example, at
αm/αd = 2.5, as FD increases the system passes through a
small region of |R| = 0/1 followed by the |R| = 1/1 locking
phase and then by the |R| = 2/1 phase. Another feature of
the phase diagram is that at higher drives the width of each
locking phase decreases. To illustrate this more clearly, we
focus on the width of the |R| = 1/1 step as a function of FD ,
as highlighted in Fig. 11(a) where we plot the location of the
|R| = 1/1 step over the narrow range 0.8 < αm/αd < 0.96
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FIG. 11. (Color online) (a) FD vs αm/αd for the αm/αd < 1.0
side of the |R| = 1/1 locking step from Fig. 10. (b) FD vs αm/αd

showing only the |R| = 1/1 locking phase from Fig. 10. The width
of the step decreases for large FD .

out to FD = 20, much higher than the maximum value of
FD shown in Fig. 10. The lower edge of the locking regime,
which was dropping to lower values of αm/αd with increasing
FD in Fig. 10, bends back around for higher FD as shown
in Fig. 11, and shifts to higher αm/αd with increasing FD .
The resulting nose structure is the origin of the overshoot
phenomenon, where over a certain range of αm/αd , the system
locks to the |R| = 1/1 step for lower FD only to drop out of
that step as FD increases. Here the skyrmions can lock to the
|R| = 1/1 direction even though their resulting motion follows
a higher angle � than would occur in a clean system. As FD

increases above the edge of the |R| = 1/1 step, the skyrmion
jumps to smaller values of |R| in a series of steps. On each step
the skyrmion locks to different symmetry directions which are
closer to the clean system value of |R| = αm/αd . The overall
shape of the |R| = 1/1 step is shown in Fig. 11(b), where we
plot the range 0 � FD � 25 and 0.8 � αm/αd � 1.32. There
is a decrease in the extent of the locking phase at higher drives
and at higher αm/αd values. The width of the |R| = 1/1 step
gradually decreases and approaches a point centered at the
αm/αd = 1.0 value for the highest drives. We find that the
regions over which the other integer locking phases occur
have similar shapes to that shown in Fig. 11(b).

E. Overshoot effect for varied αm/αd

A new set of locking steps arises for values of FD greater
than that where the |R| = 1/1 locking occurs in Fig. 11(a). In
Fig. 12(a) we plot R versus FD for different values of αm/αd on
the αm/αd < 1.0 side of the |R| = 1/1 locking phase shown
in Fig. 11(b), where an overshoot effect occurs. The dashed
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FIG. 12. (Color online) (a) R vs FD for the αm/αd < 1.0 regime
of the |R| = 1/1 locking phase from Fig. 11(b). From top right to
bottom right, αm/αd = 0.8166, 0.8418, 0.8668, 0.98041, 0.81475,
and 0.9274. The |R| = 1/1 step is marked, and the dashed line
indicates the value of R for αm/αd = 0.8166 in the clean limit. (b)
R vs FD for the αm/αd > 1.0 regime of the |R| = 1/1 locking phase
from Fig. 11(b). From top right to bottom right, αm/αd = 1.084, 1.1,
1.134, 1.17, 1.207, 1.246, and 1.2885. The |R| = 1/1 step is marked
and the dashed line indicates the value of R for αm/αd = 1.2885 in
the clean limit.
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line is the value of R at αm/αd = 0.8166 in the clean limit;
similar overshoots occur for the other values of αm/αd . The
black curve shows that for αm/αd = 0.8166 in the presence
of a substrate, the skyrmion locks to the |R| = 1/1 direction
for 1.2 < FD < 2.0 and then jumps to the |R| = 4/5 = 0.8
state. For FD > 9.6, R jumps off of the |R| = 0.8 step and,
for higher values of FD , further small jumps in R occur as
R approaches the clean value limit. As αm/αd is increased
toward αm/αd = 1.0, the width of the interval of FD over
which the system is locked to the |R| = 1/1 step increases
since the clean limit Hall angle is closer to the |R| = 1/1
angle of 45◦. In each case, when the system jumps out of the
|R| = 1/1 step for increasing FD , it can jump into a series of
other locking steps as R gradually approaches the clean value.
In Fig. 12(b) we plot R versus FD for the αm/αd > 1.0 side
of the |R| = 1/1 locking phase from Fig. 11(b). The dashed
line indicates the clean limit value of R for αm/αd = 1.2885.
As αm/αd approaches 1.0 from above, the extent of the region
over which the system is locked to the |R| = 1/1 state again
increases. After jumping out of the |R| = 1/1 state, the system
jumps to larger values of |R| in a series of smaller locking steps
as it approaches the clean limit value of R. We observe similar
changes in R for the other integer locking phases such as
|R| = 2/1 and |R| = 3/1.

