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Spin and energy currents in integrable and nonintegrable spin-1
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We use the concept of typicality to study the real-time dynamics of spin and energy currents in spin-1/2 models
in one dimension and at nonzero temperatures. These chains are the integrable XXZ chain and a nonintegrable
modification due to the presence of a staggered magnetic field oriented in the z direction. In the framework of
linear response theory, we numerically calculate autocorrelation functions by propagating a single pure state,
drawn at random as a typical representative of the full statistical ensemble. By comparing to small-system data
from exact diagonalization (ED) and existing short-time data from time-dependent density matrix renormalization
group, we show that typicality is satisfied in finite systems over a wide range of temperature and is fulfilled in
both integrable and nonintegrable systems. For the integrable case, we calculate the long-time dynamics of the
spin current and extract the spin Drude weight for large systems outside the range of ED. We particularly provide
strong evidence that the high-temperature Drude weight vanishes at the isotropic point. For the nonintegrable
case, we obtain the full relaxation curve of the energy current and determine the heat conductivity as a function
of magnetic field, exchange anisotropy, and temperature.
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I. INTRODUCTION

The concept of typicality [1–11] states that a single pure
state can have the same properties as the full statistical
ensemble. This concept is not restricted to specific states and
applies to the overwhelming majority of all possible states,
drawn at random from a high-dimensional Hilbert space.
In the cleanest realization, even a single eigenstate of the
Hamiltonian, may feature the properties of the full equilib-
rium density matrix, assumed in the well-known eigenstate
thermalization hypothesis [12–14]. The notion of property is
manifold in this context and also refers to the expectation
values of observables. Remarkably, typicality is not only a
static concept and includes the dynamics of expectation values
[7]. Recently, it has become clear that typicality even provides
the basis for powerful numerical approaches to the dynamics
of quantum many-particle systems at nonzero temperatures
[8–11]. These approaches are in the center of this paper.

Understanding relaxation and transport dynamics in quan-
tum many-body systems is certainly one of the most de-
sired and ambitious aims of condensed-matter physics and
experiencing an upsurge of interest in recent years, both
experimentally and theoretically. On the one hand, the advent
of ultracold atomic gases raises challenging questions about
the equilibration and thermalization in isolated many-particle
systems [15], including the existence, origin, or speed of
relaxation processes in the absence of any external bath.
On the other hand, future information technologies such as
spintronics call for a deeper insight into transport dynamics
of quantum degrees of freedom such as spin excitations. Spin
transport in conventional nanosystems [16–19] is inevitably
linked to the dynamics of itinerant charge carriers. In contrast,
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Mott-insulating quantum magnets allow for pure spin currents
and thus open new perspectives in quantum transport. In the
past decade, magnetic transport in one-dimensional quantum
magnets has attracted considerable attention because of the
discovery of very large magnetic heat-conduction [20–22] and
long nuclear magnetic relaxation times [23,24]. Genuine spin
transport, however, still remains to be observed in experiments
and particularly its classification in terms of ballistic or
diffusive propagation is an issue of ongoing experimental
research [25,26].

The theoretical study of transport in low-dimensional
quantum magnets has a long and fertile history. Among all the
questions, the dissipation of currents is a key issue and has been
investigated extensively at zero momentum and frequency in
connection with the linear-response Drude weight [27–39].
The Drude weight is the nondissipating part of the current
autocorrelation function and, if existent, indicates a ballistic
channel close to equilibrium. While in generic nonintegrable
systems it is commonly expected that Drude weights do not
exist in the thermodynamic limit [35], the picture differs and
becomes more complicated in integrable systems: Since an
overlap of currents with the macroscopic number of conserved
quantities is probable, Drude weights are expected to exist. But
this overlap is not necessarily finite for all model parameters
and Drude weights can vanish in the thermodynamic limit.
In this context, an important example is the antiferromagnetic
and anisotropic Heisenberg (XXZ) spin-1/2 chain. This chain
is studied in the present paper. It is a fundamental model for the
magnetic properties of interacting electrons in low dimensions.
It is not only relevant to the physics of one-dimensional
quantum magnets [40] but also to physical questions in a much
broader context [41–44].

In the XXZ spin-1/2 chain, the heat current is strictly
conserved for all values of the exchange anisotropy � [27,28]
and energy flows through a ballistic channel only. This type of
flow is at the heart of the colossal heat conduction observed
experimentally in almost ideal material realizations of the
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model [20–22]. In contrast, the spin current is not strictly
conserved and the existence of a spin Drude weight is a
demanding problem, resolved only partially despite much
effort. At zero temperature, T = 0, early work [29] showed that
the spin Drude weight is nonzero in the gapless regime � � 1
(metal) but zero in the gapped regime � > 1 (insulator). Bethe
ansatz solutions [30,31] support a qualitatively similar picture
at nonzero temperatures, T > 0, but with a disagreement
at the isotropic point � = 1. Recent progress in combining
quasilocal conservation laws and Mazur’s inequality has lead
to a rigorous lower bound to the spin Drude weight in the limit
of high temperatures [32,33]. This bound is very close to the
Bethe ansatz solution but still allows for a vanishing Drude
weight at � = 1.

Numerically, a large variety of sophisticated methods
has been applied to transport and relaxation dynamics in
the anisotropic Heisenberg spin-1/2 chain, including full
exact diagonalization (ED) [34–38,45–47], T > 0 Lanczos
methods [48–50], quantum Monte Carlo techniques [51,52],
as well as time-dependent density matrix renormalization
group (tDMRG) approaches to the real-time dynamics of
wave packets or correlators [53–60] and to the solution of the
Lindblad quantum master equation [61,62]. The overwhelming
majority of results for the spin Drude weight, however, is
only available from ED and tDMRG. Since ED is at present
restricted to chains of length L ∼ 20, the long-time/low-
frequency limit is still governed by finite-size effects and
intricate extrapolation schemes to the thermodynamic limit
have been invoked, with different results depending on details.
Such details are using even or odd L [37] and choosing grand-
canonical and canonical ensembles [56]. Clearly, these details
should be irrelevant in the thermodynamic limit. Alternatively,
tDMRG is exceedingly more powerful with respect to system
size and chains of length L ∼ 200 are accessible. But still the
method is confined to a maximum time scale depending on
the exchange anisotropy � [55–58]. Even though there is an
ongoing progress to increase this time scale, it is at present
too short for a reliable extraction of the spin Drude weight at
the isotropic point � = 1 [56], which is both experimentally
relevant and theoretically most challenging. In this situation,
typicality can provide a fresh numerical perspective [9].

Much less is known on transport dynamics apart from the
mere existence of Drude weights. For spin transport at � = 1,
steady-state bath scenarios [61,62] and classical simulations
[63–65] suggest superdiffusive dynamics in the limit of
high temperatures, while bosonization predicts diffusion at
low but nonzero temperatures [66]. At � > 1, signatures of
diffusion have been observed also at high temperatures in
different approaches [47,61,62,65,67,68] (see Ref. [57] for
a discussion of the limit � → ∞). Diffusion of heat, how-
ever, necessarily requires integrability-breaking perturbations.
For nonintegrable problems, perturbation theory is the only
analytical technique available but hard to perform in the
thermodynamic limit [69,70]. The perturbative regime of small
integrability-breaking is further challenging for numerical
methods since dynamics is slow and physically relevant time
scales are long. These long time scales are a challenge for
tDMRG and, due to finite-size effects, also for ED. Thus,
typicality may complement both numerical methods in this
demanding regime.

