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Quantum heat bath for spin-lattice dynamics
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Quantization of spin-wave excitations necessitates the reconsideration of the classical fluctuation-dissipation
relation (FDR) used for temperature control in spin-lattice dynamics simulations of ferromagnetic metals. In this
paper, Bose-Einstein statistics is used to reinterpret the Langevin dynamics of both lattice and spins, allowing
quantum statistics to be mimicked in canonical molecular dynamics simulations. The resulting quantum heat baths
are tested by calculating the specific heats and magnetization over a wide temperature range, from 0 K to above
the Curie temperature, with molecular dynamics (MD), spin dynamics (SD), and spin-lattice dynamics (SLD)
simulations. The results are verified with experimental data and available theoretical analysis. Comparison with
classical results also shows the importance of quantization effects for spin excitations in all the ferromagnetically
ordered configurations.
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I. INTRODUCTION

Atomistic modeling provides an important source of infor-
mation for understanding the behavior of metals and alloys.
In applications involving extensive spatial degrees of freedom,
in which thermodynamic contributions from low-energy and
long-wavelength vibration modes are important, or where lat-
tice defects, correlated dynamics, and critical phenomena are
involved, large-scale molecular dynamics (MD) simulations
provide the most practical treatment.

In magnetic metals and alloys such as ferritic-martensitic
steels, spin polarization is not only responsible for the
observed magnetic character, but it also influences many
properties of the atomic lattice, such as the type of crystal
structure [1], thermal expansivity [2], elastic constants [3],
and vacancy formation and migration energy and entropy [4].
Conventional MD simulations omit spin dynamics and hence
prevent heat exchange between the lattice and spin subsystems
for thermodynamic consideration at finite temperatures. To
treat the coupled spin and lattice dynamics in ferromagnetic
metals, Ma, Woo, and Dudarev [5,6] (MWD) generalized the
MD methodology and developed spin-lattice dynamics (SLD)
in which atoms and spins interact through the Heisenberg
Hamiltonian with coordinate-dependent exchange parameters.
Temperature control is based on the fluctuation-dissipation
theorem derived from the Boltzmann statistics neglecting
quantization effects [7].

In conventional MD simulations, two assumptions are
implicitly made: (1) the validity of the classical particle picture
in the definition of phase-space trajectories, and (2) that
the vibration energy spectrum is quasicontinuous. The first
constraint ensures that quantum tunneling is not important to
activation processes, and the second one justifies the use of
classical statistics. In this paper, we assume that condition
(1) is satisfied. To overcome restriction (2), quantization of
vibration energy spectra must be observed, which requires the
use of Bose-Einstein statistics in the definition of temperature.

*Corresponding author: chungwoo@cityu.edu.hk

Einstein was the first to consider the effect of quantization
on thermal excitations of the crystal lattice in resolving the
problem of low-temperature specific heat in classical physics
[8]. While phonon excitation is allowed at all temperatures
when the phonon energy spectrum is quasicontinuous, this
is not so if energy levels are discrete. In Einstein’s model,
phonon excitations in bcc iron become increasingly difficult
below 360 K, because the thermal energy of ∼30 meV required
to excite an average phonon is not available. This limits the
applicability of Boltzmann statistics to above ∼360 K. The
situation is similar in the spin case, but the constraint is more
serious. Using the experimental spin stiffness of iron from
Collins et al. [9] and Mook and Nicklow [10], or the magnon
densities of states (DOS) calculated from first principles,
excitation of a magnon mode requires a large energy of
∼250–350 meV. As a result, to ensure proper temperature
control of SLD simulations below 3000 K, quantization must
be taken into account.

In the case of atomic vibrations, Ceriotti et al. [11] and
Dammak et al. [12] demonstrated that by using a generalized
Langevin bath with a frequency-dependent (colored) noise,
which has been adjusted to produce the characteristic quantum
distribution of kinetic energy of simple-harmonic oscillators,
quantum statistics may be mimicked in MD simulations.
However, a similar scheme suitable for treating spin dynamics
is frustrated by the nonparticle-type Hamiltonian. Indeed,
treatment of the frequency shift due to magnon softening near
the α−β (ferro-/paramagnetic) transition temperature [4] is a
challenge within the framework of this approach.

In this paper, we aim to reestablish the fluctuation-
dissipation relation (FDR) that MWD used to control tem-
perature in SLD by taking into account quantization of
phonons and magnons. We follow the route taken by MWD
[6], starting with the solution of the Langevin equation that
describes the dynamics of a system in a noisy environment
in which fluctuating forces and dissipative drag coefficients
are characterized by a given fluctuation-dissipation ratio.
Quantum fluctuation-dissipation relations (QFDR) for both the
lattice and spin systems can then be derived via Bose-Einstein
statistics. Adopting the quasiharmonic approximation and
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expressing the frequency dependence in terms of temperature-
dependent DOS, convenient expressions of the QFDR can
be derived for both phonons and magnons. The relevant
theoretical background is first reviewed in Sec. II. Quantum
FDR for the lattice and spin temperatures are derived in
Secs. III and IV, respectively. Simplified models for the
temperature-dependent DOS of the quasiharmonic phonons
and magnons are suggested in Sec. V. The corresponding heat
baths are tested using MD, spin dynamics (SD), and SLD
simulations in Sec. VI. In Sec. VII, the simulation results are
compared and discussed. Conclusions are given in Sec. VIII.

