
PHYSICAL REVIEW B 91, 104416 (2015)

Thermal properties of magnons in yttrium iron garnet at elevated magnetic fields
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The ferrimagnetic insulator yttrium iron garnet (YIG) has become an important material in the emergent field
of spin caloritronics. Despite this and the fact that this material has been studied for over half a century, the
thermal properties of magnons in YIG have not been sufficiently characterized, mainly because at not very low
temperatures, they are overwhelmed by the contribution of phonons. Experimental attempts to characterize the
magnon specific heat and thermal conductivity in YIG make use of large magnetic fields to freeze the magnon
contributions and isolate those of phonons relative to their behavior at zero field. Here we present calculations of
the magnon thermal properties in YIG under elevated magnetic fields using spin-wave theory. We show that at a
temperature of 10 K, a field of at least 300 kOe is necessary to decrease the magnon contributions to 10% of their
zero-field values. With the results of the calculations, we reinterpret recent measurements of the magnon thermal
properties in YIG at temperatures up to 20 K and a field of 70 kOe, and suggest a procedure to determine their
values at room temperature with the use of a field of 300 kOe.
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I. INTRODUCTION

At present, insulator-based spintronics relies almost en-
tirely on the unique properties of the ferrimagnetic insulator
yttrium iron garnet [Y3Fe5O12 (YIG)]. In recent years YIG has
gained increased attention for revealing striking features of the
spin Hall [1–5] and spin Seebeck effects [6–16], but for several
decades it has been the prototype material for the study of the
basic physics of a variety of spin-wave phenomena [17–26].
The recent upsurge in the interest in YIG has resulted in the
intensification of research on new methods to grow crystalline
thin films and in the study of basic material properties with
more sophisticated equipment than those used in the early
investigations [27]. One of the current challenges is to quantify
the thermal properties of magnons in YIG at room temperature
since they are essential to clarify the origin of the spin Seebeck
effect in structures containing this material. A serious difficulty
is that at temperatures above 5 K the thermal properties of
YIG are dominated by the behavior of phonons, so that the
contributions from magnons become difficult to measure.

Early experimental attempts to characterize the magnon
specific heat and thermal conductivity in YIG at temperatures
(T) below 5 K employed the application of magnetic fields up
to 40 kOe to open a gap in the magnon dispersion to freeze the
magnon contributions and isolate those of phonons relative
to their behavior at zero field [28,29]. But even at low T it
was recognized early on that theory and data for the magnon
thermal conductivity were discrepant [29]. Recently, Boona
and Heremans [30] used a larger magnetic field (70 kOe) in
an attempt to freeze the magnon contributions, and claim to
have measured the absolute values of the magnon specific heat
and thermal conductivity in YIG at temperatures up to 20 K.
This connects with broader field-induced thermal conductivity
phenomena, which have received significant interest recently
in the context of quantum antiferromagnets, where gaps can be
induced or closed by the application of a magnetic field [31].
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In this paper we present calculations of the changes in
the thermal properties of magnons in YIG produced by the
application of high magnetic fields based on spin-wave theory.
The recent experimental data are reinterpreted and shown
to not represent the full quantities, but only changes in the
magnon contributions with the application of the field. We
show that at a temperature of 10 K, a field of at least 300 kOe
is necessary to decrease the magnon contributions to 10% of
their zero-field values. Based on the good agreement between
theory and data, we suggest a procedure to determine the
magnon thermal properties accurately at room temperature
with the use of a field of 300 kOe.

II. SPIN WAVES IN YIG AT HIGH FIELDS

The thermal properties of magnons depend crucially on
the wave-vector-dependent magnon frequency, velocity, and
lifetime. The first two are given directly by the magnon
dispersion relations, which were calculated for YIG long ago
[32] and later measured over the whole Brillouin zone by
inelastic neutron scattering [33]. The data in zero-field, which
are in fair agreement with calculations, show an acoustic
branch with frequency that rises from nearly zero at the zone
center to a value at the zone boundary that varies from 6 to
9.5 THz depending on the wave vector direction. These values
correspond to energies of approximately 287 and 454 K. Since
the lowest optical branch lies above the zone-boundary value,
the calculation of the thermal properties in the presence of
an applied field H at temperatures up to 100 K can be safely
done considering only the acoustic branch, with the magnon
dispersion relation given by [34]

