
PHYSICAL REVIEW B 91, 104406 (2015)

Nonlinear analysis of magnetization dynamics excited by spin Hall effect
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We investigate the possibility of exciting self-oscillation in a perpendicular ferromagnet by the spin Hall effect
on the basis of a nonlinear analysis of the Landau-Lifshitz-Gilbert (LLG) equation. In the self-oscillation state,
the energy supplied by the spin torque during a precession on a constant energy curve should equal the dissipation
due to damping. Also, the current to balance the spin torque and the damping torque in the self-oscillation state
should be larger than the critical current to destabilize the initial state. We find that these conditions in the spin
Hall system are not satisfied by deriving analytical solutions of the energy supplied by the spin transfer effect
and the dissipation due to the damping from the nonlinear LLG equation. This indicates that the self-oscillation
of a perpendicular ferromagnet cannot be excited solely by the spin Hall torque.

DOI: 10.1103/PhysRevB.91.104406 PACS number(s): 75.76.+j, 05.45.−a, 72.25.−b, 75.78.Jp

I. INTRODUCTION

Nonlinear dynamics such as fast switching and self-
oscillation (limit cycle) has been a fascinating topic in
physics [1,2]. Magnetization dynamics excited by the spin
transfer effect [3,4] in a nanostructured ferromagnet [5–12]
provide fundamentally important examples of such nonlinear
dynamics. The magnetization switching was first observed
in Co/Cu metallic multilayer in 2000 [5]. Three years later,
self-oscillation was reported in a similar system [6]. In
these early experiments on the spin transfer effect, linear
analysis was used to estimate, for example, the critical
current destabilizing the magnetization in equilibrium [13,14].
However, recently it became clear that nonlinear analysis
is necessary to quantitatively analyze the magnetization
dynamics [2,15–26]. For example, current density to excite
self-oscillation can be evaluated by solving a nonlinear
vector equation called the Landau-Lifshitz-Gilbert (LLG)
equation [23,24].

Originally the spin transfer effect was studied by applying
an electric current directly to a ferromagnetic multilayer.
Recently, however, an alternative method employing the spin
Hall effect has been used to observe the spin transfer effect
[27–40]. The spin-orbit interaction in a nonmagnetic heavy
metal scatters the spin-up and spin-down electrons to the
opposite directions, producing a pure spin current flowing in
the direction perpendicular to an applied current. The pure spin
current excites the spin torque, called spin Hall torque, on a
magnetization in a ferromagnet attached to a nonmagnet. The
direction of the spin Hall torque is geometrically determined
[27], and its magnitude shows a different angular dependence
than the spin torque in the ferromagnetic multilayer [3]. There-
fore, it is fundamentally unclear whether the physical phenom-
ena observed in the multilayer [5–12] can be reproduced in the
spin Hall system, and thus, new physical analysis is necessary.
The magnetization switching of both in-plane magnetized
and perpendicularly magnetized ferromagnets by spin Hall
torque was recently reported [28–31,36,37]. Accordingly, it
might be reasonable to expect reports on self-oscillation
by spin Hall torque. However, whereas self-oscillation has
been observed in the in-plane magnetized system [32], it
has not been reported yet in the perpendicularly magnetized
system.

The purpose of this paper is to investigate the possibility
of exciting self-oscillation by spin Hall torque based on
a nonlinear analysis of the LLG equation. We argue that
two physical conditions should be satisfied to excite self-
oscillation. The first condition is that the energy that the
spin torque supplies during a precession on a constant energy
curve should equal the dissipation due to damping. The second
condition is that the current to balance the spin torque and the
damping torque in the self-oscillation state should be larger
than the critical current to destabilize the initial state. This
is because the magnetization initially stays at the minimum
energy state, whereas the self-oscillation corresponds to a
higher energy state. We derive exact solutions of the energy
supplied by the spin transfer effect and the dissipation due to
damping in the spin Hall system by solving the nonlinear LLG
equation, and find that these conditions are not satisfied. Thus,
the self-oscillation of a perpendicular ferromagnet cannot be
excited solely by the spin Hall torque.

The paper is organized as follows. The physical conditions
to excite a self-oscillation is summarized in Sec. II. These
conditions are applied to the spin Hall system in Sec. III.
Section IV is devoted to the conclusions.