II. THEORETICAL BACKGROUND

A. Spin-lattice dynamics in a noisy environment

We consider a ferromagnetic metal modeled as a canonical
ensemble at temperature T of interacting particles and Heisen-
berg spin excitations in a noisy environment. Following MWD,
the corresponding SLD Hamiltonian can be written as

HSLD =
∑

n

p2
n

2mn

+ U ({r})

− 1

2

∑
n�=m

Jnm ({r}) Sn · Sm + Henv (T ) , (1)

where mn, pn, and rn, respectively, are the mass, momentum,
and position of the nth atom, and U ({r}) is the interatomic po-
tential (many-body) corresponding to the lattice configuration
{r}, consisting of the ionic Coulomb interaction and contribu-
tions from electrons in the ground state. Thus when considering
the dynamics of the crystal, the nuclei may be considered
to interact via an electronic distribution that depends on the
local configuration of the nuclei. The first two terms constitute
the Hamiltonian of the system of lattice atoms, describing
their statics and dynamics. The third term is the Heisenberg
Hamiltonian, representing the spin system in terms of its
dynamic states, i.e., magnons. Here Jnm({r}) is the exchange
interaction function, mainly determined by the overlapping
of wave functions of the d electrons, which depends on the
atomic distance between the interacting spin pair. Sn is the
atomic spin vector (spins in the rest of the current paper) of
the nth atom arising from the spin polarization of the atoms
according to Hund’s rule and is related to its net magnetic
moment by Mn = −gμB Sn, where g(≈2) is the electronic g

factor, μB the Bohr magneton, and Sn is the atomic spin vector.
In Eq. (1), Henv represents the interaction between the

Heisenberg subsystem and the heat bath. Via Henv, the
mechanical system described by Eq. (1) emulates the thermo-
dynamics of a canonical SLD system. Henv is also needed to
facilitate exchange of energy and angular momentum, without
which conservation of the total angular momentum in HSLD

prevents full relaxation, constraining a SLD microcanonical
ensemble from accessing the lowest free-energy state
of thermodynamic equilibrium. This problem has been
discussed in detail by MWD [6]. To facilitate the exchange of
energy and angular momentum with the environment during
equilibration, MWD introduced a noisy environment in which
random forces are applied to each atom and spin to emulate
the action of a heat bath. Given the fluctuation-dissipation

ratio of the noise, the stochastic equations of motion of the
atoms and spins consistent with the SLD Hamiltonian in
Eq. (1) can be derived [6]. The canonical thermodynamics
of the system is then obtained via a relation that links the
fluctuation-dissipation ratio to the temperature. This relation
is the classical fluctuation-dissipation theorem derived based
on the assumption that the dynamical states, i.e., phonons
and magnons, have energies that are continuously distributed
according to Boltzmann statistics [13]. To consider quanti-
zation effects in the fluctuation-dissipation relation, which is
the main task of this paper, quantum statistics will have to be
used in the description of the elementary thermal excitations.

B. Temperature-dependent phonons and magnons

The temperature of a canonical ensemble is intimately
related to the statistical thermodynamics of its thermal excited
states. Thermal excitations in ferromagnetic metallic crystals
are predominantly in the form of elastic and spin waves, i.e.,
correlated lattice and spin vibrations. When the vibrations are
harmonic, statistical thermodynamics can be readily treated
via Bose-Einstein statistics [14]. However, thermal vibrations
in real solids are anharmonic in general, with amplitude-
dependent restoring forces.

To treat this problem, the concept of temperature-dependent
phonon (magnon) states is useful. In this regard, a crystal
Hamiltonian H can generally be expressed as the sum of a
harmonic component Hh and an anharmonic correction �a ≡
H -Hh. In terms of the complete orthonormal set of eigenstates
{|n,k〉} of Hh, H can be represented by the matrix elements

〈m,k′|H |n,k〉 = {(n + 1/2)�ωk + 〈n,k|�a|n,k〉}δmnδkk′

+ 〈m,k′|�a|n,k〉m�=n,k �=k′ , (2)

where ωk is the phonon (magnon) frequency, and k is the wave
vector. The diagonal elements given by the term in curly brack-
ets represent phonon (magnon) states of the kth mode, and the
off-diagonal elements in the last term account for the mixing of
the phonon (magnon) states due to anharmonicity. According
to Eq. (2), �a produces two effects: (1) phonon (magnon)
frequency shift and (2) line broadening via phonon (magnon)
scattering. The former corresponds to a first-order perturbation
correction, and the latter, second- and higher-order corrections.
It is important to note that at this point Hh is arbitrary and the
corresponding phonon (magnon) description is not unique.
Using a harmonic crystal potential in Hh which minimizes the
off-diagonal elements is obviously desirable. The common
practice is to define the harmonic Hamiltonian Hh(0) with a
stiffness based on the 0-K (ground-state) crystal properties
such as elastic modulus, lattice constants, magnetization, etc.
and neglect the off-diagonal elements for low-temperature
small-amplitude vibrations. The corresponding “0-K” phonon
(magnon) states can then be substituted for the eigenstates of
H in the thermodynamic description of the low-temperature
thermal excitations. In view of the amplitude dependence
of the stiffness, the use of “0-K” phonons (magnons) for
a finite-temperature representation of H is not the only
choice and is by no means the most suitable. Instead, by
constructing Hh(T ) with a stiffness suitable for temperature
T and the corresponding off-diagonal elements neglected
as higher-order corrections, H in Eq. (2) is expressible
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as an explicitly temperature-dependent phonon (magnon)
Hamiltonian: H 	 ∑

k,n (n + 1/2)�ωk(T )|n,k〉〈n,k|. Here
anharmonic frequency shift has been taken into account in
ωk(T ). In this representation, the eigenstates of H can be
approximated by the phonon (magnon) states |n,k〉 with
eigenvalues (n + 1/2)�ωk(T ), to which the Bose-Einstein
statistics can be used in deriving the fluctuation-dissipation
relation for the emulating noise in the Langevin heat bath.
Given the emulating noise, an SLD simulation is carried out
with the full (i.e., not harmonized) interatomic and magnetic
interactions in HSLD in Eq. (1).

Indeed, the concept of temperature-dependent phonons is
not new. The subject has been elucidated in many standard
solid-state physics textbooks (see, for example, [15]) under
the term quasiharmonic approximation for considering the
thermodynamics of lattice vibrations at finite temperature.
Its application in the treatment of anharmonicity has also
been discussed by Fultz [14] in his celebrated review
of vibrational thermodynamics. For the same purpose,
temperature-dependent magnons can also be similarly
defined based on the dispersion relation and DOS from the
temperature-dependent spin stiffness.