In this paper, we use the concept of typicality to study the
real-time dynamics of spin and energy currents in integrable
and nonintegrable spin-1/2 chains at nonzero temperatures.
In this way, we extend our previous work in Ref. [10] to
energy transport and nonintegrable systems as well. Within the
framework of linear response theory, we numerically obtain
autocorrelation functions from the propagation of a single
pure state, drawn at random as a typical representative of
the full statistical ensemble. By comparing to small-system
data from ED and existing short-time data from tDMRG,
we show that typicality is satisfied in finite systems down
to low temperatures and holds in both integrable and noninte-
grable systems. In particular, we demonstrate two numerical
advantages of typicality: First, for integrable systems, we can
calculate the long-time dynamics and extract the Drude weight
for large systems outside the range of ED. Thus, typicality
improves the reliability of finite-size scaling. Second, for
nonintegrable systems, we can obtain the full relaxation curve
for large systems with little finite-size effects on the physically
relevant time scale. Hence, typicality provides also the basis
for determining the dc conductivity in the regime of small
integrability-breaking model parameters without using any
fits/extrapolations. Both advantages yield significant progress
in the numerical investigation of spin and energy dynamics in
particular and of other observables in a much broader context.

This paper is structured as follows: In Sec. II we first
introduce the two models studied, namely the integrable XXZ
spin-1/2 chain and a nonintegrable version due to the presence
of a staggered magnetic field oriented in the z direction. In this
section we also define the spin and energy currents, as well as
their time-dependent autocorrelation functions, and we discuss
symmetries. Section III is devoted to the concept of dynamical
typicality and the closely related numerical technique used
throughout this paper. Then we turn to our results: In Sec. IV
we focus on spin-current dynamics in the integrable model and
study the spin Drude weight as a function of anisotropy and
temperature. In Sec. V we extend our study in two directions:
the nonintegrable model and the dynamics of the energy
current. In this section we analyze the dependence of the dc
conductivity on magnetic field, anisotropy, and temperature.
Section VI closes with a summary and draws conclusions.

II. MODELS, CURRENTS, AND AUTOCORRELATIONS

A. Integrable model

In this paper we investigate the antiferromagnetic XXZ
spin-1/2 chain. We employ periodic boundary conditions and
write the well-known Hamiltonian (� = 1)

H =
L∑

r=1

hr (1)

as a sum over the local energy,

hr = J
(
Sx

r Sx
r+1 + Sy

r S
y

r+1 + �Sz
r S

z
r+1

)
. (2)

Si
r , i = x,y,z are the components of spin-1/2 operators at

site r and L is the total number of sites. J > 0 is the
antiferromagnetic exchange coupling constant and � is the
exchange anisotropy in the z direction. For |�| � 1, the model
in Eq. (1) has no gap and an antiferromagnetic ground state;
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for |�| > 1, a gap opens and, for � < −1, the ground state
becomes ferromagnetic [56,71].

In general, Eq. (1) is integrable in terms of the Bethe
ansatz [30,31] and has several symmetries. Two commonly
employed symmetries are the invariance under rotation about
the z axis, i.e., the conservation of Sz = ∑

r Sz
r , and translation

invariance. Because of these symmetries, the longitudinal
spin M = −L/2 + i, i = 0,1, . . . ,L and the momentum
k = 2πi/L, i = 0,1, . . . ,L − 1 are good quantum numbers.
Therefore, the full Hilbert space with d = 2L states consists
of (2L + 1) L uncoupled symmetry subspaces with

dk,M ≈ 1

L

(
L

|M| + L/2

)
(3)

states, where the largest subspaces have M = 0. In this paper
we do not restrict ourselves to a specific choice of M or k and
take into account all (M,k) subspaces.

Since the longitudinal magnetization Sz and energy H are
conserved, their currents are well-defined operators and follow
from the continuity equation

ρ̇r = ı[H,ρr ] = jr−1 − jr , (4)

where ρr is either the local magnetization, ρr = Sz
r , or the local

energy, ρr = hr , and jr is the corresponding local current. In
case of magnetization, jr = −ı[Sz

r ,hr ] and the total current
has the well-known form (see, e.g., the review in Ref. [36])

jS = J

L∑
r=1

(
Sx

r S
y

r+1 − Sy
r Sx

r+1

)
, (5)

where the subscript S indicates spin/magnetization for the
remainder of this paper. This current commutes with the
Hamiltonian only for anisotropy � = 0 [36]. In the case of
energy, jr = −ı[hr,hr+1] and the total current can be written
as [38]

jE = J 2
L∑

r=1

[(
Sx

r S
y

r+2 − Sy
r Sx

r+2

)
Sz

r+1

−�
(
Sx

r S
y

r+1 − Sy
r Sx

r+1

)(
Sz

r−1 + Sz
r+2

)]
, (6)

where the subscript E indicates energy now. In contrast to the
operators in Eqs. (1) and (5), the current in Eq. (6) acts on
more than two neighboring sites and involves three adjacent
sites. This current and the Hamiltonian commute with each
other for all values of � [27,28]. Both energy and spin current
share the good quantum numbers (M,k) of the Hamiltonian.

B. Nonintegrable model

To break the integrability of the model, we add to Eq. (1)
the term

HB = B

L∑
r=1

(−1)rSz
r , (7)

where B is the strength of a staggered magnetic field oriented
in the z direction. While this term does not change the above
symmetries of the model, we have momentum k = 2πi/(L/2),
i = 0,1, . . . ,(L − 1)/2 now and symmetry subspaces are
twice as large as before.

Due to the form of HB , neither the definition of the spin
current in Eq. (5) nor the definition of the energy current in Eq.
(6) change. In general, jS is independent of any spatial profile
of the magnetic field. But jE does not change because of the
staggered profile of HB in Eq. (7). A homogenous magnetic
field, for instance, yields a magnetothermal correction to
the energy current [36]. Such a correction does not occur
in our case. One important consequence of adding HB is a
nonvanishing commutator,

[H + HB,jE] = [HB,jE] ∝ B �, (8)

i.e., the energy current is not strictly conserved for finite values
of B and �. Note that this commutator also leads to scattering
rates 1/τ ∝ (B �)2, as discussed in more detail later and in
Appendix B.

While the main physical motivation of adding a staggered
magnetic field HB is both breaking integrability and inducing
current scattering, we do not intend to describe a specific ex-
perimental situation. Moreover, choosing HB as perturbation
allows us to compare with existing results in the literature.

C. Autocorrelation functions

Within the framework of linear response theory [72], we
investigate spin and energy autocorrelation functions at inverse
temperatures β = 1/T (kB = 1),

CS/E(t) = Re 〈jS/E(t) jS/E〉
L

= Re Tr{e−βH jS/E(t) jS/E}
LZ

, (9)

where the time argument of the operator jS/E(t) has to be
understood with respect to the Heisenberg picture, jS/E =
jS/E(0), and Z = Tr{exp(−βH )} is the partition function.
In the limit of high temperatures β → 0, the sum rules
are given by CS(0) = J 2/8 and CE(0) = J 4(1 + 2�2)/32
[27,28]. Linear response theory describes the dynamics close
to equilibrium and is valid in both integrable and nonintegrable
systems [49,50]. For nonequilibrium effects, see Ref. [49].