ωk = γH + ωZB

(
1 − cos

πk

2km

)
, (1)

where γ = gμB/� is the gyromagnetic ratio, g is the spectro-
scopic splitting factor, μB the Bohr magneton, � the reduced
Plank constant, ωZB the zone-boundary frequency, and km is
the value of the maximum wave number. At low wave numbers
the dispersion relation in Eq. (1) can be approximated by the
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FIG. 1. (Color online) (a) Spin-wave dispersions in YIG calculated with the quadratic form in Eq. (2) for several values of the applied
magnetic field H. The inset shows a comparison of the quadratic dispersion with the one in Eq. (1) over the whole Brillouin zone for H = 0. (b)
Dependence on the reduced wave number q of the number of thermal magnons at T = 10 K, weighted by the density of states Nth(q) = n̄qq

2

for several values of the magnetic field. (c) Variation with q of the weighted magnon frequency ωqNth(q) = ωqn̄qq
2 for several values of H.

(d) Field dependence of the integrated magnon thermal number and weighted frequency at T = 10 K.

quadratic form

ωk = γH + γDk2, (2)

where D = π2ωZB/(8γ k2
m) is the exchange parameter [17,18].

Assuming spherical energy surfaces, the value of km that
preserves the number of modes within the Brillouin zone
is determined by 4πk3

m/3 = (2π/a)3, where a is the lattice
parameter, which gives km ≈ 2.45/a. However, at low tem-
peratures this criterion is not important because the modes
with high k do not contribute to the thermal properties.
One could also consider the wave number at the zone
boundary in the [111] direction is 2.5

√
3/a [32]. In YIG,

a = 1.23 × 10−7 cm, so km can be considered an adjustable
parameter in the range 1.99 × 107 < km < 3.52 × 107 cm−1.
Figure 1(a) shows the dispersion relations of magnons in
YIG for several values of the applied field calculated with
Eq. (2) using γ = 2.8 GHz/kOe and D = 4.0 × 10−9 Oe cm2,
the value of the exchange parameter for which the theory
fits the data for the specific heat, as discussed later, which
is similar to the ones quoted in the literature [17]. The
inset in Fig. 1(a) shows the comparison of the quadratic
dispersion with the one in Eq. (1) for zero field, calculated
over the whole Brillouin zone using ωZB/2π = 6.0 THz
and km = 2.54 × 107 cm−1. Clearly, the quadratic dispersion
represents very well the actual dispersion up to a wave number
q = k/km = 0.6.

As shown in Fig. 1(a), the application of a magnetic
field creates in the magnon dispersion a frequency gap at
k = 0 of 28 GHz/10 kOe, corresponding to an energy of

1.34 K/10 kOe. The increased frequency reduces the number
of thermal magnons at a temperature T, given by the Bose-
Einstein distribution n̄q = 1/[exp(�ωq/kBT ) − 1]. Thus, as
argued in Refs. [28–30], by applying a sufficiently large field
at some T, the magnon contribution to the thermal properties
can be drastically reduced so that they become determined
by phonons only. In this way, the changes in the thermal
properties relative to the zero-field values would represent the
magnetic parts. While this is true, the values of the quenching
fields used in Refs. [28–30] are largely underestimated. As
shown in Fig. 1(a), the gap created by a field of 70 kOe is
only 9.38 K. This is more clearly demonstrated in Fig. 1(b),
showing the dependence on the reduced wave number q of
the number of thermal magnons at T = 10 K, weighted by
the density of states Nth(q) = n̄qq

2 for several values of the
magnetic field. As expected, the weighted thermal number
decreases rapidly with increasing field. However, the quantity
of interest in the specific heat is the product of the thermal
number with the magnon frequency, ωqNth(q) = ωqn̄qq

2. As
shown in Fig. 1(c), the reduction of this quantity with field
is much less pronounced. This is so because at q ≈ 0.2,
where the number peaks, the exchange contribution to the
frequency is as large as the gap. This conclusion is further
illustrated in Fig. 1(d), showing the variation with field of the
total number of thermal magnons Nth = ∫

dq n̄qq
2 and the

integrated weighted frequency �th = ∫
dq ωqn̄qq

2, relative to
their values at zero field. While at H = 70 kOe the former is
reduced to 20% of its zero-field value, the latter is reduced
only to about 53%.
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FIG. 2. (Color online) (a) Variation with magnetic field of the specific heat calculated with Eq. (3) for several temperature values.
(b) Temperature dependence of the specific heat calculated with zero field and with H = 70 kOe. The difference is compared with the data
of Ref. [30] represented by the symbols.