F. Fractional locking

In Fig. 13(a) we plot the locking phases as a function of
FD and αm/αd over the range 0 � αm/αd � 2.5, highlighting
the fractional locking steps at the |R| = 1/4, 1/3, 1/2, 2/3,
3/4, 5/4, 4/3, 3/2, 5/3, and 7/4 states falling between the
integer steps at |R| = 0/1, 1/1, and 2/1. Here the widths
of the fractional locking states behave similarly to those of
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FIG. 13. (Color online) (a) The locking phases for FD vs αm/αd

highlighting the fractional locking steps with |R| = 1/4, 1/3, 1/2,
2/3, 3/4, 5/4, 4/3, 3/2, 5/3, and 7/4 steps along with the integer
matching steps with |R| = 0/1, 1/1, and 2/1. (b) Integer locking
phases only for FD vs αm/αd , for |R| = 0/1 through |R| = 12/1
from left to right.

the integer locking states. Figure 13(a) shows that for certain
values of αm/αd , the fractional steps will be the dominant
feature observed in transport. The higher order fractional steps,
not shown in the figure, exhibit similar features. The overshoot
effect described for the |R| = 1/1 locking step in Fig. 11
occurs for all of the integer and fractional locking steps as
well, with the overall width of each of the steps decreasing
with increasing FD . In Fig. 13(b) we plot only the integer
locking regions from |R| = 0/1 to |R| = 12/1 as a function
of FD and αm/αd for the range 0 < αm/αd < 16.5. Between
each of the integer steps, there is a series of fractional steps (not
shown) similar to that illustrated in Fig. 13(a). The fractional
steps have the form N + n/m, where N are the integer steps.

G. Speedup effects

The Magnus term can produce an acceleration or speedup
effect of the skyrmion, in which the speed of the skyrmion is
higher in the presence of a substrate than it would be in the
absence of a substrate or in the overdamped limit. In Fig. 14(a)
we plot the net skyrmion velocity 〈V 〉 = (〈V||〉2 + 〈V⊥〉2)1/2

versus FD for αm/αd = 9.962, the overdamped case of
αm/αd = 0, and the clean limit. In the overdamped case, 〈V 〉
is always smaller than the clean limit value, indicating that
the substrate does not accelerate the skyrmion. In contrast, for
αm/αd = 9.962 there are clear regions where 〈V 〉 is higher
than the clean value. This effect is most prominent for values
of FD just above the depinning threshold. To show the speedup
more clearly, in Fig. 14(b) we plot �V = 〈V 〉 − 〈V 〉clean for
αm/αd = 9.962 and 0.0. For the overdamped case, �V < 0.0
over the entire range of FD . The lowest values of �V occur
just at depinning, and then �V gradually approaches zero
as FD increases. The behavior of the overdamped system
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FIG. 14. (Color online) (a) The net skyrmion velocity 〈V 〉 =
(〈V||〉2 + 〈V⊥〉2)1/2 vs FD for αm/αd = 9.962 (upper curve), 0.0
(lower curve), and the clean limit value (dashed line). Here there
are regions of the αm/αd = 9.962 curve where 〈V 〉 exceeds the
clean limit value, indicating a speedup or acceleration effect. (b)
�V = 〈V 〉 − 〈V 〉clean for αm/αd = 9.962 (upper line), 0.0 (lower
line), and the clean limit value (dashed line). The speedup effect
is indicated by regions in which �V > 0.
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FIG. 15. (Color online) 〈V 〉 vs αm/αd for fixed FD = 0.2. The
dashed line indicates the clean limit value of 〈V 〉 = 0.2. The speedup
effect occurs when 〈V 〉 > 0.2 and increases in magnitude with
increasing αm/αd .