Spin and energy autocorrelation functions in Eq. (9) can be
written as

CS/E(t) =
∑
k,M

dk,M∑
n,n′

e−βn

Z

|〈n|jS/E |n′〉|2
L

cos(ωnn′ t), (10)

where n = n(k,M) labels eigenstates of the Hamiltonian
in the symmetry subspace (k,M) and ωnn′ = En − En′ is
the difference of eigenvalues En and En′ . The expression
in Eq. (10) provides the basis for exact-diagonalization
studies [34–38,45–47]. In these studies, CS/E(t) can be easily
evaluated for arbitrarily long times; however, eigenstates and
eigenvalues can be obtained only for systems of finite size.
Even with symmetry reduction, accessible sizes are L ∼ 20
as of today. For such systems, the long-time behavior of
CS/E(t) can be affected by strong finite-size effects, also in
the limit of high temperatures β → 0. Generally, finite-size
effects increase as temperature is lowered and are stronger for
integrable systems [36].

We are interested in extracting information on two central
transport quantities, namely the Drude weights C̄S/E and the
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regular dc conductivities κS/E ,

C̄S/E =
∫ t2

t1

dt
CS/E(t)

t2 − t1
, κS/E = β

∫ t3

0
dt CS/E(t). (11)

Here t2 
 t1 
 1/J , with t1 and t2 selected from a region
where CS/E(t) has practically decayed to its long-time value
CS/E(t → ∞) � 0, which may be zero or nonzero. We em-
phasize that, with this selection, C̄S/E can be safely viewed as
time independent and is the Drude weight [27–39]. A nonzero
Drude weight exists whenever the current is at least partially
conserved and therefore indicates ballistic transport. In cases
where the Drude weight vanishes and transport is not ballistic
in the thermodynamic limit, the dc conductivities κS/E =
κS/E(ω → 0+) are of interest and result from a zero-frequency
Fourier transform of CS/E(t), i.e., the right expression in
Eq. (11) with t3 → ∞. In finite systems, however, the Drude
weight may be tiny but is never zero. Thus, if the limit t3 → ∞
is performed in a finite system, κS/E will always diverge. To
avoid such divergences for cases with tiny Drude weights, we
choose a finite but long cutoff time t3 
 τ , where τ is the
relaxation time, i.e., CS/E(τ )/CS/E(0) = 1/e. For cases with a
clean exponential relaxation, for instance, t3 = 5τ is a suitable
choice because times >5τ do not contribute significantly
to κS/E . Hence, for these cases, choosing t3 = 5τ yields a
reasonable approximation of the dc conductivity on the basis
of a finite system. In general, one has to ensure that κS/E is
approximately independent of the specific choice of t3.

Note that other definitions of the Drude weight exist in the
literature, where additional prefactors π , 2π , or β appear. Note
further that our expression for the energy conductivity differs
from other definitions using a prefactor β2. In this way, we use
the expression in Ref. [59].

III. DYNAMICAL TYPICALITY

A. Approximation

Next we introduce an approximation of autocorrelation
functions. This approximation provides the basis of the
numerical method used throughout this paper. The central idea
amounts to replacing the trace Tr{•} = ∑

i〈i| • |i〉 in Eq. (9)
by a single scalar product 〈ψ | • |ψ〉 involving a pure state |ψ〉,
which, furthermore, is drawn at random. Since we aim at the
dynamics in the full Hilbert space, |ψ〉 is randomly chosen
in the full basis. This is conveniently done in the common
eigenbasis of symmetries,

|ψ〉 =
∑
M,k

|ψM,k〉, |ψM,k〉 =
dM,k∑

s

(as + ı bs)|s〉, (12)

where s = s(k,M) is a label for the common eigenstates of
symmetries and as , bs are random real numbers. Specifically,
as , bs are chosen according to a Gaussian distribution with zero
mean. In this way, the pure state |ψ〉 is chosen according to a
distribution that is invariant under all unitary transformations
in Hilbert space (Haar measure [7]) and, according to typicality
[1–6], a representative of the statistical ensemble.

|ψ〉 and |ψM,k〉 in Eq. (12) correspond to high temperatures
β → 0. To incorporate finite temperatures, we introduce
|ψM,k(β)〉 = exp(−βH/2)|ψM,k〉. Then we rewrite the auto-

-σ(ε) 0 σ(ε)
approximation error ε

pr
ob

ab
ili

ty
 p

(ε
) ∝ deff

-1/2

FIG. 1. (Color online) Sketch of the probability distribution p(ε)
for the approximation error ε(|ψ〉) in Eq. (13). While the average of
the error vanishes, ε̄ = 0, the variance of the error decreases as the
effective Hilbert-space dimension increases, σ (ε) ∝ 1/

√
deff . This

scaling implies that p(ε) is a δ function in the thermodynamic limit.

correlation function in Eq. (9) as [7–11]

CS/E(t) = Re
∑

M,k〈ψM,k(β)|jS/E(t) jS/E|ψM,k(β)〉
L

∑
M,k〈ψM,k(β)|ψM,k(β)〉

+ εS/E(|ψ〉), (13)

where εS/E(|ψ〉) encodes the error which results if the first term
on the right-hand side of Eq. (13) is taken as an approximation
for CS/E(t). This error is random due to the random choice of
|ψ〉. Certainly, one may sample over several |ψ〉 and in fact
εS/E vanishes, i.e., ε̄S/E = 0. This sampling is routinely done
to obtain autocorrelation functions in the context of classical
mechanics [65].

The main point of Eq. (13), however, is that, in addition to
the mean error ε̄S/E = 0, one also knows the standard deviation
of errors σ (εS/E), as illustrated in Fig. 1. Precisely, one knows
an upper bound for σ (εS/E) [7–9],

σ (εS/E) � O
(√

Re 〈jS/E(t) jS/E jS/E(t) jS/E〉
L

√
deff

)
, (14)

where deff , the effective dimension of the Hilbert space, occurs.
In the high-temperature limit β → 0, deff = 2L is identical
to the full dimension d. Thus, if the number of sites L

is increased, σ (εS/E) decreases exponentially fast with L.
Therefore, remarkably, the single pure-state contribution from
the first term on the right-hand side of Eq. (13) turns into
an exponentially good approximation for the autocorrelation
function. At arbitrary β, deff = Tr{exp[−β(H − E0)]} is the
partition function and E0 the ground-state energy, i.e., deff

essentially is the number of thermally occupied states. Again,
this number scales exponentially fast with L [9] but less
quickly. To summarize, discarding εS/E in Eq. (13) is an
approximation which is exact in the thermodynamic limit
L → ∞. At finite L, errors can be reduced additionally by
sampling; however, this sampling turns out to be unnecessary
for all examples in this paper.

B. Numerical method

The central advantage of the approximation in Eq. (13) is
that it can be calculated without the eigenstates and eigenvalues
of the Hamiltonian, in contrast to the exact expression in
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Eq. (10). Specifically, this calculation is based on the two
auxiliary pure states,

|
M,k(β,t)〉 = e−ıH t−βH/2|ψM,k〉, (15)

|ϕM,k(β,t)〉 = e−ıH t jS/E e−βH/2|ψM,k〉, (16)

both depending on time and temperature. Note that the only
difference between the two states is the additional current
operator jS/E in the right-hand side of Eq. (16). By the use of
these states, we can rewrite the approximation in Eq. (13) as

CS/E(t) = Re
∑

M,k〈
M,k(β,t)|jS/E|ϕM,k(β,t)〉
L

∑
M,k〈
M,k(β,0)|
M,k(β,0)〉 , (17)

where we skip the error εS/E(|ψ〉) for clarity. Apparently, a
time dependence of the current operator jS/E does not appear
anymore in Eq. (17). Instead, the full time and temperature
dependence is a property of the pure states only.