II. PHYSICAL CONDITIONS TO EXCITE
SELF-OSCILLATION

Let us first summarize the physical conditions necessary
to excite self-oscillation. The magnetization dynamics are
described by the LLG equation

dm
dt

= −γ m × H − γHsm × (p × m) + αm × dm
dt

, (1)

where m and p are the unit vectors pointing in the directions of
the magnetization and the spin polarization of the spin current,
respectively. The gyromagnetic ratio and the Gilbert damping
constant are denoted as γ and α, respectively. The magnetic
field H relates to the energy density of the ferromagnet E via
H = −∂E/∂(Mm), where M is the saturation magnetization.
The strength of the spin torque Hs is proportional to the current
density j . Since the LLG equation conserves the norm of the
magnetization, the magnetization dynamics can be described
as a trajectory on a unit sphere. The energy density E shows
constant energy curves on this sphere. For example, when the
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system has uniaxial anisotropy, the constant energy curves are
latitude lines. The self-oscillation is a steady precession state
on a constant energy curve excited by the field torque, the first
term on the right-hand side of Eq. (1). This means that the
second and third terms of Eq. (1), averaged over the constant
energy curve, cancel each other. In other words, the energy
supplied by the spin transfer effect during the precession on
the constant energy curve equals the dissipation due to the
damping. This condition can be expressed as [2,24]∮

dt
dE

dt
= Ws + Wα = 0, (2)

where the energy supplied by the spin transfer effect and the
dissipation due to the damping during the precession on the
constant energy curve of E are given by [2,15–26]

Ws(E) = γM

∮
dtHs [p · H − (m · p) (m · H)] , (3)

Wα(E) = −αγM

∮
dt[H2 − (m · H)2]. (4)

The time integral is over a precession period on a constant
energy curve. We emphasize that Eqs. (3) and (4) are functions
of the energy density E. We denote the minimum and
maximum values of E as Emin and Emax, respectively. When
the energy density also has saddle points Esaddle, Emax in the
following discussion can be replaced by Esaddle. To excite the
self-oscillation, there should be a certain value of the electric
current density that satisfies Eq. (2) for Emin < E < Emax in a
set of real numbers. Therefore, Eq. (2) can be rewritten as

∃j ∈ R, Ws + Wα = 0. (5)

We denote the current satisfying the first condition, Eq. (2), or
equivalently Eq. (5), as j (E).

Another condition necessary to excite self-oscillation re-
lates to the fact that the magnetization initially stays at the
minimum energy state. To excite any kind of magnetization
dynamics, the spin torque should destabilize the initial state,
which means that a current density larger than the critical
current density jc = j (Emin) should be injected. Then, the
condition

j (E) > j (Emin) (6)

should be satisfied to excite the self-oscillation. If this
condition is not satisfied, the magnetization directly moves
to a constant energy curve including the saddle point without
showing a stable steady precession, and stops dynamics
because the spin torque does not balance the damping torque
for Emin < E < Esaddle. An example of such dynamics is
shown below; see Fig. 3. We emphasize that Eqs. (5) and
(6) are applicable to any kind of physical system showing a
self-oscillation.

III. SPIN HALL SYSTEM

Let us apply the above discussions to the spin Hall system
schematically shown in Fig. 1(a), where the electric current
flows in the nonmagnet along the x direction, whereas the
ferromagnet is attached along the z direction. The spin
polarization of the spin current is geometrically determined
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FIG. 1. (Color online) (a) Schematic view of system. The current
density j flows in the nonmagnet along the x axis, exciting the
spin Hall torque pointing in the y direction on the magnetization
m in the ferromagnet. The applied magnetic field is denoted as Ht.
(b) Schematic view of the precession trajectory of the magnetization
on the constant energy curve. The solid circle is the trajectory in
the absence of the magnetic field or in the presence of the field
along the z axis, whereas the dashed elliptical lines are those in the
presence of the field in the x and y axes. The solid and dotted arrows
represent the directions of the spin Hall torque and the damping
torque, respectively.

as p = ey . In the spin Hall system, the spin torque strength Hs

is given by

Hs = �ϑj

2eMd
, (7)