is similar to the velocity-force curves observed in other
overdamped systems such as colloids driven over periodic
substrate arrays [44,58]. For αm/αd = 9.962, �V shows a
series of peaks which are correlated with transitions between
the different locking regimes. For 0.1 < FD < 0.44, �V >

0.0 due to the speedup effect, where there is an enhancement
in the net velocity of up to twice the velocity in the clean
limit. As FD is further increased the magnitude of the speedup
effect decreases and there are several intervals of FD where the
skyrmion is moving significantly slower than it would in the
clean limit. For further increases in FD , �V approaches zero.
The speedup effect is generated by the nondissipative terms
in the equation of motion which cause the skyrmions to be
accelerated through certain portions of the substrate potential.

In Fig. 15 we plot 〈V 〉 versus αm/αd for a fixed FD =
0.2, where the dashed line indicates the clean limit value of
〈V 〉 = 0.2. Values of 〈V 〉 > 0.2 indicate a speedup effect. For
αm/αd = 0, in the overdamped limit, 〈V 〉 < 0.2. We find a
series of oscillations in 〈V 〉 corresponding to the different
locking phases through which the system passes as a function
of αm/αd . Here, the magnitude of the speedup effect increases
on average with increasing αm/αd .

A speedup effect for a driven skyrmion interacting with a
defect has also been observed in simulations by Müller and
Rosch, who find that for some cases the defect causes a net
increase in the skyrmion velocity [26]. They also find that the
magnitude of the speedup effect decreases when an externally
imposed skyrmion drift velocity is increased. This is similar
to what we observe for the periodic substrate case where for
increasing external driving force the speedup effect is reduced
as shown in Fig. 14(b). In Ref. [26] the speedup was up to an
order of magnitude higher than the velocity in the clean limit,
while we observe a velocity enhancement of only up to a factor
of 2. This is because in our system there is a minimum critical
force required to depin the skyrmion, whereas in Ref. [26] there
was no lower bound on the imposed drift velocity. Since the
speedup is increased for lower drives, Müller and Rosch could
access lower drives and obtain larger velocity enhancements
from the speedup effect.
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FIG. 16. (Color online) A gray-scale image of a portion of the 2D
analytic substrate. The external drive is applied along the x direction.