The use of the temperature-dependent phonon and magnon
representations goes a long way in improving the accuracy of
the temperature-dependent frequency distribution due to the
anharmonic shift and helps minimize the phonon (magnon)
line broadening due to the nondiagonal matrix elements. It
is helpful that remaining errors are further reduced because
quantization and anharmonic effects on the statistics are rarely
important in the same temperature regime. Indeed, at low
temperatures, where quantization effects in the statistical dis-
tribution are important [�ωk(T ) 
 kBT ], vibration amplitudes
are small and anharmonic effects are expected to be weak. On
the other hand, at high temperatures, where large vibration
amplitudes produce large anharmonic effects, phonon and
magnon energy spectra may be considered quasicontinuous
[�ωk(T ) � kBT ], and classical thermodynamics apply, which
is insensitive to the frequency distribution. Thus, within the
present context, where the focus is the fluctuation-dissipation
relation for the heat bath, the use of temperature-dependent
frequency distributions within the quasiharmonic scheme
could be considered adequate.

III. QFDR FOR LATTICE SYSTEM

Let us first consider the relation between the fluctuation-
dissipation ratio and the temperature in the lattice system.
At a fixed temperature T , the lattice part of the Hamiltonian
constitutes the first two terms of HSLD in Eq. (1). In terms of
the Cartesian components with subscripts i(=x,y,z), it can be
expressed as

HL ({rni} , {pni}) =
∑
n,i

p2
ni

2mn

+ U ({rni}). (3)

Under the action of frequency-independent δ-correlated
random forces fn(t) in Henv(T ), defined by

〈fn(t)〉= 0 and 〈fin(t)fjl(t
′)〉= μL(T )δij δnlδ(t − t ′), (4)

the classical equations of motion of the ith Cartesian compo-
nent of the nth particles can be written as⎧⎪⎪⎨
⎪⎪⎩

drni

dt
= ∂HL

∂pni

= pni

mn

,

dpni

dt
=−∂HL

∂rni

− γL

mn

pni +fni(t)=− ∂U

∂rni

− γL

mn

pni +fni(t)
,

(5)

where −γL(T )pn/mn is the viscous drag on the motion of
the nth particle due to the random forces. We characterize the
Langevin bath by the fluctuation-dissipation ratio ηL(T ) ≡
μL/2γL. The corresponding phase-space probability density
W ({rni},{pni},t) is governed by the corresponding Fokker-
Planck equation [13]:∑

n,i

{
∂

∂t
+ pni

mn

∂

∂rni

−
(

∂U

∂rni

)
∂

∂pni

}
W

=
∑
n,i

∂

∂pni

[
γL

pni

mn

+ μL

2

∂

∂pni

]
W. (6)

At steady state, W ({rni},{pni},t) is time independent and
∂W/∂t = 0. In this case, Eq. (6) can be solved with a trial
function of the form W∞ = C exp(−βLHL), where βL is an
unknown coefficient to be determined and C is a normalizing
constant. Substituting W∞ into Eq. (6), we obtain

γL

∑
n,i

pni

mn

(1 − βLηL) W∞ = 0, (7)

with the solution β−1
L = ηL, and the corresponding phase-

space probability density at temperature T can be written as

W∞ ({rni} , {pni}) = C exp

[
−HL

ηL

]
. (8)

The ensemble-averaged kinetic energy of the dynamical
system can be directly evaluated using the phase-space
probability distribution in Eq. (8), yielding

∑
ni

〈
p2

ni

2mn

〉
= 〈EK〉 = 3NηL

2
. (9)

Equation (8) is valid independent of the crystal potential
U ({rni}) experienced by the atoms, which is independent of
{pni}. In other words, one may remove the nonharmonic part
of U without affecting Eq. (9). We note in passing that Eq. (9)
can also be derived directly from the Langevin equation,
i.e., Eq. (5), without having to go through the Fokker-Planck
equation [6].

If a continuous vibration spectrum is assumed, the cor-
responding average kinetic energy 〈EK〉c = 3

2NkBT can be
obtained by integrating with the Boltzmann distribution, with
kB being Boltzmann’s constant. The corresponding relation
between the fluctuation-dissipation ratio ηL(T ) and the ther-
modynamic temperature T then follows from Eq. (9) and
takes the form of the classical fluctuation-dissipation theorem
(FDT), ηL(T ) = kBT [13].

Energy quantization, however, dictates that with the use
of quantum statistics for the equilibrium energy distribution
Eq. (9) does not give the classical equipartition theorem, which
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is the base of the classical FDT that MWD used previously
to bridge mechanics and thermodynamics. To reestablish
this connection, 〈EK〉 in Eq. (9) must be equated to 〈EK〉q
calculated quantum mechanically.

Within the quasiharmonic approximation, we may apply
the quantum virial theorem [16] and equate 〈EK〉q to half of
the total temperature-dependent phonon energy. Thus

〈EK〉q = 1

2

∑
k

3∑
α=1

�ωα(k)

[
1

e�ωα (k)/kBT − 1
+ 1

2

]
, (10)

where � is the Planck’s constant. We note that the phonon en-
ergy spectrum �ωα(k) is a function of temperature-dependent
properties of the crystal lattice (see Sec. II B). Equating 〈EK〉q
in Eq. (10) with 〈EK〉 in Eq. (9), we obtain a nonlinear QFDR
given by

ηL (T ) = 1

3N

∑
k

3∑
α=1

�ωα(k)

[
1

e�ωα (k)/kBT − 1
+ 1

2

]

=
∫ ∞

0
�ω

[
1

e�ω/kBT − 1
+ 1

2

]
gp (ω,T ) dω. (11)

We note that the QFDR in Eq. (11) is completely determined
by the phonon density of states (p−DOS) at T, gp(ω,T ) =
4πk2�

(2π )3 [∇kω(T )]−1 [15], where � is the atomic volume. As
discussed in Sec. II B, the p−DOS is a function of the
crystal structure and force constants, both of which are
temperature dependent. Thus, given temperature T, canonical
MD simulations can be performed using Langevin forces
defined by the fluctuation-dissipation ratio ηL(T ) according
to Eq. (11).