The β dependence, e.g., of |
M,k(β,t)〉, is generated by an
imaginary-time Schrödinger equation,

ı
∂

∂(ıβ)
|
M,k(β,0)〉 = H

2
|
M,k(β,0)〉, (18)

and the t dependence by the usual real-time Schrödinger
equation,

ı
∂

∂t
|
M,k(β,t)〉 = H |
M,k(β,t)〉. (19)

These differential equations can be solved by the use of
straightforward iterator methods, e.g., Runge-Kutta [8–10],
or more sophisticated Chebyshev [73,74] schemes. In this
paper, we use a fourth-order Runge-Kutta (RK4) scheme
with a discrete time step δt J = 0.01 � 1. For this small
δt , numerical errors are negligible, as shown later by the
time-independent norm of |
M,k(β,t)〉 and |ϕM,k(β,t)〉 and
the agreement with results from other methods.

In the Runge-Kutta scheme, we have to implement the
action of Hamiltonian and currents on pure states. It is pos-
sible to carry out these matrix-vector multiplications without
saving matrices in computer memory. Therefore, the memory
requirement of the algorithm is set only by the size of vectors:
O(dM,k). However, to reduce the run time of the algorithm, it is
convenient to save matrices in memory. In this respect, we can
profit from the fact that Hamiltonian and currents are few-body
operators with a sparse-matrix representation, even in the
common eigenbasis of symmetries. In fact, for all operators,
there are only LdM,k � d2

M,k nonvanishing matrix elements,
as illustrated in Fig. 2(a). Thus, the memory requirement of the
algorithm is O(LdM,k) and scales linearly with the dimension
of the symmetry subspaces. Consequently, we are able to
treat chains with as many as L = 33 sites, where the largest
subspaces at M = 0 are huge:

d0,k ≈ 3.5 × 107. (20)

As compared to the upper subspace dimension accessible to
exact diagonalization, this dimension is orders of magnitude
larger, i.e., by a factor O(104). Note that the dimension of the
full Hilbert space is d ≈ 1010. In Fig. 2(b) we show the run time
of the algorithm for the largest subspaces and the spin current
using a single CPU and 104 discrete time steps (δt J = 0.01,

101

105

109

m
at

rix
 e

le
m

en
ts

10 20 30
number of sites L

10-5

10-3

10-1
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n 

tim
e 

/ d
ay

s

1 min

1 day
1 hour

1 s (b)

(a)

full / ED

sparse / RK

1 GB
(64-bit system)

FIG. 2. (Color online) (a) Total number of matrix elements re-
quired to represent the largest subspaces (M = 0,k) of the Hamil-
tonian in Eq. (1) as a full and sparse matrix. The full matrix for
L = 20 requires the same amount of computer memory as the sparse
matrix for L = 30. (b) Run time of the Runge-Kutta algorithm for
the same subspaces and the spin current using a single CPU and 104

discrete time steps (δt J = 0.01, t J = 100). The run time for L = 33
is roughly one month. [Note that adding Eq. (7) to the Hamiltonian
increases matrix elements and run time by a factor 2.]

t J = 100). For L = 33, the run time is about one month while,
for L = 20, the calculation takes about 2 min. We note that,
for cases where less time steps are needed (δt J = 0.01, t J �
100), L > 33 calculations are also feasible within reasonable
run time, as demonstrated in Sec. IV A.

Obviously, iterator methods for solving Eqs. (18) and
(19) are very typical approaches to profit from massive
parallelization. This has been pursued in other applications
of typicality, neglecting, however, the impact of symmetry
reduction [73]. Regarding our algorithm, the latter adds an
additional layer of paralellization, i.e., due to the good quantum
numbers (M,k), each of the (2L + 1)L subspaces can be
computed independently. Remarkably, in practice, we have
only relied on the latter paralellization, using not more than L

CPUs on medium-sized clusters. In this way, we were able to
reach system sizes identical to those of massively parallelized
codes on supercomputers without symmetry reduction [73,74].
We believe that symmetry reduction in combination with
massive parallelization has the potential to reach L ∼ 40 in
the future.

IV. SPIN-CURRENT DYNAMICS IN
THE INTEGRABLE MODEL

First, we present results on the integrable model in Eq. (1).
Since the energy current jE is strictly conserved in this model,
we focus on the dynamics of the spin current jS . Parts of the
corresponding results in Figs. 3, 4, and 5 have been shown in
our previous work [10]. Subsequently, we also investigate the
dynamics of the energy current for the nonintegrable model.
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FIG. 3. (Color online) Spin-current autocorrelation function
CS(t) at β → 0 for (a) � = 1.0 and 0, (b) � = 1.5, numerically
obtained for L = 18 using the exact expression in Eq. (10) and
larger L � 18 using the approximation in Eq. (17) (symbols), shown
in a semilog plot. The very high accuracy of the approximation
is illustrated by comparing to available tDMRG data for L = 200
[55,57]. (c) Dc conductivity κS for (b), evaluated according to Eq.
(11) as a function of the cutoff time. For comparison, the perturbative
result of Ref. [47] is depicted (curve).

A. High temperatures and intermediate times

We begin with the high-temperature limit β → 0 and
intermediate times t J � 20. For anisotropy � = 1 and small
L = 18, we compare in Fig. 3(a) the exact and approximate
expressions of the autocorrelation function in Eqs. (10) and
(17), numerically calculated by the use of exact diagonalization
and fourth-order Runge-Kutta, respectively. For all times,
the agreement between Eqs. (10) and (17) is remarkably
good. Our usage of a semilog plot underlines this agreement
even more and emphasizes relative rather than only absolute
accuracy. Due to this agreement, we can already consider the
approximation as almost exact for L = 18. Moreover, any
remaining error decreases exponentially fast with L. Thus,
we can safely neglect any averaging over random pure states
|ψ〉. Note that, for the models studied in this paper, significant
errors only occur below L ∼ 10, see Appendix D.

By increasing L in Fig. 3(a), we show that the curve
of the autocorrelation function gradually converges in time
towards the thermodynamic limit. For the maximum size
L = 34 calculated, the curve is converged up to times t J ∼ 15
with no visible finite-size effects in the semilog plot. For the
four largest L � 30 depicted, we restrict ourselves to a single
translation subspace, i.e., k = 0, to reduce computational effort
in the high-temperature limit β → 0. For these temperatures,
it is already known that the k dependence is negligibly small
[37], and we also do not observe a significant dependence on
k for L < 30, see Appendix A.
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[32,33]
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FIG. 4. (Color online) (a) Long-time limit of the spin-current
autocorrelation function CS(t) at β → 0 for � = 0.5, 1.0, and 1.5,
numerically obtained using the approximation in Eq. (17) (thin solid
curves). The well-conserved norm is indicated (thin dashed curve).
Available tDMRG data for L = 200 [55,57,58] is depicted (thick solid
curves). (b) Finite-size scaling of the spin Drude weight, extracted
according to Eq. (11) in the time interval [t1 J,t2 J ] = [50,100] [small
L � 20: exact expression in Eq. (10), closed (open) symbols for
even (odd) L; large L > 20: approximation in Eq. (17), crosses].
Simple 1/L fits to large 20 � L � 33 are shown (dashed lines), and
at � = 1.0 the odd-site fit to L � 19 performed in Ref. [56] as well
(solid curve). At small � = 0.5, T. Prosen’s rigorous analytic lower
bound [32,33] is indicated (horizontal line).