where ϑ and d are the spin Hall angle and the thickness of
the ferromagnet, respectively. The magnetic field H consists
of the applied field Ht and the perpendicular anisotropy field
HKmzez. We can assume that Ht > 0 without losing generality
because the sign of Ht only affects the sign of j (E) derived
below. Since we are interested in a perpendicular ferromagnet,
we assume that HK > Ht > 0. Figure 1(b) schematically
shows the precession trajectory of the magnetization on a
constant energy curve, where the directions of the spin Hall
torque and the damping torque are represented by the solid and
dotted arrows, respectively. The spin Hall torque is parallel to
the damping torque for my > 0, whereas it is antiparallel to
the damping torque for my < 0. This means that the spin Hall
torque dissipates energy from the ferromagnet when my > 0,
and supplies the energy to the ferromagnet when my < 0.
Then, due to the symmetry of the trajectory, the net energy
supplied by the spin Hall torque Ws is zero when the applied
magnetic field points to the x or z direction. This means that
Eq. (2) cannot be satisfied, and thus, self-oscillation cannot be
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excited in the spin Hall system in the absence of the applied
magnetic field, or in the presence of the field pointing in the x or
z direction. Therefore, in the following we focus on the applied
magnetic field pointing in the y direction. The magnetic field
and the energy density are given by

H = Htey + HKmzez, (8)

E = −MHtmy − MHK

2
m2

z. (9)

The minimum energy of Eq. (9) is

Emin = −MHK

2

[
1 +

(
Ht

HK

)2
]

, (10)

which corresponds to a point mstable =
(0,Ht/HK,

√
1 − (Ht/HK)2). On the other hand, Eq. (9)

has a saddle point at msaddle = (0,1,0), corresponding to the
energy density

Esaddle = −MHt. (11)

Since the magnetization initially stays at the minimum energy
state, and the magnetization dynamics stops when m reaches
the saddle point msaddle, we consider the energy region
of Emin < E < Esaddle. To calculate Eqs. (3) and (4), it is
necessary to solve a nonlinear equation dm/dt = −γ m × H,
which determines the precession trajectory of m on the
constant energy curve. Since the constant energy curve of
Eq. (9) is symmetric with respect to the yz plane, it is sufficient
for the calculation of Eqs. (3) and (4) to derive the solutions
of m for half of the trajectory in the region of mx > 0, which
are exactly given by

mx(E) = (r2 − r3)sn(u,k)cn(u,k), (12)

my(E) = r3 + (r2 − r3)sn2(u,k), (13)

mz(E) =
√

1 − r2
3 − (

r2
2 − r2

3

)
sn2(u,k), (14)

where u = γ
√

HtHK/2
√

r1 − r3t , and r� are given by

r1(E) = − E

MHt
, (15)

r2(E) = Ht

HK
+

√
1 +

(
Ht

HK

)2

+ 2E

MHK
, (16)

r3(E) = Ht

HK
−

√
1 +

(
Ht

HK

)2

+ 2E

MHK
. (17)

The modulus of Jacobi elliptic functions, sn(u,k) and
cn(u,k), is

k =
√

r2 − r3

r1 − r3
. (18)

The derivations of Eqs. (12), (13), and (14) are shown in
Appendix A. The precession period is

τ (E) = 2K(k)

γ
√

HtHK/2
√

r1 − r3
, (19)

where K(k) is the first kind of complete elliptic integral.
The work done by spin torque and the dissipation due to
damping, Ws and Wα , are obtained by substituting Eqs. (12),
(13), and (14) into Eqs. (3) and (4), integrating over [0,τ/2],
and multiplying a numerical factor 2 because Eqs. (12), (13),
and (14) are the solution of the precession trajectory for a
half-period. Then, Ws and Wα for Emin < E < Esaddle are
exactly given by

Ws = 8MHs
√

r1 − r3

3Ht
√

HK/(2Ht)
Hs, (20)

Wα = −4αM
√

r1 − r3

3
√

HK/(2Ht)
Hα, (21)

where Hs and Hα are given by

Hs =Ht

(
1 − r2

1

r1 − r3

)
K(k) −

(
E

M
+ H 2

t

HK

)
E(k), (22)

Hα =Ht

(
1 − r2

1

r1 − r3

)
K(k) +

(
5E

M
+ 3HK + 2H 2

t

HK

)
E(k).

(23)

Here E(k) is the second kind of complete elliptic integral. The
derivations of Eqs. (20) and (21) are shown in Appendix B.
The current j (E) for Emin < E < Esaddle is given by

j (E) = 2αeMd

�ϑ

HtHα

2Hs
. (24)

The currents for E → Emin and E → Esaddle are [41]

j (Emin) = 2αeMd

�ϑ

HK

Ht/HK

[
1 − 1

2

(
Ht

HK

)2
]

, (25)

j (Esaddle) = 2αeMd

�ϑ

(
3HK − 2Ht

2

)
. (26)