In Eq. (11), the contribution associated with the first term
in the square bracket accounts for the thermal fluctuations due
to phonons, while the second term represents the zero-point
fluctuations due to the uncertainty principle. Fluctuations due
to this contribution have a quantum origin and are present
even at 0 K when phonons are absent. This is in contrast to
the classical formulation of MWD, in which fluctuations are
completely absent at 0 K.

The dependence of the QFDR on the p−DOS in Eq. (11)
can be traced to the frequency dependency of the random
forces that emulate the quantum heat bath [11,12]. Thus,
despite the white-noise appearance of the associated Langevin
bath considered here, it is in reality an alternate form of the
color-noise scheme. In this form, physical transparency allows
the use of simplifying approximations for the DOS, which is
particularly important when spin dynamics is considered in
later sections.

IV. QFDR FOR THE SPIN SYSTEM

The procedure developed for the lattice system can now be
adapted to the spin system. A generic Heisenberg Hamiltonian
describing a broad class of spin systems in the absence of an
external field can be written in the form [17]

HS ≡ −1

2

∑
n,m

m�=n

JnmSn · Sm. (12)

We model spin interaction with the noisy environment in
the same way as MWD: by the action of white noise hn(t) de-
fined by 〈hn(t)〉 = 0 and 〈hni(t)hmj (t ′)〉 = μSδnmδij δ(t − t ′).
Similar to the lattice case, μS is a parameter characterizing
the amplitude of the random field, γS is the corresponding
dissipative drag coefficient, and i and j denote the Cartesian
components of a vector. We also characterize the Langevin bath
using the fluctuation-dissipation ratio ηS ≡ μS/2�γS , as in
MWD. Dropping the subscript n for convenience, the equation
of motion for the nth spin can be expressed as the following
stochastic differential equation:

dS
dt

= 1

�
[S × (H + h(t)) − γS S × (S × H)], (13)

where the effective field H acts on the spin. The corresponding
Fokker-Planck equation can be established following the
Appendix of [7]. Similar to the lattice case treated in the
foregoing section, the equilibrium phase-space probability dis-
tribution function of the spin system We

S can be obtained from
the steady-state Fokker-Planck equation (i.e., with ∂WS/∂t =
0) by using the trial function We

S = C exp(−βSHS), where
βS is an unknown coefficient to be determined and C is a
normalization constant. Proceeding similar to [7], we obtain

β−1
S = ηS, (14)

and, consequently,

We
S ({Sn}) = C exp

(
−HS

ηS

)
. (15)

Similar to the phonon case, it is clear that this equation
reproduces the Boltzmann distribution with T = ηS/kB [7], if
quantization can be neglected.

Taking energy quantization into account with the Bose-
Einstein distribution leads to a more complex relation between
T and ηS . To derive the QFDR for a spin system at a specific
temperature T , we consider the case of a crystal with N atoms
arranged in a crystal lattice specific to T . Following Ref. [18]
and designating the spin of the nth atom by Sn, the Heisenberg
Hamiltonian in Eq. (12) can be written in the second-quantized
form (via the Holstein-Primakoff [18] mapping) as

HS ({Sn}) = −1

2
NH0S +

∑
k

�ωkb
+
k bk + Hmm, (16)

where H0 is the effective field H with collinear spins, nk =
b+

k bk is the occupation number, and ωk is the frequency of
k-mode magnons at temperature T under consideration (see
Sec. II B). We emphasize that the magnon state considered here
is specific to the spin stiffness at T. It is different from nk(0)
and ωk(0) based on the 0-K spin stiffness usually considered.
Indeed, this difference applies to both nk(T ) and ωk(T ), and
thus also to the dispersion relation and DOS. The temperature
dependence of the vibration frequencies can also be seen via
the effective field in Eq. (13).

In Eq. (16) the first two terms constitute the magnon
Hamiltonian [19] and the last term Hmm represents the
nondiagonal anharmonic matrix elements discussed at length
in Sec. II B. Within the quasiharmonic approximation of finite-
temperature magnons, we may neglect Hmm. Thus, contrary to
the 0-K magnons, finite-temperature magnons can be assumed
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to be noninteracting at T and the spin system in Eq. (16) can
be considered as 3N independent quasiharmonic oscillators.
The Bose-Einstein ensemble average of the total energy then
follows from Eq. (16):

〈E〉 = 〈HS〉 = −1

2
NH0S +

∑
k

〈nk (T )〉 �ωk

= −1

2
NH0S +

∑
k

�ωk (T )

exp [�ωk (T ) /kBT ] − 1
. (17)

On the other hand, the quasiharmonic mean energy of the
ensemble of spins at T interacting with the noisy environment
is given by (see Appendix)

〈E〉 = NηS − 1
2NH0S. (18)

Equating Eqs. (17) and (18) yields the QFDR for a spin
system:

ηS(T ) = 1

N

∑
k

�ωk

exp (�ωk/kBT − 1)

=
∫ ∞

0

�ω

exp (�ω/kBT ) − 1
gm (ω,T ) dω. (19)

Here gm(ω,T ) is the magnon density of states (m−DOS)
at temperature T . Similar to the p−DOS, the m−DOS
gm(ω,T ) ≡ �

(2π )3 · 4πk2

∇kω(T ) is a function of temperature. Given
temperature T , spin-dynamics calculations can therefore be
carried out using Langevin forces defined by the fluctuation-
dissipation ratio ηS(T ) according to Eq. (19). We note that the
QFDRs in Eqs. (11) and (19) are the main results of this paper.

The m−DOS can be obtained from experiments, from
first-principle calculations, or by using a simplified model
based on the quasiharmonic approximation, as discussed in
the following section. Similar to the phonons, the influence of
temperature dependence has to be considered in the calculation
of the m−DOS.