III. MAGNON SPECIFIC HEAT AND THERMAL
CONDUCTIVITY AT ELEVATED FIELDS

The specific heat, or heat capacity per unit volume,
of a magnon system in a volume V is given by Cm =
V −1(∂/∂T )

∑
k n̄k�ωk , where the sum is carried out over the

first Brillouin zone [18,35]. For T < 50 K the contribution of
thermal magnons with wave number above q = 0.5 is very
small, so one can use the quadratic dispersion in Eq. (2) and
assume spherical energy surfaces. Introducing the normalized
energy x = �ωk/kBT and replacing the sum over the wave
number by an integral in the usual way, one can express k in
terms of x, so that the magnon specific heat becomes

Cm = k
5/2
B T 3/2

4π2(γD�)3/2

∫ xm

x0

dx
ex (x − x0) x2

(ex − 1)2 , (3)

where xm is the normalized energy with wave number km and
x0 = �γH/kBT represents the effect of the gap introduced by
the magnetic field. At low temperatures the number of thermal
magnons with wave number km is negligible so that the integral
in Eq. (3) can have the upper limit set to infinity. For zero field,
x0 = 0, and the integral can be solved analytically to give the
known result [35] Cm = [15ς (5/2)/4(4πγD�)3/2]k5/2

B T 3/2,
where ς (5/2) ≈ 1.34 is a Riemann zeta function. For nonzero
field the integral has to be calculated numerically. Figure 2(a)
shows the variation with field of the heat capacity per unit mass
for YIG, obtained with Eq. (3) divided by the mass density
(ρ = 5.2 for YIG). As expected, the result is very sensitive
to the temperature. For T = 3 K the specific heat falls rapidly
with increasing field, reaching about 15% of its zero-field
value at H = 70 kOe. However, for T = 10 K, at H = 70 kOe
the specific heat is as large as 2/3 of its zero-field value. In
order to decrease Cm to 10% of its zero-field value, the field
needed at T = 10 K is quite large, H = 300 kOe. This result
indicates that the recent experimental data of Ref. [30] deserve
a different interpretation. In the measurements of the thermal
properties of YIG reported in Ref. [30] it was assumed that
with the application of a field H = 70 kOe the contributions
of magnons were suppressed. Thus, by measuring the specific
heat as a function of temperature with H = 0 and 70 kOe, the
difference was entirely attributed to magnons. As shown in
Fig. 2(a), this is not correct. Figure 2(b) shows the calculated
T dependence of the specific heat for H = 0 and 70 kOe,

as well as their difference compared to the experimental
data. The only two material parameters used in Eq. (3) are
γ = 2.8 GHz/kOe, which is a well-established value for YIG
[17], and D = 4.0 × 10−9 Oe cm2, which was adjusted to fit
the data and is similar to values quoted in the literature
[17,22,26]. Thus, what the experimental data of Ref. [30]
represent is the change in the magnon specific heat with applied
field, not the total magnon contribution.

Similarly to the specific heat, we will show that the data in
Ref. [30] for the magnon thermal conductivity Km represent
the change with magnetic field, not the full contribution.
In the case of Km the behavior becomes more interesting
because of the role of the magnon relaxation rate ηk . For the
calculation of Km one considers that the flow of magnons due
to a temperature gradient ∇T carries a heat-current density
�JQ = V −1 ∑

k δnk�ωk �vk , where δnk = nk − n̄k is the magnon
number in excess of equilibrium and �vk is the k-magnon group
velocity. Using the Boltzmann approach one can write a first-
order expression for the excess magnon number in the steady
state and in the relaxation approximation, δnk = −τk �vk · ∇n̄k ,
where τk = 1/ηk is the k-magnon relaxation time. Assuming
spherical magnon energy surfaces and considering for low T
the quadratic dispersion in Eq. (2), one obtains a heat-current
density in the form �JQ = −Km∇T , where Km is the magnon
thermal conductivity given by