Additionally, we compare to existing tDMRG data for a
system of very large size L = 200 [55]. It is intriguing to see
that our results agree up to very high precession. On the one
hand, this very good agreement is a convincing demonstration
of dynamical typicality in an integrable system. On the other
hand, this agreement unveils that our numerical technique
yields exact information on an extended time window in
the thermodynamic limit L → ∞. As shown later, this time
window can become very large for nonintegrable systems.

In Fig. 3(b) we show a second calculation for a larger
anisotropy � = 1.5. Clearly, the autocorrelation function
decays to almost zero rapidly. However, there is a small
long-time tail. This tail has been observed already on the
basis of exact diagonalization for intermediate L = 20 [46].
It is not connected to the Drude weight [57], as discussed in
more detail later. It is also not a finite-size effect, as evident
from the agreement with tDMRG. While this tail shows the
tendency to decay when comparing tJ ∼ 10 and 15, we relate
its origin to the onset of revivals in the vicinity of the Ising
limit [57]. If we partially neglect the tail and determine the dc
conductivity κS according to Eq. (11) for t3 J = 5τ J = 7,
we get κS/(βJ ) = 0.159. This value agrees well with the
theoretically predicted value 0.147 of the perturbation theory
in Ref. [47], see Fig. 3(c). Because this theory does not take into
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FIG. 5. (Color online) High-temperature spin Drude weight C̄S

with respect to the anisotropy �, obtained from the approximation in
Eq. (17) using Runge-Kutta (closed symbols). Results are compared
to the thermodynamic Bethe ansatz [30], T. Prosen’s strict analytic
lower bound [32,33], the extrapolation based on exact diagonalization
at zero magnetization and odd sites in Ref. [37], and tDMRG [55]
(see also Ref. [56] for a different point of view on the tDMRG data
point at � = 1).

account the tail, both values slightly differ. For the maximum
time without finite-size effects, t3 J = 10τ J = 14, we get
κS/(βJ ) = 0.178. This value is still not larger than 20% of
the theoretical prediction, see also Ref. [57].

B. Long-time limit

Next we investigate the long-time limit. In Fig. 4(a) we
show CS(t) in the high-temperature limit β → 0 and various
anisotropies � = 0.5, 1.0, and 1.5. Additionally, we depict the
norm of |
β(t)〉. This norm is practically constant, as the norm
of |ϕβ(t)〉 also. The constant norm clearly demonstrates that
the Runge-Kutta scheme works properly at such long times.
The data in Fig. 4(a) also prove the saturation of CS(t) at
rather long-time scales tJ ∼ 50. Furthermore, we can hardly
infer the saturation value from our short-time data in Fig. 3.
We note that no fluctuations are visible in the long-time limit
since the approximation error of our numerical approach is
exponentially small and practically zero for the large system
sizes depicted.

In contrast to short times, the long-time limit is still
governed by finite-size effects. Hence, we are now going to
perform a proper finite-size scaling for the Drude weight. We
use the definition of the Drude weight according to Eq. (11) and
average over the time interval [t1 J,t2 J ] = [50,100], without
invoking assumptions. The Drude weight has been extracted
the same way in Ref. [46]. Moreover, this way of extracting
the Drude weight reproduces the correct zero-frequency values
for small L in, e.g., Ref. [35].

In Fig. 4(b) we depict the resulting Drude weight versus the
inverse length 1/L for anisotropies � = 0.5, 1.0, and 1.5. For
L > 20, we extract the Drude weight from the approximation
in Eq. (17) (denoted by crosses) and, for L � 20, we use
the exact expression in Eq. (10) (denoted by other symbols).
In this way, we avoid typicality errors at small L. We also
indicate the results of 1/L fits, solely based on data points
for L � 20. In this way, we avoid the need of (1/L)i>1

corrections as well as the influence of even-odd effects at small
L and, especially, at small � [75], see Fig. 4(b). For the small

� = 0.5, the resulting fit is close to all data points. Further-
more, extracting the thermodynamic limit L → ∞ from the fit,
we find a nonzero Drude weight in convincing agreement with
the rigorous lower bound of Refs. [32,33]. While the situation
is rather similar for the large anisotropy � = 1.5, the Drude
weight vanishes, in agreement with previous work [35]. The
isotropic point � = 1.0 is certainly the most interesting case.
Here, the L � 20 fit is not close to the one obtained from only
small L < 20. In fact, the extrapolation yields a much smaller
value for the Drude weight than the finite values suggested in
previous works, based on either smaller L [35,56] or shorter
t [55] (see also Ref. [56] for a comprehensive discussion).
Moreover, our result points to a vanishing Drude weight for
L → ∞.

In Fig. 5 we summarize the finite-size values for the Drude
weight for fixed L = 30 and various anisotropies 0 � � �
1.5. Additionally, we indicate the extrapolated values for
L → ∞ using fits. Since even-odd effects are stronger closer
to the point � = 0, we take into account only even sites for the
fits. Remarkably, all extrapolated values lie above the rigorous
lower bound of Refs. [32,33], and in the anisotropy range
0.4 � � � 1.5, also agree with the Bethe ansatz solution of
Ref. [30]. They further agree with an alternative extrapolation
on the basis of small L [37], using a different statistical
ensemble and only odd sites. In the vicinity of the point � = 0,
we still lie above the lower bound but we observe deviations
from the Bethe ansatz result. These deviations do not indicate
the breakdown of typicality and are well known to occur in
numerical studies using finite systems [37], due to the very
high degeneracy at � = 0. As visible in Fig. 5, tDMRG results
for � ∼ 0.3 also show these deviations and are in very good
agreement with our results.

C. Low temperatures

We now turn to finite temperatures β 
= 0. Clearly, the
approximation in Eq. (17) has to break down for β → ∞,
i.e., T → 0, due to the reduction of the effective Hilbert space
dimension deff . Recall that deff essentially counts the number
of thermally occupied states. Furthermore, for β J 
 2, also
the exact expression in Eq. (10) is governed by large finite-size
effects, at least for a finite system of size L ∼ 30 [48]. Thus, for
a numerical approach to L ∼ 30, reasonable temperatures are
β J ∼ 2. For this range of β, the approximation is still justified
and averaging over pure states is necessary for β 
 2 only.
This temperature, however, depends on the specific model, as
discussed later in more detail for the nonintegrable system.