V. SIMPLE ANALYTICAL MODELS FOR THE DOS

One may observe that the integrants in Eqs. (11) and (19) are
heavily weighted towards the low-frequency long-wavelength
excitations, except at high temperatures, in which case all
vibration modes are excited irrespective of frequency, and the
details of the frequency dependence are no longer important,
resulting in the disappearance of quantization effects. This
observation suggests simple approximations of the DOS that
can be used in evaluating the QFDR for both phonons and
magnons.

A. Test of QFDR using the Debye model for the lattice system

The Debye model is well known to give the correct
thermodynamics of many nonmagnetic crystals in both low-
and high-temperature limits. Within the Debye model [15], the
p−DOS for calculating the QFDR in Eq. (11) can be written
as

gp (ω) =
{ �

2π2c3
s
ω2 for ω � ωD

0 for ω > ωD

, (20)

where cs is the temperature-dependent effective sound speed

(mean lattice-wave group velocity) and ωD = ( 6π2

�
)
1/3

cs is the
Debye frequency that marks the phonon spectral limit, both
of which can be linearly expressed in terms of the Debye
temperature �D according to kB�D = �ωD . We note that �D

uniquely specifies the p−DOS and follows the temperature
dependence of cs .

Substituting Eq. (20) into Eq. (11), the QFDR is given in
terms of the Debye temperature by

ηL (T ) = 3

8
kB�D + 3kB�D

(
T

�D

)4 ∫ �D
T

0

x3

ex − 1
dx,

(21)

which expresses the QFDR for a lattice system in the Debye
model. In the classical limit, �D/T goes to zero, and the
corresponding QFDR obtained from Eq. (21) yields the
classical fluctuation-dissipation theorem ηL = kBT .

As a test of the simplified QFDR in the foregoing, we apply
it to a harmonic lattice model. In this case, the thermal energy
can be expressed by solving the corresponding stochastic
equation of motion in Sec. III, yielding 〈E〉 = 3NηL. The
heat capacity of the Debye crystal can be obtained according
to

Cp (T ) = d 〈E〉
dT

= 9NkB

(
�D

T

)−3 ∫ �D
T

0

x4ex

(ex − 1)2 dx

≡ 3NkBfD

(
�D

T

)
, (22)

where fD is the Debye function [20]. Equation (22) is precisely
the same well-known expression for heat capacities that can
be derived within the Debye model directly from quantum
statistics [20]. From Eq. (22), other thermodynamic quantities,
such as the entropy, free energy, heat conductance, etc., can
be expressed in the harmonic approximation as a function of
�D/T . The low- and high-temperature limits of Eq. (22) are
given by the well-known expressions

Cp (T ) =
⎧⎨
⎩

12π4NkB

5

( T

�D

)3

for T � �D

3NkB for T 
 �D

. (23)

Equations (22) and (23) verify the methodology adopted in
deriving Eq. (11).

Although anharmonicity of the crystal potential does
not affect the mean kinetic energy of the lattice system
which defines its temperature [see Eq. (9)], the temperature
dependences of other thermodynamic functions, such as the
mean total energy, heat capacity, entropy, and free energy,
depend on the potential energy and are thus affected by its
anharmonicity. If we put 〈Ek〉 = 1

2 〈Eh〉, where Eh is the total
energy in the harmonic approximation, the energy correction
due to anharmonicity can be measured by a parameter αL

ah,
where

αL
ah = 〈E〉

〈Eh〉 = 〈E〉
3NηL

. (24)

Therefore, at high temperatures, 〈E〉 = αL
ah〈Eh〉 =

3NαL
ahkBT .
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FIG. 1. (Color online) (a) The thermal energies Ep and (b) the
specific heat Cp due to lattice vibrations computed by MD simulations
using quantum (blue open squares, QFDR) and classical (red open
circles, CFDR) fluctuation-dissipation relation schemes. Results from
the 0-K harmonic model [see Eqs. (10) and (23), black solid line] and
colored-noise scheme [12,29] are also presented for comparison.

A fully anharmonic calculation of phonon thermal energy
Ep(T ) and heat capacity Cp(T ) of bcc iron in which the
ensemble energy is obtained from MD with the Dudarev-Derlet
(DD) potential yields results shown in Figs. 1(a) and 1(b).
Plotted for comparison in the same figure are results for
bcc iron calculated with the quantum color-noise bath as
well from Eq. (23). The results from our white-noise and
color-noise baths are practically identical and agree very well
with Eq. (22) at low temperatures, as they should. At higher
temperatures, the difference between the harmonic and the
MD models reflects the quasiharmonic contributions. Details
of the calculation are further discussed in Sec. VII A.

B. Test of QFDR in a low-temperature analytic
model for magnons

As discussed in Sec. II B, the anharmonic contribution Hmm

in Eq. (16) is neglected within the quasiharmonic approxima-

tion. In this section, we concentrate on the low-temperature
case, where high-energy and high-k vibration modes can
be neglected such that an analytic QFDR is derivable. At
low temperatures, the dynamical state of the corresponding
spin ensemble can be represented by low-k magnons with a
dispersion relation given by �ω = D0k

2 [17]. The m−DOS
gm(ω) ≡ �

(2π )3 · 4πk2

∇kω
can be described similar to the lattice

case by a Debye-like model [17] with the following form:

gh
m (ω) =

⎧⎨
⎩

�
4π2

(
�

D0

)3/2
ω1/2 for ω � ωh

0 for ω > ωh

. (25)

We may call gh
m(ω) in Eq. (25) the harmonic m−DOS,

where D0 is the ground-state spin stiffness, � = a3/2 is the
atomic volume evaluated at ground state in a bcc structure with
lattice constant a, and ωh is the corresponding cutoff frequency
defined by the normalizing condition

∫ ωh

0 gh
m(ω)dω = 1. The

corresponding cutoff temperature �h = �ωh/kB is related to
D0 through Eq. (25) according to

�h = D0

kB

(
6π2

�

)2/3

. (26)