H. Two-dimensional analytic substrate

In order to understand how general our results are for
different details of the periodic substrate, we next consider
a 2D analytic substrate with the same lattice constant a used in
obtaining the previous results. The force from the substrate is
given by Fs = Fp[cos2(πx/a)x̂ + cos2(πy/a)ŷ], where Fp is
the maximum force exerted by the substrate and a = 3.26
is the lattice constant as in the system shown in Fig. 2.
Figure 16 shows a gray scale of a portion of the substrate,
where the potential maxima are highlighted. In Fig. 17(a) we
plot 〈V 〉 versus FD for a skyrmion moving over a substrate
with Fp = 1.5 for αm/αd = 4.925. The dashed line indicates
the clean limit value of 〈V 〉. Figure 17(b) shows 〈V||〉 and
〈V⊥〉 vs FD for the same system, while in Fig. 17(c) we plot
the corresponding R vs FD curve with a dashed line indicating
the value of R in a clean system and with the locking steps
at |R| = 1/1, 2/1, 3/1, and 4/1 highlighted. Although there
are some differences in the details, we find the same general
transport features for the analytic substrate as we observed for
the pinned skyrmion substrate at αm/αd = 4.925, including
the locking of the skyrmion motion to different symmetry
directions and the steps in R at integer and fractional ratios
of 〈V⊥〉/〈V||〉. Figure 17(a) shows that there are a similar
series of dips in 〈V 〉 corresponding to transitions between
the different locking phases. We find that with an analytic
potential, a somewhat larger number of small locking steps
can be resolved, as shown for 1.25 < FD < 1.75 in Fig. 17(a),
and the steps in R in Fig. 17(c) for this region have a devil’s
staircase structure. Figure 17(a) also shows that 〈V 〉 exhibits
regions where it is higher than the clean limit (dashed line),
indicating that the same type of speedup effect occurs for the
analytic potential. We have also examined the locking effects
on the analytic potential for other values of αm/αd and Fp, and
find that all the features highlighted in Fig. 17 are robust. This
indicates that the directional locking effect is a generic feature
of skyrmions moving over periodic substrates.
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FIG. 17. (Color online) The transport for a skyrmion moving
over the 2D sinusoidal substrate illustrated in Fig. 16 for Fp = 1.5
and αm/αd = 4.925. (a) The net skyrmion velocity 〈V 〉 vs FD shows
a series of cusps. Dashed line: the clean value limit. (b) 〈V⊥〉 and 〈V||〉
vs FD for the same system. (c) R vs FD for the same system with
the |R| = 1/1, 2/1, 3/1, and 4/1 steps highlighted. There are also
numerous smaller scale fractional locking steps.

IV. SCATTERING OFF A SINGLE PINNING SITE

In order to better understand the dependence of the Hall
angle on the external drive, we consider the case of a
skyrmion scattering from a single pinning site. We drive the
skyrmion toward the pinning site for varied impact parameters
b, and measure the resulting shift in the skyrmion position
perpendicular to the driving force for the outgoing state.
To define the impact parameter, we identify a line oriented
along the Hall direction passing through the center of the
pinning site, and a second parallel line passing through the
initial position of the skyrmion. The perpendicular distance
between these two lines is the impact parameter. We model
the pinning site as a parabolic trap with radius Rp and a
maximum force of Fp. The skyrmion is driven from a point
outside the trap towards the trap with an external drive FD

applied in the positive y direction. In Fig. 18(a) we show the
overdamped case with αm/αd = 0.0, Fp = 0.1, Rp = 0.35,
and FD = 0.05. We highlight the trajectory of a skyrmion with
an impact parameter b slightly different from 0 to emphasize
that the change in the trajectory induced by the pin is linear.
For this value of FD , all skyrmion trajectories that contact the
pinning site form straight lines directed toward the equilibrium
position of the pinned state along the x = 0.0 line. The pinned
equilibrium position is shifted in the positive y direction from
the center of the pinning site due to the applied external force.
Figure 18(b) shows the same system with higher FD = 0.12.
The trajectories are shifted toward the center of the pinning
site, but since FD > Fp the skyrmions can escape from the
pinning site. The trajectory for an impact parameter b = 0
comes in and out of the pinning site at x = 0.0, so there is
no shift, while the shift of the trajectories for nonzero impact

x(a)

y

x(b)

y

x(c)

y

x(d)

y

FIG. 18. (Color online) Skyrmion trajectories (lines) for a single
skyrmion at different impact parameters b interacting with a single
pinning site of radius Rp = 0.35 and maximum pinning force of
Fp for an external drive FD applied in the positive y direction.
(a) αm/αd = 0.0, Fp = 0.1, and FD = 0.05. The skyrmions that
interact with the pinning site are captured. (b) αm/αd = 0, Fp = 0.1,
and FD = 0.12. The skyrmions can escape from the pinning site.
(c) αm/αd = 10.0, Fp = 0.1, and FD = 0.05. The dashed line is
a trajectory that a skyrmion would follow in the absence of the
pinning site. For a certain range of impact parameters, the skyrmion
is captured. For other impact parameters, skyrmions that escape from
the pinning site have their trajectories shifted as highlighted by the
thick line. (d) αm/αd = 10.0, Fp = 0.1, and FD = 0.12. Here the
shift in the trajectories of the skyrmions that pass through the pinning
site is reduced and there is less curvature in the trajectories.

parameters, one of which is highlighted in blue, is symmetric
across x = 0.