Km = kB(kBT )5/2

3π2(γD)1/2
�5/2

∫ xm

x0

exx2(x − x0)3/2

ηk(ex − 1)2 dx. (4)

If one considers that the relaxation rate ηk is independent
of the wave number and temperature, at zero field the integral
with the upper limit xm → ∞ can be solved analytically to
give the temperature dependence Km ∝ T 5/2, first predicted
by Yellon and Berger [36]. For nonzero field the T 5/2 still
holds, but the prefactor decreases with field since x0 ∝ H .
Figure 3(a) shows the temperature dependence of the magnon
thermal conductivity in YIG calculated with Eq. (4) using
D = 4 × 10−9 Oe cm2 and a relaxation rate ηk = 109 s−1, for
two field values, H = 0 and 70 kOe. Of course, since in
both cases the thermal conductivity is proportional to T 5/2,
the difference between them increases continuously with
temperature with the same power law. As we show next, the
peak in the T dependence of the difference in the thermal
conductivity measured in YIG with and without the field
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FIG. 3. (Color online) Temperature dependence of the magnon thermal conductivity calculated with Eq. (4) with H = 0 and 70 kOe and
their difference. In (a) the magnon relaxation rate is assumed to be independent of temperature. In (b) the calculation was done with the
relaxation rate in Eq. (5). The symbols in (b) represent the data of Ref. [30].

observed in Ref. [30] is due to the fact that the relaxation
rate varies with wave number and temperature.

The importance of the k and T dependences of the magnon
relaxation rate for the magnon thermal conductivity was
first pointed out in Ref. [34]. A difficulty here is that the
spin-wave damping has been measured experimentally only
for very small wave numbers using microwave techniques
[17,37], while the magnons that contribute most to the thermal
conductivity are in the middle of the Brillouin zone, as shown
in Fig. 1(c). Thus, one has to resort to calculated relaxation
rates, which are at best good estimates in the absence of data
to determine some adjustable parameters. We have calculated
the integral in Eq. (4) the using the following expression for
the magnon relaxation rate,

ηk = η0

[
1.0 + cH37.5 × 102q

(
T

300

)
+ cH4103

×(7.6q2 − 4.9q3)

(
T

300

)2]
, (5)

where η0 = 5 × 107 s−1 is the relaxation rate at k = 0 and T =
0 due to impurities and other imperfections, while the second
and third terms arise, respectively, from 3- and 4-magnon
scattering processes. Equation (5) with cH3 = cH4 = 1.0 is
the relaxation rate of Ref. [34] for H = 0. These factors
were introduced here to account for the reduction in the
damping with the application of a field, as discussed later. At
temperatures T < 5 K the relaxation is dominated by the first
term, so that the thermal conductivity increases continuously
with T, as observed experimentally [28,29,38]. At higher
T, the relaxation rate in Eq. (5) increases with T, initially
with the linear term and then with the quadratic one. As a result,
the calculated magnon thermal conductivity in YIG exhibits
the initial T 5/2 behavior, and then it peaks at T ≈ 65 K and
drops at higher T [34]. The measured thermal conductivity
in YIG does exhibit a downward U-shaped behavior, but it
is dominated by phonons. In Ref. [30] the change in the
measured thermal conductivity of YIG with the application
of a magnetic field was considered to be the full contribution
of magnons. Actually, as can be seen in Fig. 3(b), the data
correspond to the variation in the magnon contribution with the
application of the field. The upper (blue) solid curve represents

Km calculated with Eq. (4) for H = 0 using the same exchange
parameter as before and the relaxation rate in Eq. (5) with
cH3 = cH4 = 1.0. The lower (red) curve was calculated with
Eq. (4) for H = 70 kOe, with the contributions from 3- and
4-magnon relaxation in Eq. (5) multiplied by the factors with
cH3 = cH4 = 0.9. These factors were determined by adjusting
the theory to the experimental data of Ref. [30] shown in
Fig. 3(b). They are close to the factors calculated in the magnon
relaxation rate using the procedure of Refs. [15,39,40] for
H = 70 kOe, T = 10 K. The reduction in the relaxation is
attributed to the decrease in the number of thermal magnons
involved in the scattering processes. Due to the decrease in
the relaxation rate with field, for temperatures above 10 K,
the conductivity Km (H = 70 kOe) increases with temperature
faster than Km (H = 0), so that the difference between the two
exhibits the peak observed experimentally [30].