For bcc iron, with an estimated a ≈ 0.287 nm and D0 ≈
3.50 × 10−3eV nm2 [9,10], Eq. (26) gives a value for �h

of 11 892 K, which is very much higher than the Debye
temperature for phonons (�D = 470 K for iron), and also the
experimental Curie temperature (TC = 1043 K). With gh

m(ω)
given by Eq. (25), the QFDR in Eq. (19) can be expressed
analytically in terms of �h as

ηS (T ) = 3

2
kB�h

(
T

�h

)5/2 ∫ �h
T

0

x3/2

ex − 1
dx. (27)

Comparing Eqs. (21) and (27), it is clear that spin and lattice
systems have different fluctuation-dissipation ratios, unless
their temperatures are much higher than both �h and �D

when ηL = ηS = kBT .
Similar to the phonon case, an analytic expression for the

heat capacity in the low-temperature approximation can be
derived by applying the QFDR in Eq. (27) to the stochastic
equation of motion in Sec. IV. Equation (18) gives

Cm (T ) = d 〈E〉
dT

= dηS

dT
= NkBfm

(
�h

T

)
, (28)

where fm is defined by

fm(y) ≡ 3

2
y−3/2

∫ y

0

exx5/2

(ex − 1)2 dx, (29)

with high- and low-temperature limits given by

Ch
m(T ) =

⎧⎨
⎩0.113NkB

�
a3

(
kBT

D0/a2

)3/2
for T � �h

NkB for T 
 �h

. (30)

The heat capacity in Eq. (30) is precisely the same as
that obtained directly from quantum mechanics using the
low-k quadratic dispersion relation [19]. Other thermodynamic

104306-6



QUANTUM HEAT BATH FOR SPIN-LATTICE DYNAMICS PHYSICAL REVIEW B 91, 104306 (2015)

quantities such as the entropy, free energy, and heat capacity
can also be calculated from the heat conductance as a function
of T , similar to the phonon case. Equations (28)–(30) verify
the methodology adopted in deriving Eq. (19).

C. Simplified model of DOS for magnons at higher temperature

As pointed out in Sec. II B, the low-k approximation in
Sec. V B is not useful for the m−DOS at higher temperatures.
At the same time, effects on the m−DOS due to the strong
temperature dependence of the effective field that drives the
spin dynamics must also be accounted for, particularly near
the Curie temperature. The corresponding treatment of the
m−DOS will be discussed in the following two sections. We
first consider relaxing the low-k approximation. The treatment
of magnon softening will then follow.

1. Correcting the low-k assumption

Comparing with ab initio results [21] at 0 K [see Fig. 2(a)], it
can be seen that the harmonic m−DOS in Eq. (25) is valid only
for energy levels below 200 meV. Over 80% of the magnon
energy levels are much overestimated. This large error in the
frequency distribution is likely due to the loss of the Van
Hove singularity in the low-k approximation for the magnon
dispersion relation. To include contributions from vibration
modes with higher k, we expand the magnon dispersion
relation up to the quartic power, i.e.,

�ω = Dk2(1 − bk2), (31)

where b is a fitting parameter to give the correct singularity
at k = 1/

√
2b where the corresponding magnon group

velocity is zero. Expressing k in terms of ω in Eq. (31), the
corresponding m−DOS can be derived similar to Eq. (25):

gb
m(ω,T )

=

⎧⎪⎨
⎪⎩

��

4π2D (T )
·

√
1

2b

(
1−

√
1− 4�ωb

D(T )

)
√

1− 4�ωb
D(T )

for ω � ωb = D(T )

4�b

0 for ω > ωb

.

(32)

Here ωb = D
4�b

is the cutoff frequency. By identifying the pole
of Eq. (32) at k = 1/

√
2b with the Van Hove singularity in the

ab initio m−DOS [21] [see Fig. 2(a)], we obtain a value of b ≈
2.85 × 10−3nm2. The normalizing condition can then be sat-
isfied by using a normalizing constant. The resulting m−DOS
generated from Eq. (32) is shown in Fig. 2(a), together with
the ab initio results. The corresponding cutoff temperature
�b = D/4kBb is temperature dependent via the spin stiffness
D(T ) (see next section). At 0 K, it has a value of 3563 K, much
lower than the 11 892 K obtained without the k4 correction.

D. Temperature dependence of the m−DOS

To treat the temperature-dependent magnons in the QFDR,
an explicitly temperature-dependent form of the m−DOS
is needed in Eq. (19). As discussed in Sec. II B, magnon
frequency spectra and eigenstates are functions of temperature
due to the amplitude-dependent force constant in the spin
vibrations. Near the Curie temperature TC , magnons soften

FIG. 2. (Color online) (a) The 0-K magnon density of states
(m−DOS) in low-k [Eq. (25), black solid line] and quartic approxima-
tions [Eq. (32), blue solid line], plotted in comparison with ab initio
results [21] (red solid line). Note that in the quartic m−DOS with
b ≈ 2.85 × 10−3nm2, the Van Hove singularity is well reproduced.
(b) The temperature-dependent m−DOS according to Eq. (33). The
p−DOS at 300 K is also plotted for comparison.

and their frequencies slow down critically to zero as magne-
tization disappears at the ferro-/paramagnetic transition point.
Since the spin stiffness D(T ) is directly proportional to the
magnetization via the effective field, it can be treated as an
order parameter in the Landau theory of phase transition. Its
temperature dependence may be written explicitly in the form
[22]

D (T ) = D0(1 − T/TC)βc , (33)

104306-7



WOO, WEN, SEMENOV, DUDAREV, AND MA PHYSICAL REVIEW B 91, 104306 (2015)

where D0 is the stiffness at 0 K, and βc is the critical index
(βc = 1/3 is chosen according to Ref. [23]). Using Eq. (33), the
corresponding cutoff frequency ωb = D/4�b can be written
as an explicit function of temperature:

ωb = D0(1 − T/TC)βc

4�b
. (34)

When ωb in Eq. (34) is used in Eq. (32), we have a
temperature-dependent quasiharmonic m−DOS gb

m(ω,T ) with
a small cutoff frequency at temperatures near TC . As this
happens, the magnon frequency tends to zero and their energy
spectrum becomes quasicontinuous. Thus quantum statistics
reverts back to classical statistics at temperatures near TC .