Figure 18(c) shows the trajectories for the same system at
αm/αd = 10.0 for FD = 0.05, where the external drive is still
applied in the positive y direction. In this case, the trajectories
that do not intersect with the pinning site move at an angle of
| arctan(αm/αd )| = 84.3◦ with respect to the y axis. The dashed
line represents the trajectory a skyrmion would follow in the
absence of the pinning site. When the skyrmion moves through
the pinning site, the trajectory is no longer straight as in the
overdamped case but is now strongly curved due to the Magnus
force. The skyrmions that encounter the pinning site on the
upper left side become trapped by entering a spiral trajectory
that carries them to the equilibrium pinned position in the upper
portion of the pinning site. Skyrmions that enter the pinning
site on the lower left side can escape from the pin; however,
the position of the outgoing skyrmions are shifted in the
positive y direction as indicated by the highlighted trajectory
in Fig. 18(c). This shift is similar to the side jump effect
that occurs for electron scattering [59], where the interaction
with pinning or disorder shifts the outgoing trajectory of the
particle relative to its incoming trajectory. In the case of a
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periodic substrate, a skyrmion would be repeatedly shifted
as it moves through the system, so that for αm/αd = 10 the
average direction of skyrmion motion follows a Hall angle that
is less than the clean value limit of 84.3◦. Figure 18(c) also
shows that when the skyrmion is captured it becomes pinned
along the x = 0.0 line at a position above the center of the pin.
The shift of the pinned equilibrium position to this location
is caused by the bias from the external drive, and the location
of the equilibrium position is not changed by the inclusion of
a finite Magnus term. Figure 18(d) shows the trajectory for
αm/αd = 10 with a higher drive of FD = 0.12. Here, the size
of the side jump is reduced, so that the Hall angle that would
be observed for motion through a periodic substrate is closer
to the pin-free value of 84.3◦. This indicates that the Hall angle
increases with increasing driving force, as also observed in the
simulations with a periodic substrate. The shift is reduced at
the higher drives in Fig. 18(d), since the skyrmion is moving
more rapidly through the pinning site and the trajectory spends
less time being bent.

To quantify the the dependence of the magnitude δr of
the shift or side jump of the trajectory as a function of the
external drive, in Fig. 19 we plot δr for a skyrmion approaching
the pinning site with b = 0. Figure 19(a) shows the shift for
Fp = 0.1, Rp = 0.35, and αm/αd = 10. The shift is highest at
low FD , starting near δr = 0.3 in Fig. 19(a) and gradually
approaching zero as FD increases. In Fig. 19(b) we plot
δr versus FD for a sample with Fp = 0.1, Rp = 0.35, and
αm/αd = 1.0. Here the initial value of δr is smaller due to the
smaller value of αm/αd . From an initial value of δr = 0.15,
the magnitude of the shift decreases with increasing drive. For
αm/αd = 0.0 (not shown), δr = 0 for all values of FD . If we
apply a fit to the decrease of the shift as a function of drive, we
find δr ∝ F−ν