For a small size L = 16, anisotropy � = 1, and the two
lower temperatures β J = 1 and 2, we compare in Figs. 6(a)
and 6(b) the exact expression in Eq. (10) and the approximation
in Eq. (17), calculated by the use of exact diagonalization and
Runge-Kutta, respectively. Clearly, deviations appear at β J =
2. However, these deviations manifest as random fluctuations
rather than systematic drifts and may be compensated by
additional averaging over several pure states |ψ〉. Furthermore,
one can expect that these deviations disappear for significantly
larger sizes L. Again, we prove this expectation by comparing
with available tDMRG data for L = 200 [55,56]. The very
good agreement illustrates the power of our numerical ap-
proach at finite temperatures. Moreover, taking into account
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FIG. 6. (Color online) Spin-current autocorrelation function
CS(t) for the isotropic point � = 1.0 at (a) β J = 1.0 and (b) β J =
2.0, numerically obtained for L = 16 using the exact expression in
Eq. (10) and larger L � 16 using the approximation in Eq. (17)
(symbols), shown in a semilog plot. Available tDMRG data for
L = 200 [55,56] is depicted for two different values of the discarded
weight ε. Inset in (a): lin-lin plot of (a) for L = 24 and 32;
and inset therein: average height C̄(t1,t2) of the plateau at times
[t1J,t2J ] = [10,40] for the three largest L where this plateau is clearly
seen. The horizontal line is a guide to the eye.

the simple structure of the curve, the semilog plot, and the
combination of tDMRG with our numerical approach, Fig. 6(a)
points to nonzero Drude weights at β 
= 0. This observation
differs from our previous results at β = 0. Still there are
finite-size effects for the three largest values of L where a
plateau is clearly seen at times [t1J,t2J ] = [10,40]. But these
finite-size effects are hardly visible in a lin-lin plot, see the
inset in Fig. 6(a). Moreover, extrapolations are impossible on
the basis of three and approximately constant points, see the
inset therein.

It is further worth mentioning that the possibility of
nonvanishing Drude weights at β 
= 0 is consistent with the
recent upper bound in Ref. [76]. This upper bound does not
vanish when taking into account all sectors of magnetization,
as done in our paper.

V. ENERGY-CURRENT DYNAMICS IN THE
NONINTEGRABLE MODEL

Next we extend our analysis in two directions. First, we
break the integrability of the model by the staggered magnetic
field in Eq. (7). Second, we expand our analysis to include
the dynamics of the energy current jE , which is not conserved
anymore in the nonintegrable model.

A. Dependence on magnetic field and anisotropy

Again, we begin with the high-temperature limit β → 0
and compare the exact expression in Eq. (10), evaluated by
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FIG. 7. (Color online) Real-time decay of the energy-current au-
tocorrelation function CE(t) for the XXZ spin-1/2 chain at anisotropy
� = 0.5 in a staggered magnetic field of strength (a) B/J = 0.6,
(b) B/J = 0.4, and (c) B/J = 0.2 in the high-temperature limit
β J → 0. Numerical results according to Eq. (17) for length L = 14
agree well with both exact diagonalization and available tDMRG
data for L = 200 in Ref. [60]. (The maximum time of this tDMRG
data is indicated by vertical blue bars.) For L > 14, little finite-size
effects are visible up to full relaxation, e.g., L = 22 and L = 32
are indistinguishable in (a)–(c). Inset in (a): The dc conductivity κE

according to Eq. (11) with t3 = 5τ and 8τ scales ∝ 1/B2 for small
values of B.

exact diagonalization, and the approximation in Eq. (17),
evaluated by Runge-Kutta, for the energy current jE . We show
this comparison in Figs. 7(a)–7(c) for a small size L = 14,
anisotropy � = 0.5, and magnetic fields of different strength
B/J = 0.6, 0.4, and 0.2. Apparently, Eqs. (10) and (17)
agree well with each other. This good agreement proves that
dynamical typicality is neither a particular property of the spin
current jS nor restricted to the integrable system. Interestingly,
our L = 14 data already reproduce existing tDMRG data for
L = 200 in Ref. [60]. We note that exact-diagonalization data
for L = 12 do so also, although not shown here explicitly.

For small L = 14 and all B/J 
= 0 in Figs. 7(a)–7(c), the
energy-current autocorrelation function CE(t) does not decay
to zero and features a nonzero Drude weight. The actual value
of the finite-size Drude weight increases as B is decreased.
However, by increasing L, we show that CE(t) decays to zero
for significantly larger L and all B considered. Moreover,
we find that CE(t) is practically the same for L = 22 and
L = 32. This finding indicates little finite-size effects up to
full relaxation. Hence, our numerical approach yields exact
information on the full, physically relevant time window in
the thermodynamic limit L → ∞.

Let us discuss the relaxation curve for large L in more
detail. The relaxation time decreases as B increases and the
overall structure of the curve is simple, in particular without
any slowly decaying long-time tails. Therefore, extracting
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FIG. 8. (Color online) Real-time decay of the energy-current
autocorrelation function CE(t) for the XXZ spin-1/2 chain at various
anisotropies � = 0, 0.5, and 1 in a staggered magnetic field of
strength B/J = 0.2 in the high-temperature limit βJ → 0. All
initial values are normalized to 1, i.e., divided by the sum rule
J 4(1 + 2�2)/32. Inset: In units of the sum rule, the dc conductivity
according to Eq. (11) scales ∝ 1/�2 for small values of �. The
system size is L = 30 (k = 0) in all cases.

from our numerical data the dc conductivity κE according to
Eq. (11) yields similar values for cutoff times t3 = 5τ and 8τ .
These values are shown in the inset of Fig. 7(a). The apparent
decrease of κE with B results from the decrease of τ with B

and our usage of a log-log plot unveils the scaling κE ∝ 1/B2,
as expected from conventional perturbation theory at small B

[67,68]. Note that the commutator in Eq. (8) essentially is the
memory kernel of the perturbation theory and yields scattering
rates 1/τ ∝ (B �)2/(1 + 2�2) and hence, in units of the sum
rule, the scaling

κ ′
E = κE

1 + 2�2
∝ 1 + 2�2

(B �)2
, (21)

i.e., κE = κ ′
E ∝ 1/(B �)2 for small values of �. A more

detailed description of the perturbation theory is given in
Appendix B.

To verify the � dependence from perturbation theory, we
calculate in Fig. 8 the energy-current autocorrelation function
CE(t) for different � = 0, 0.5, and 1, at fixed magnetic field
B/J = 0.2 and size L = 30. Indeed, CE(t) decays the slower
the smaller � and no dynamics occurs at � = 0. Moreover,
extracting the dc conductivity κ ′

E from our numerical data, we
find the scaling κ ′

E ∝ 1/�2 at small �, as shown in the inset
of Fig. 8. This scaling turns into κ ′

E = const at large �, still
consistent with the expectation from perturbation theory.

B. Temperature dependence

We now turn to finite temperatures β 
= 0 and choose
the parameters of the model according to the availability of
tDMRG data in the literature. Such data are available for
negative anisotropy � = −0.85 [59], where the model is still
antiferromagnetic. We note that the sign of � has not been
of importance so far since, at high temperatures β → 0, the
dynamics depends on |�| only.