Figure 2(b) demonstrates the anharmonic downshift of the
temperature-dependent magnon frequencies, i.e., softening, as
the spin system approaches the Curie point. In this figure, the
temperature-dependent m−DOS are obtained by transforming
the 0-K energy distribution from ab initio results [21] using
Eq. (33). In perspective, the p−DOS is also plotted in Fig. 2(b).
It can be seen that at low temperatures the phonon frequencies
are indeed an order of magnitude smaller than the magnon
frequencies. The increasing overlap between the m−DOS and
p−DOS as temperature approaches TC (=1043 K) is clear,
suggesting increasingly coupled magnetic and lattice proper-
ties due to the enhancement of phonon-magnon interaction in
this temperature range.

The expression for the magnon QFDR in Eq. (19) calculated
with the quasiharmonic m−DOS according to Eq. (32) with
the corresponding ωb in Eq. (34) and D(T ) in Eq. (33) can be
used in conventional spin dynamics as well as SLD.

VI. TEST OF QFDR

The QFDRs developed in Eqs. (11) and (19) have been
tested in analytic harmonic models in Sec. V. In this section,
they are put to the test in fully anharmonic MD, SD, and
SLD simulations in bcc iron. The lattice and spin dynamics
in the simulations are respectively governed by the nonmag-
netic interatomic potential and the Heisenberg-type spin-spin
exchange interaction, as shown in Eq. (1). The DD potential
[24] UDD(r) is used to describe the interatomic interactions in
the magnetic ground state, in which the atomic spins are all
collinear. The exchange integral jij (r) has the form given in
Ref. [6],

jij (rij ) = j0(1 − rij /rc)3�(rc − rij ), (35)

where j0 is a parameter best fitted to ab initio data, and rc =
3.75 Å is the cutoff radius located between the second- and
the third-nearest-neighbor distance in bcc iron. �(x) is the
Heaviside step function. In Eq. (35), the exchange integral is
a pairwise function of the lattice configuration, defined as the
product of the exchange integral Jij (r) and the magnitudes of
spins Si and Sj , i.e., jij (rij ) = Jij (rij )SiSj . In terms of jij , the
nonmagnetic interatomic potential in Eq. (1) can be written as

U ({ri}) = UDD ({ri}) −
⎧⎨
⎩−1

2

∑
i �=j

jij

(
rij

)⎫⎬⎭ . (36)

The potential U ({ri}) describes the nonmagnetic contribution
to the bonding energy of ferromagnetic iron in Eq. (1).

The simulation cell contains 16 000 atoms in a box of
20 × 20 × 20 bcc unit cells in the Cartesian coordinate
system. Periodic boundary conditions are applied to avoid
free surfaces. To allow for magnon softening near TC [25],
at least 2 ns of equilibration time is used. The computation is
performed using the Suzuki-Trotter decomposition [26] with
a time step of 1 fs.

For lattice dynamics, NPT simulations are carried out with
the Langevin heat bath based on the QFDR in Eq. (11), using
the Berendsen barostat [27] to control the atomic volume
under zero pressure. The sampling time is 1 ns after thermal
equilibrium. For the QFDR of the lattice in Eq. (11), a Debye
model of the p−DOS is used with a Debye temperature �D ,
which is mainly determined by the interatomic potential, set
at 430 K [28]. To compare, the quantum color-noise Langevin
thermostat is also applied to the lattice system [12,29], where
the frequency cutoff ωmax = 2π/τ is set at ∼1015 Hz (τ
is the fixed simulation time step, τ = 10−15s). During the
simulations, the relaxation and sampling times are both set
at 1 ns to minimize statistical error.

For the spin dynamics, NVT simulations are performed
with a Langevin heat bath based on the QFDR in Eq. (19). We
use the m−DOS in Eq. (32) with the temperature-dependent
ωb in Eq. (34). The 0-K spin stiffness D0 and Curie tem-
perature TC of the ferromagnetic system are both determined
from the exchange interaction according to D0 = Jij a

2S and
3
2NkBTC = 1

2

∑
i,j Jij S(S + 1) [18], where Jij is the exchange

integral, a is the lattice constant, and S is the magnitude of
atomic spin (see Eq. (7.52) in Ref. [18]).

VII. RESULTS AND DISCUSSION

A. Energy and heat capacity of the lattice system
from MD simulation

In Figs. 1(a) and 1(b), we compare the temperature
dependences of the thermal energy (Ep) and heat capacity
(Cp), obtained from MD simulations based on quantum FDR
vs classical FDR (CFDR). The difference at low temperatures
due to the use of quantum statistics and the agreement beyond
the Debye temperature are both expected. The nonzero energy
at 0 K for the quantum model comes from the zero-point
energy of the phonons, and the corresponding heat capacity in
Fig. 1(b) correctly tends to zero at 0 K. Comparison with
analytic results obtained from a pure harmonic model in
Eq. (23) shows almost perfect agreement at low temperatures.
Deviations at high temperatures are due to anharmonic
effects in the MD results and are expected. Comparison
with simulations using the on-the-fly color-noise quantum
bath [12,29] shows excellent agreement and supports the
consistency between the two schemes. Good accuracy of the
heat capacity over the whole temperature range also implies
reliability of the entropy and free energies calculated from this
scheme for atomic processes.