D , with ν = 1.44–2.0 depending on the choice of
the low drive cutoff. In the work of Müller and Rosch for a
skyrmion scattering off a single defect [26], they found through
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FIG. 19. (Color online) δr , the magnitude of the trajectory shift,
vs FD for a skyrmion entering a single pinning site with an impact
factor of zero. (a) Fp = 0.1, Rp = 0.35, and αm/αd = 10.0. δr

approaches zero at higher drives. (b) The same for αm/αd = 1.0.
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FIG. 20. (Color online) The trajectory shift δr vs impact parame-
ter b for a skyrmion moving through a pinning site with Fp = 0.1 and
Rp = 0.35. (a) αm/αd = 0 for FD = 0.12, 0.16, and 0.20, from upper
left to lower left. δr is symmetric across b = 0. (b) αm/αd = 1.0 for
FD = 0.085, 0.09, 0.10, 0.11, 0.12, 0.14, 0.16, 0.18, and 0.20, from
upper left to lower left. Here the shift is asymmetric across b = 0.
For values of b where there are no points, the skyrmion is captured
by the pinning site. (b) αm/αd = 10 for FD = 0.03, 0.05, 0.08, 0.12,
and 0.20, from upper left to lower left. The shifts become larger with
increasing αm/αd .

both simulations and perturbation that the shift as a function of
drive goes as δr ∝ F−2

D . Even though the pinning potential we
use has a different form than that used in Ref. [26], our results
are consistent with the pinning site inducing a trajectory shift.

In order to understand the shift of the skyrmion and when
the skyrmion will be captured by a pinning site, in Fig. 20 we
plot δr as a function of the impact parameter b. Figure 20(a)
shows the overdamped case αm/αd = 0.0 for Fp = 0.1 and
rp = 0.35 at FD = 0.12, 0.16, and 0.2. At b = 0, δr = 0 and
there is no shift in the trajectory, while shifts for positive
and negative values of b are symmetric across b = 0 so that
the integrated shift over all impact parameters is zero. For
FD < Fp = 0.1 the skyrmion is always captured by the pin.
Figure 20(b) shows δr versus b for a sample with αm/αd = 1.0
at drives ranging from FD = 0.085 to FD = 0.20. Here, δr

decreases with increasing FD , and the shifts are asymmetric
for positive and negative values of b, so that the integrated
shift over all impact parameters is positive. At FD = 0.085
and 0.09, values of b at which there are no points on the
curve indicate that the skyrmion was captured by the pinning
site. For higher values of FD , |δr| is larger for b < 0 than for
b > 0. The results in Fig. 20(b) show that increasing αm/αd

reduces the range of impact parameters where an incoming
skyrmion is captured by the pin, and that for some ranges of b

a skyrmion can escape the pin even when FD < Fp, in contrast
to the overdamped case where the skyrmion is always trapped
whenever FD < Fp.

Figure 20(c) shows δr versus b for αm/αd = 10.0 over
the range FD = 0.03 to FD = 0.2. Here, the ability of the
pinning site to capture the skyrmion is further reduced, and
the skyrmion does not become pinned for more than half
the impact parameters at FD = 0.03 even though this drive
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is substantially smaller than the maximum pinning force
Fp = 0.1. At FD = 0.05 a skyrmion can only become captured
if b > 0.25. The overall shifts are positive over a much wider
range of FD , and the magnitude of δr decreases with increasing
FD . This result shows that inclusion of a Magnus term in
the dynamics reduces the ability of pinning sites to capture
particles since the Magnus term induces a side jump or shift
that permits the particles to escape from the pin.

V. CONCLUSION

We have numerically examined a skyrmion under a dc drive
moving over a two-dimensional square pinning substrate for
varied ratios of the Magnus force term αm to the damping
αd . In the overdamped limit αm/αd = 0, there is a single
depinning transition into a sliding state where the skyrmion
moves in the direction of the applied drive. For a finite αm/αd