In Figs. 9(a) and 9(b) we summarize our results on
the energy-current autocorrelation function CE(t) for an
intermediate temperature β J = 1 and a low temperature
β J = 4. Moreover, we depict our results on the spin-current
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FIG. 9. (Color online) Real-time decay of the autocorrelation
functions of (a), (b) energy current and (c) spin current for the
Heisenberg spin-1/2 chain at anisotropy � = −0.85 in a staggered
magnetic field of strength B/J � 0.2. Numerical results according to
Eq. (17) for length L = 14, . . ., 30 agree well with available tDMRG
data in Ref. [59] and show little finite-size effects over the temperature
range β J � 5 (T/J � 0.2). In (c) L = 14 data are shifted by 0.015
since these data are very close to L > 14 data.

autocorrelation function CS(t) for an even lower temperature
of β J = 5 in Fig. 9(c). While the focus is on a magnetic field
of strength B/J = 0.2, Fig. 9(a) also shows results for the case
B/J = 0.1. Several comments are in order. First, already for a
small system size of L = 14, the exact expression in Eq. (10)
and the approximation in Eq. (17) are in good agreement at
β J = 1. While deviations occur at β 
 1, these deviations
are surprisingly small for both the energy and spin current
in Figs. 9(b) and 9(c). Second, our exact-diagonalization
data for L = 14 already reproduce existing tDMRG data for
L = 200 in Ref. [59] for the whole temperature range β J � 5.
This observation is indeed interesting, especially since lower
temperatures have not been analyzed by tDMRG [59], at least
for the energy current. Third, our results for large L do not
depend significantly on L. This independence demonstrates
the high accuracy of the approximation in Eq. (17) for large L

and also indicates little (or weakly scaling) finite-size effects.
Because we do not need to deal with finite-size effects,

we may directly extract from our numerical data the dc
conductivity κE in Eq. (11), starting with the cutoff time t3 =
5τ . This choice has been sufficient for high temperatures and
its role for low temperatures is discussed later in detail. For the
energy current and another negative anisotropy � = −0.95,
we show in Fig. 10 the resulting temperature dependence of
κE in a log-log plot. Apparently, κE ∝ β = 1/T in the limit
of high temperatures T/J 
 1. This scaling with T is a direct
consequence of the trivial prefactor β in Eq. (11) and shows
that the actual energy-current autocorrelation CE(t) turns T

independent in that limit. At T/J ∼ 1, the high-temperature
limit is clearly left and κE(T ) features a broad maximum. At
T/J � 1, the low-temperature regime sets in and the scaling
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FIG. 10. (Color online) T dependence of the dc conductivity
κE for the XXZ spin-1/2 chain at anisotropy � = −0.95 in a
staggered magnetic field of strength B/J = 0.2, calculated according
to Eq. (11) for t3 = 5τ and 10τ . For comparison, results from
tDMRG-based fits/extrapolations in Ref. [59] are shown. While the
overall agreement is quite good, deviations are clearly visible and
neither a finite-size effect nor an effect arising from the specific
choice of t3. The dotted box indicates the T region where our results
on κE have to be understood as an lower bound.

of κE with T is consistent with a power law; however, the
exponent remains an open issue. Remarkably, this power-law
scaling mainly results from the initial value CE(0) and not
from the time dependence CE(t) as such, cf. Figs. 9(a)
and 9(b).

In Fig. 10 we additionally compare these results on κE(T )
with results from tDMRG. Precisely, we compare to results
from fits/extrapolations performed in Ref. [59] on the basis
of short-time tDMRG data, cf. Figs. 9(a) and 9(b). While
the overall agreement is quite good, our κE(T ) lies above
the one of Ref. [59] for all temperatures 0.2 � T/J � 20.
We emphasize that this deviation is not a finite-size effect
and, moreover, that it does not result from our choice t3 = 5τ

for the calculation of κE . In fact, using a longer time t3 =
10τ yields a positive correction to κE and hence increases the
deviation, as illustrated in Fig. 10. This correction is again
small at high temperatures: At T/J = 10, the correction is
only 8% and, at T/J = 1, the correction is slightly higher
with 13%. But the trend indicates that CE(t) exhibits slowly
decaying long-time tails at low temperatures. Furthermore,
such a tail is clearly visible at T/J = 0.25 in Fig. 9(b). For
this low temperature, our choice of t3 = 5τ or 10τ seems to
underestimate κE significantly and has to be understood as a
lower bound. We explicitly avoid analyzing longer t3 since we
cannot exclude the possibility of (weakly scaling) finite-size
effects in the long-time limit.

To gain further insight and to provide an alternative point
of view, we show in Fig. 11 the Fourier-transformed energy-
current autocorrelation function CE(ω), still for anisotropy
� = −0.95 and magnetic field B/J = 0.2, at temperature
β J = 1. This parameter set corresponds to the maximum
visible in Fig. 10. The Fourier transform is performed for
different t3 = 5τ , 10τ , and 20τ . Note that the longest time is
20τ = 214/J . While CE(ω) at |ω|/J � 0.1 does not depend
on the specific choice of t3, it does at |ω|/J � 0.1. Clearly, a

-0.5 0 0.5
ω / J

0

0.4

0.8

C
E(ω

) /
 J4

t3=20τ=214/J
t3=10τ=107/J
t3=5τ=54/J
Lorentzian

all ω

high ω

FIG. 11. (Color online) Fourier-transformed energy-current au-
tocorrelation function CE(ω) for the Heisenberg spin-1/2 chain at
anisotropy � = −0.95 in a staggered magnetic field of strength
B/J � 0.2 at temperature β J = 1. The Fourier transform is per-
formed over time intervals t3 = 5τ , 10τ , and 20τ for a system of
size L = 28. The results of Lorentzian fits to CE(ω) at all ω and
|ω|/J � 0.1 are indicated.

minimum time ∼10τ is required to determine the limit ω → 0
with sufficient accuracy, as a consequence of slowly decaying
long-time tails at low temperatures. We also indicate the
result of a Lorentzian fit to CE(ω) at |ω|/J � 0.1. Evidently,
this high-frequency/short-time fit cannot be used to predict
the dc value correctly. This fact illustrates the origin of the
underestimation in Ref. [59]. We stress that the overall form
of CE(ω) is not Lorentzian at all, while our previous results
in the limit of high temperatures agree well with a Lorentzian
line shape, see Appendix C.

VI. SUMMARY

In summary, we used the concept of typicality to study the
real-time relaxation of spin and energy currents in spin-1/2
chains at finite temperatures. These chains were the integrable
XXZ chain and a nonintegrable version due to the presence
of a staggered magnetic field oriented in z direction. In
the framework of linear response theory, we numerically
calculated autocorrelation functions by propagating a single
pure state, drawn at random as a typical representative of the
full statistical ensemble. By comparing to data from exact
diagonalization for small system sizes and existing data from
tDMRG for short times, we showed that typicality holds in
finite systems over a wide range of temperature and is fulfilled
in both integrable and nonintegrable systems.

For the integrable model, we calculated the dynamics of
the spin current for long times and extracted the spin Drude
weight for large system sizes outside the range of state-of-the-
art exact diagonalization. Employing proper finite-size scaling,
we provided strong evidence that, at high temperatures above
the exchange coupling constant J , the Drude weight vanishes
at the isotropic point. This finding and our results for other
values of the exchange anisotropy were in good agreement with
existing Bethe ansatz and Mazur-inequality results. For lower
temperatures on the order of J , we found at least indications
that the Drude weight is nonzero at the isotropic point.
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For the nonintegrable model, we calculated the decay
of the energy current for large system sizes and did not
observe significant finite-size effects. Therefore, we were
able to obtain the full decay curve in the thermodynamic
limit and to extract the dc conductivity without invoking
difficult fits/extrapolations. Analyzing the dependence of the
dc conductivity on the parameters of the model, we found a
quadratic scaling with the inverse magnetic field and exchange
anisotropy, in agreement with conventional perturbation the-
ory. Moreover, we detailed the temperature dependence of the
dc conductivity, including low- and high-temperature power
laws with an intermediate maximum. Our numerical results
seem to provide a lower bound on the dc conductivity.