The results described so far suggest a procedure to find
reliable values for the thermal properties of magnons at
room temperature, which are important to help in clarifying
the origin of the spin Seebeck effect in YIG, a subject of
current controversy [15,34,41–44]. As remarked in Ref. [34],
the well-known expressions for the magnon specific heat
Cm and thermal conductivity Km valid for low temperatures
completely fail at T = 300 K. The calculation of Cm and
Km at elevated temperatures using the appropriate magnon
dispersion and relaxation rate and integration over a finite
Brillouin zone leads to good estimates [34]. However, to obtain
more reliable values one needs experimental data to determine
some adjustable parameters in the calculation, such as the
magnon zone-boundary frequency, the size of the Brillouin
zone, and relaxation rates. Although the thermal properties are
dominated by phonons and the absolute magnon contributions
cannot be measured directly, the idea is to use the procedure
of Refs. [28–30] of measuring the changes in the magnon
contributions caused by the application of elevated magnetic
fields. This should be done at the highest possible temperature
so as to determine the adjustable parameters in the spin-wave
calculation such that the results can be reliably extrapolated to
room temperature.

Figure 4 shows the temperature variation of Cm and Km

calculated as in Ref. [34], using Eqs. (3) and (4), with the
dispersion relation in Eq. (1) with ωZB/2π = 6 THz and the
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FIG. 4. (Color online) Temperature dependence of the magnon specific heat in (a) and magnon thermal conductivity in (b) at various values
of the applied magnetic field H calculated with Eqs. (3) and (4) using the dispersion relation in Eq. (1) and the relaxation rate in Eq. (5).

relaxation rate in Eq. (5), with the appropriate factors for
three values of the field, H = 0, 70, and 300 kOe. As can
be seen in Fig. 4, the changes in Cm and Km produced by
H = 70 kOe relative to the zero-field values in the range
50 < T < 100 K are quite small and would be in the noise
level in the measurements of Ref. [30]. However, with a field
of H = 300 kOe, which is available at some large facilities
in several countries, the changes in Cm and Km relative to the
zero-field values are more significant and should be detectable.
In particular, it is notable that in the range 50 < T < 100 K, the
magnon thermal conductivity increases with the application
of a large field and represents several percent of the phonon
contribution. As mentioned earlier, this fact results from the
decrease in the magnon relaxation rate due to the smaller num-
ber of thermal magnon scatterers at higher fields. At 50 K the
spin-wave damping is dominated by 3-magnon processes and
at 100 K by 4-magnon. Thus, measurements of the temperature
dependences of the change in Km with H = 0 and 300 kOe in
the range 50 < T < 100 K should allow a good determination
of the adjustable parameters in the spin-wave calculation to
yield reliable values for Cm and Km at room temperature.

IV. SUMMARY

In summary, we have used spin-wave theory to calculate
the magnon specific heat and thermal conductivity in yttrium

iron garnet under high magnetic fields. The calculations are
compared with recent measurements of Boona and Heremans
[30]. We have shown that in order to freeze out the magnon
contribution to reduce the specific heat at T = 10 K to 10%
of its zero-field value it is necessary to apply a field of
300 kOe. With the field of 70 kOe used in Ref. [30], Cm is
reduced only to 2/3 of its zero-field value. The calculated
changes in Cm and Km agree very well with data. Based on the
good agreement between theory and data we propose that by
measuring the changes in the thermal properties in the range
50 < T < 100 K, with H = 0 and H = 300 kOe, one could
accurately determine the magnon thermal properties in YIG at
room temperature, which should be helpful for testing models
for the spin Seebeck effect in this material.
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Rodrigues, F. L. A. Machado, G. A. Fonseca Guerra, J. C. López
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