we find that the skyrmion direction of motion or Hall angle
depends on the magnitude of the external drive and gradually
approaches the substrate-free limit at high drives. Due to
the symmetry of the underlying substrate, the Hall angle
does not change continuously but passes through a series
of steps as the skyrmion motion becomes locked to certain
symmetry directions of the substrate. These steps occur at
integer and rational fractional ratios n/m of the perpendicular
to parallel velocity components of the skyrmion motion with
respect to the direction of the applied drive, where n and
m are the number of plaquettes the skyrmion moves in the
perpendicular and parallel directions, respectively. We find
that the Hall angle generally increases with increasing external
drive, but that there can be an overshoot effect in which
the Hall angle is larger than expected for the substrate-free
or clean limit. In this case, as the drive increases the Hall
angle jumps back to a lower value closer to the clean limit
value. At the transitions between different directional locking
steps, the skyrmion velocity shows a striking series of cusps
or dips where the skyrmion slows down for increasing FD ,
producing a negative differential mobility at the transitions. As
αm/αd increases, the number of transitions between different
locking steps increases, as we map out in a series of phase
diagrams. The directional locking effects exhibited by the
skyrmions are very distinct from the directional locking
effects previously observed for overdamped particles such as
vortices and colloids interacting with periodic substrates. In the
overdamped system, the angle of the external drive must be
changed with respect to the symmetry direction of the substrate
in order to induce locking steps, whereas for the skyrmion
system the driving direction remains fixed; only the magnitude
of the driving force is changed. Additionally, the overdamped
systems exhibit neither the negative mobility phenomenon at
the transitions between steps nor the overshoot effect.

We find that the skyrmion motion can exhibit a speedup or
acceleration effect where the interaction of the skyrmion with a
pinning site can accelerate the skyrmion such that the skyrmion
velocity is higher than the value that would be induced by
the external drive alone. This effect is generally enhanced
at the lower drives and suppressed near the directional
locking transitions. It contrasts strongly with the behavior
of overdamped systems, where interactions with pinning or
a substrate always decrease the velocity of an overdamped
particle. We find that all of these features are robust for
different forms of the periodic substrate.

To better understand how the pinning can induce a Hall
angle dependence on the magnitude of the drive, we consider
a skyrmion scattering from a single pinning site. In the
overdamped limit with αm/αd = 0, the skyrmion becomes
trapped by the pin whenever the external drive is less than
the magnitude of the maximum pinning force that can be
exerted by the pinning site. For external drives larger than this
value, the skyrmion escapes from the pin and its trajectory is
shifted perpendicular to the direction of skyrmion motion. The
shift is symmetric for positive and negative impact parameters,
so there is no net shift of the trajectory when all impact
parameters are integrated. In contrast, at a finite αm/αd , the
magnitude of the trajectory shift depends asymmetrically on
the impact parameter, producing a nonzero net shift of the
skyrmion as it moves through the pinning site when all impact
parameters are integrated. This shift is similar to the side jump
phenomenon found in electron scattering. As the external drive
is increased, the net shift decreases and the skyrmion motion
approaches the pin-free trajectory track. The trajectory shift
is responsible for the modified Hall angle experienced by the
skyrmion at low drives, and the gradual decrease in shift with
increasing drive causes the Hall angle to gradually approach
the clean limit value. For the case of a periodic substrate, the
additional symmetry of the substrate prevents the angle of
the skyrmion motion from changing continuously; instead, the
motion changes in a series of steps with increasing drive as it
approaches the clean limit value. We also find that for finite
αm/αd , depending on the impact parameter the skyrmion may
or may not become pinned regardless of whether the maximum
pinning force is smaller than the driving force, and that for
increasing αm/αd , the range of impact parameters over which
the particle is not pinned even when the driving force is smaller
than the maximum pinning force increases. This is one of the
reasons that pinning of skyrmions is much weaker than pinning
in overdamped systems such as superconducting vortices.
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(2011).

[9] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[10] X. Z. Yu, Y. Tokunaga, Y. Kaneko, W. Z. Zhang, K. Kimoto,

Y. Matsui, Y. Taguchi, and Y. Tokura, Nat. Commun. 5, 3198
(2014).

[11] A. B. Butenko, A. A. Leonov, U. K. Rößler, and A. N. Bogdanov,
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