From a merely numerical point of view, we profit from
two central advantages of the typicality-based technique
used in this paper. First, the numerical technique allows us
to perform finite-size scaling. This is certainly similar to
exact diagonalization. However, system sizes are much larger
and extrapolations are more reliable. Second, the numerical
technique also yields exact information on an extended time
window in the thermodynamic limit. This is certainly similar
to tDMRG. However, time windows accessible seem to be
much longer for generic nonintegrable systems, as evident
for the example studied in this paper. Because of these two
advantages, our numerical method may complement other
numerical approaches in a much broader context, including
problems with few symmetries and/or in two dimensions.
Moreover, our numerical method may be applied to other
observables [8] and not only to current operators.
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J. Herbrych for fruitful discussions as well as C. Karrasch
and F. Heidrich-Meisner for the tDMRG data in Sec. IV
(Refs. [55–58]) and helpful comments. The tDMRG data
in Sec. V (Refs. [59,60]) have been digitized. Part of this
work has been done at the Platform for Superconductivity and
Magnetism, Dresden. Part of this work has been supported by
DFG FOR912 Grant No. BR 1084/6-2, by SFB 1143, as well
as by EU MC-ITN LOTHERM Grant No. PITN-GA-2009-
238475.

APPENDIX A: INDEPENDENCE OF THE SPECIFIC
INITIAL STATE AND MOMENTUM SUBSPACE

In Fig. 12 we demonstrate that for large system sizes L

the approximation in Eq. (17) depends neither on the specific
realization of the random initial state |ψ〉 nor on the momentum
subspace k considered. Because both facts are particularly
relevant for the finite-size scaling of the spin Drude weight in
Fig. 4, we present in Fig. 12 results for the integrable model in
Eq. (1) at anisotropy � = 1 in the limit of high temperatures
β → 0. In this limit, the independence of initial states and
momentum subspace holds for all examples given in this paper.
For low temperatures, we explicitly avoid the restriction to
a single momentum subspace since the independence of k

is not ensured in this temperature regime, also for the exact
expression in Eq. (10).

10-2

10-1

C
S(t)

 / 
J2

1. state, L=28
2. state, L=28
1. state, L=33 (k=0)
2. state, L=33 (k=0)
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 / 
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(b) momentum subspace,
L=28
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FIG. 12. (Color online) Spin-current autocorrelation function
CS(t) in the integrable model at anisotropy � = 1.0 and high
temperatures β → 0 for (a) two different initial states and (b) two
different momentum subspaces, numerically obtained for L = 28
and 33 using the approximation in Eq. (17).

APPENDIX B: PERTURBATION THEORY FOR THE
ENERGY CURRENT

We discuss here the perturbation theory for the energy
current in detail. Since the energy current jE is strictly
conserved for the integrable Hamiltonian H , [jE,H ] = 0, the
staggered Zeeman term HB can be identified as the only origin
of scattering. This scattering can be treated perturbatively
according to Refs. [67–70] if the strength of the magnetic
field B is a sufficiently small parameter. In the time domain,
we can formulate such a perturbation theory in terms of the
integrodifferential equation

ĊE(t) = −
∫ t

0
dt ′ K(t − t ′) CE(t), (B1)

where K(t) is the memory kernel. To lowest order of B, B2,
this memory kernel reads in the high-temperature limit β → 0
[67,68]

K(t) = Tr{ı[JE,HB]I (t) ı[JE,HB]}
Tr

{
J 2

E

} ∝ (B �)2

1 + 2�2
, (B2)

where the subscript I of the first commutator indicates the
interaction picture with respect to H . Despite the integrability
of H , exactly calculating the time dependence of K(t) is very
difficult and requires, e.g., the exact diagonalization of a finite
system [69,70]. For our purposes, however, it is sufficient to use
the well-known Markov approximation K(t) = K δ(t). This
approximation is reasonable in the limit of small magnetic
fields B → 0, where relaxation is arbitrarily slow. In this way,
we obtain from Eq. (B1) the exponential relaxation

CE(t)

CE(0)
= e−K t , CE(0) = 1 + 2�2

32
, (B3)
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FIG. 13. (Color online) Fourier-transformed energy-current au-
tocorrelation function CE(ω) for the XXZ spin-1/2 chain at
anisotropy � = 0.5 in a staggered magnetic field of strength B/J �
0.2 in the high-temperature limit β → 0. The Fourier transform
is performed over time intervals t3 = 5τ and 8τ for system size
L = 32(k = 0). The result of a Lorentzian fit to CE(ω) at all ω is
indicated.

corresponding to a Lorentzian line shape in frequency space.
Thus, using the expression for the dc conductivity κE in Eq.
(11) with t3 → ∞, we find the scaling

κ ′
E = κE

1 + 2�2
∝ 1 + 2�2

(B �)2
. (B4)

The quantity κ ′
E introduced does not include a trivial scaling

due to the sum rule CE(0) and is the prediction of the
perturbation theory as such. For small values of �, we
eventually find the scaling κE = κ ′

E ∝ 1/(B �)2 and, for large
values of �, we find κ ′

E to be independent of �. In this case,
κE ∝ (�/B)2.

APPENDIX C: FOURIER TRANSFORM AT HIGH
TEMPERATURES

In Fig. 13 we show that the Fourier transform of our
numerical results for the time-dependent energy-current au-
tocorrelation function CE(t) at high temperatures, i.e., β → 0,
yields a Lorentzian line shape of CE(ω) in frequency space.
This line shape is another convincing indicator for the validity
of conventional perturbation theory.

APPENDIX D: TYPICALITY IN SMALL SYSTEMS

Throughout this paper we have provided a compari-
son with exact-diagonalization data to prove that typicality

0 10 20

t J

10-2

10-1

C
S(t)

 / 
J2

ED
RK, single chain
RK, two chains

FIG. 14. (Color online) Spin-current autocorrelation function
CS(t) in the integrable model at anisotropy � = 1.0 and high
temperatures β → 0, numerically obtained for a small system
size L = 10 using different methods: (i) exact diagonalization, the
approximation in Eq. (17) for a (ii) single chain and (iii) two identical,
uncoupled chains.

already holds in finite systems of intermediate size, i.e.,
L = 14–18. It is clear that typicality has to break down
for small systems. For the models studied in this paper, we
observe this breakdown for sizes below L ∼ 10, i.e., for
effective dimensions below deff ∼ 1000. In Fig. 14 we show
one representative example.

However, a simple idea also allows us to use typicality for
small L: Consider two identical, uncoupled chains of length L

with the Hamiltonian

H ′ = H ⊗ 1 + 1 ⊗ H (D1)

and the current j ′ = j ⊗ 1 + 1 ⊗ j , respectively. In this way,
we do not change the exact current dynamics but increase
the dimension of the Hilbert space by a factor of 2L. For
the enlarged space, we can expect that typicality holds again.
Figure 14 verifies this expectation.

We emphasize that the preceding is equivalent to averaging.
The random state |ψ〉 from the 2L × 2L dimensional Hilbert
space has a Schmidt decomposition

|ψ〉 =
2L∑
i=1

ai |ui〉 ⊗ |vi〉, (D2)

where ai are random coefficients and |ui〉, |vi〉 are random
orthonormal basis sets for each of the 2L dimensional sub-
spaces. Therefore, using a single random state in the doubled
system is equivalent to a randomly weighted average over
2 × 2L autocorrelations functions, each calculated using one
of 2 × 2L randomly chosen states. If this is more efficient than
full diagonalization will depend on details.

We note that one can analogously consider more than two
chains and therefore use typicality for any smaller L.
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A. Revcolevschi, Phys. Rev. Lett. 84, 2714 (2000).
[21] C. Hess, C. Baumann, U. Ammerahl, B. Büchner, F. Heidrich-
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