Equation (24) is the current density satisfying Eq. (2), or
equivalently Eq. (5). Then, let us investigate whether Eq. (24)
satisfies Eq. (6). It is mathematically difficult to calculate
the derivative of Eq. (24) with respect to E for an arbitrary
value of E, although we can confirm that j (Emin) > j (Esaddle)
for Ht < HK. We note that a parameter determining whether
Eq. (6) is satisfied is only Ht/HK because the other parameters,
such as α and M , are just common prefactors for any j (E). As
shown in Fig. 2, j (E) is a monotonically decreasing function of
E for a wide range of Ht/HK, i.e., Eq. (6) is not satisfied. This
result indicates that the magnetization stays in the equilibrium
state when j < jc = j (Emin), whereas it moves to the constant
energy curve of Esaddle without showing stable self-oscillation
when j > jc because the spin Hall torque does not balance
the damping torque on any constant energy curve between
Emin and Esaddle. The magnetization finally stops its dynamics
at ±msaddle because all torques become zero at these points.
Figure 3 shows a typical example of such dynamics, in which
the time evolution of each component is shown. Therefore,
self-oscillation solely by the spin Hall torque cannot be excited
in the perpendicular ferromagnet. This is a possible reason why
the self-oscillation has not been reported yet.

Recently many kinds of other torques pointing in dif-
ferent directions or having different angular dependencies,
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FIG. 2. (Color online) The dependence of the current j (E),
Eq. (24), for several values of Ht/HK on the energy density E.
For simplicity, the horizontal and vertical axes are normalized as
j (E)/jc and E/(Esaddle − Emin) − [Emin/(Esaddle − Emin)] to make
j (Emin) = 1, Emin = 0, and Esaddle = 1.

such as fieldlike and Rashba torques, have been proposed
[28,29,36,37,40,43–45]. These effects might change the above
conclusions. Adding of an in-plane anisotropy [21,22], tilting
the perpendicular anisotropy [40], or using higher order
anisotropy might be another candidate. Spin pumping is also
an interesting phenomenon because it modifies the Gilbert
damping constant [46–49]. It was shown in Refs. [48,50]
that the enhancement of the Gilbert damping constant in
a ferromagnetic/nonmagnetic/ferromagnetic trilayer system
depends on the relative angle of the magnetization. This means
that the Gilbert damping constant has an angular dependence.
In such a case, it might be possible to satisfy Eqs. (5) and
(6) by attaching another ferromagnet to the spin Hall system
and by choosing an appropriate alignment of the magneti-
zations. The above formulas also apply to these studies. In
Appendix C we briefly discuss a technical difficulty to include
the effect of the fieldlike torque or Rashba torque.

time (μs)
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FIG. 3. (Color online) Typical magnetization dynamics excited
by the spin Hall effect. The parameter values are taken from experi-
ments [36–38,42] as M = 1500 emu/cc, HK = 540 Oe, α = 0.005,
γ = 1.764 × 107 rad/(Oe s), d = 1 nm, ϑ = 0.1, and Ht = 50 Oe.
The current magnitude is 14 × 106 A/cm2, while the critical current,
Eq. (25), is 13 × 106 A/cm2.

IV. CONCLUSION

In conclusion, we developed a method for the nonlinear
analysis of the LLG equation in the spin Hall system
with a perpendicular ferromagnet. We summarized physical
conditions to excite self-oscillation by the spin transfer effect.
The first condition, Eq. (2), or equivalently Eq. (5), implies
that the energy supplied by the spin torque during a precession
on a constant energy curve should equal the dissipation due
to damping. The second condition, Eq. (6), implies that the
current to balance the spin torque and the damping torque in the
self-oscillation state should be larger than the critical current
to destabilize the initial state. By solving the nonlinear LLG
equation, we derived exact solutions of the energy supplied by
the spin transfer effect and the dissipation due to damping, and
showed that these conditions are not satisfied. These results
indicate that self-oscillation cannot be excited solely by the
spin Hall torque.
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APPENDIX A: PRECESSION TRAJECTORY ON A
CONSTANT ENERGY CURVE

Here we show the derivation of Eqs. (12), (13), and
(14). The precession trajectory on a constant energy curve
is determined by dm/dt = −γ m × H. The y component of
this equation is dmy/dt = γHKmxmz. Thus we find∫

dt = 1

γHK

∫
dmy

mxmz

. (A1)

As mentioned in Sec. III, since the constant energy curve of
Eq. (9) is symmetric with respect to the yz plane, it is sufficient
to derive the solutions of m for half of the trajectory in the re-
gion of mx > 0. Using E and my , mx , and mz are expressed as

mx =
√

1 − m2
y + 2E

MHK
+ 2Ht

HK
my, (A2)

mz =
√

− 2E

MHK
− 2Ht

HK
my. (A3)

The initial state of my is chosen as my(0) = r3, where r3 is
given by Eq. (17). Then, my at a certain time t is determined
from Eq. (A1) as

γ
√

2HtHK

∫ t

0
dt

=
∫ my

r3

dm′
y√

(m′
y − r1)(m′

y − r2)(m′
y − r3)

. (A4)

We introduce a new parameter s as my = r3 + (r2 − r3)s2.
Then we find

γ

√
HtHK

2

√
r1 − r3t =

∫ s

0

ds ′√
(1 − s ′2)(1 − k2s ′2)

, (A5)
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where the modulus k is given by Eq. (18). The solution of s

is s = sn(u,k). Therefore, my is given by Eq. (13). Equations
(12) and (14) are obtained by substituting Eq. (13) into Eqs.
(A2) and (A3).

We note that Eqs. (12), (13), and (14) are periodic functions
with the period given by Eq. (19). On the other hand, when
E = Esaddle, the magnetization stops its dynamics finally at the
saddle point m = (0,1,0). The solution of the constant energy
curve of Esaddle with the initial condition my(0) = r3 can be
obtained by similar calculations, and are given by

mx = 2

(
1 − Ht

HK

)
tanh(νt)

cosh(νt)
, (A6)

my = −1 + 2Ht

HK
+ 2

(
1 − Ht

HK

)
tanh2(νt), (A7)

mz = 2

√
Ht

HK

(
1 − Ht

HK

)
1

cosh(νt)
, (A8)

where ν = γ
√

Ht(HK − Ht).

APPENDIX B: DERIVATION OF EQS. (20) AND (21)

Using Eqs. (12), (13), and (14), the explicit form of Eq. (3)
for the spin Hall system is given by Ws = γMHs

∫
dtws,

where ws is given by

ws = (Ht − HKr3)
(
1 − r2

3

)
+ {−2Htr3 + HK

[
r3(r2 + r3) − (

1 − r2
3

)]}
× (r2 − r3)sn2(u,k)

+ {−Ht + HK(r2 + r3)} (r2 − r3)2sn4(u,k). (B1)

Similarly, Eq. (21) for the spin Hall system is given by Wα =
−αγM

∫
dtwα , where wα is given by

wα = (
1 − r2

3

)
(Ht − HKr3)2

− [
2H 2

t r3 − H 2
K(r2 + r3)

(
1 − 2r2

3

)
+ 2HtHK

(
1 − r2r3 − 2r2

3

)]
× (r2 − r3)sn2(u,k)

− [Ht − HK(r2 + r3)]2 (r2 − r3)2sn4(u,k). (B2)

Then Ws and Wα are obtained by integrating over [0,τ/2],
and multiplying a numerical factor 2. The following integral
formulas are useful:∫ u

du′sn2(u′,k) = u − E[am(u,k),k]

k2
, (B3)

∫ u

du′sn4(u′,k) = sn(u,k)cn(u,k)dn(u,k)

3k2

+ 2 + k2

3k4
u

− 2(1 + k2)

3k4
E[am(u,k),k], (B4)

where E(u,k), am(u,k), and dn(u,k) are the second kind of
incomplete elliptic integral, Jacobi amplitude function, and
Jacobi elliptic function, respectively.

APPENDIX C: THE EFFECT OF THE FIELDLIKE
TORQUE OR RASHBA TORQUE

The direction of the fieldlike torque or the Rashba torque
is given by m × p, where p is the direction of the spin
polarization. This means that the effects of these torques can be
regarded as a normalization of the field torque m × H. Then the
energy density E and the magnetic field H in the calculations
of Ws and Wα should be replaced with an effective energy
density E and an effective field B given by

E = E − βMHsm · p, (C1)

B = H + βHsp, (C2)

where a dimensionless parameter β characterizes the ratio
of the fieldlike torque or Rashba torque to the spin Hall
torque. We neglect higher order terms of the torque [44] for
simplicity, because these do not change the main discussion
here. In principle, j (E) satisfying Eq. (5) can be obtained by
a similar calculation shown in Sec. III. However, for example,
the right-hand-side of Eq. (24) now depends on the current
through E and H. Thus, Eq. (24) should be solved self-
consistently with respect to the current j , which is technically
difficult.
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