B. Energy and specific heat of the spin system
from SD simulation

Magnon thermal energy (Em) and heat capacity (Cm)
obtained from spin dynamics simulations are shown as
functions of temperature in Figs. 3(a) and 3(b). Results of
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FIG. 3. (Color online) (a) The thermal energy Em and (b) the
specific heat Cm due to spin vibrations computed by SD simulations
using quantum (blue open squares, QFDR) and classical (red open
circles, CFDR) fluctuation-dissipation relation schemes. Results from
the 0-K harmonic model using Eqs. (17) and (30) (black solid line)
are also plotted for comparison.

the analytic low-temperature model from Eqs. (18), (27),
and (30) with cutoff temperature given by Eq. (26) are also
presented for reference. Agreement between low-temperature
SD results based on QFDR and the harmonic low-k model
is expected. Near TC , compression of the magnon energy
spectrum drastically reduces quantization effects and the
difference between classical and quantum results disappears.
In this temperature regime, the strong temperature dependence
of the magnon thermal energy can be seen from the large
difference between the results of the QFDR and the harmonic
low-k model (calculated using the 0-K m−DOS).

It is clear that CFDR overestimates the thermal energy due
to magnon excitation in almost the entire ferromagnetic region
[see Fig. 3(a)]. The corresponding heat capacities calculated
from the thermal energies are shown in Fig. 3(b). The heat
capacity calculated using QFDR can be seen to vanish at 0 K
and dramatically increase with temperature over 800 K. The
corresponding results based on CFDR remain at 1 kB at 0 K,

FIG. 4. (Color online) Reduced magnetization ξ (T ) =
M(T )/M0 using quantum (blue open squares, QFDR) and
classical (red open circles, CFDR) fluctuation-dissipation-relation
schemes. Plotted for comparison are the experimental data [30]
(green solid line).

as required by the classical equipartition theorem. Both the
CFDR and QFDR results show similar singular behaviors
near the magnetic phase boundary, which is consistent with
the characteristics of a second-order phase transition. Yet, the
peaking discontinuity is more pronounced with the quantum
heat bath, where effects due to the reduction of magnetic
order are properly taken care of. Values of ∼0.5 kB in the
paramagnetic phase come from the short-range magnetic order.
This is consistent with results based on CFDR. Such peaking
behavior, however, is completely absent from the harmonic
model. We note that the temperature dependence of the DOS
has much stronger effects in the spin system than that in lattice
system.

The temperature dependences of the reduced magnetization
ξ (T ), i.e., ξ (T ) ≡ M(T )/M0, using quantum and classical
temperature controls are compared in Fig. 4, together with
experimental data [30]. The difference between the quan-
tum and classical results is clear, as well as the improved
agreement between the experimental and calculated reduced
magnetization.

It is the use of Bose-Einstein, instead of Boltzmann,
distribution in the QFDR in Eq. (19) that is responsible for
the better agreement of our results with the experimental data
at low temperatures, e.g., T < 300 K. On the other hand,
the good agreement between the experimental and theoret-
ical Curie temperatures, quantum or classical, comes from
the disappearance of quantization effects on the emulating
noise when the corresponding magnon energy spectrum is
compressed due to magnon softening. At the same time, the
faster reduction of the magnetization near TC is due to the
use in Eq. (33) of a temperature-dependent spin stiffness,
which follows from the scaling laws of phase transition,
in the magnon DOS in the QFDR in Eq. (19). Thus the
improved agreement with experiments is traceable to the use
of a QFDR based on a temperature-dependent DOS in the
Bose-Einstein statistics of temperature-dependent magnons.
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This does not contradict the well-known fact that mean-field
theory is good enough to describe the temperature dependence
of magnetization near the magnetic phase boundary but fails
at low temperatures [31].

C. Spin-lattice dynamics simulation

In Figs. 5(a) and 5(b) we compare the temperature de-
pendences of the energies and heat capacities of bcc iron,
calculated using SLD simulations based on quantum and
classical heat baths, respectively. Experimental data [32] and
results from the analytical low-k model are also plotted
for comparison. In these calculations, two thermal heat
baths, each following a different fluctuation-dissipation ratio,
have to be simultaneously applied to the lattice and spin
systems.

In Figs. 5(a) and 5(b), excellent agreement among all
the quantum results and experimental ones is seen at low
temperatures. The nonlinear temperature dependence of the

FIG. 5. (Color online) (a) Total lattice and magnetic thermal
energies Etot and (b) specific heat Ctot computed by SLD simulations
using quantum (blue open squares, QFDR) and classical (red open
circles, CFDR) fluctuation-dissipation relation schemes. Results from
the 0-K harmonic model (black solid line) and experimental data [32]
(green triangles) are also plotted for comparison.

thermal energy and heat capacities that vanish at 0 K are results
of quantization via the use of Bose-Einstein statistics in the
QFDR, which are absent in the CFDR results. At higher tem-
peratures, reduction of quantization effects produces results
that are more consistent with classical statistics. It is worth
noting that, compared with heat capacities calculated based on
CFDR, those obtained with QFDR have much better agreement
with experiments [32]. At low temperatures, they have the
correct temperature dependence limT →0 Ctot(T ) = 0, which
is in marked contrast to the lack of temperature dependence
obtained when CFDR is used.

At the same time, CFDR and QFDR results in Figs. 5(a)
and 5(b) exhibit similar behavior near the Curie temperature.
In particular, both show the typical peak in the heat capacities
near the second-order magnetic phase transition. Here it should
be noted that D0 and TC do not even appear anywhere in the
CFDR case. On the other hand, in the harmonic models in
Figs. 3(b) and 5(b), the Curie point and the singular behavior
near it is completely absent even if the QFDR is used. This is a
clear indication that the singular behavior near the Curie point
in Figs. 3(b) and 5(b) comes directly from the fully anharmonic
SD and SLD calculations, and is related intrinsically to the
anharmonicity of the Heisenberg Hamiltonian rather than the
quasiharmonic treatment in QFDR.

VIII. SUMMARY AND CONCLUSIONS

Quantum effects in the vibrational thermodynamics have
to be considered in atomistic simulations of metals in the
ferromagnetic phase due to the quantization of spin waves.
In this regard, the basis of temperature control in spin
and lattice dynamic simulations is reconsidered. Relations
between the fluctuation-dissipation ratio and the thermo-
dynamic temperature are reestablished based on the Bose-
Einstein statistics within temperature-dependent phonon and
magnon pictures. The frequency dependence is absorbed in
the corresponding phonon and magnon DOS. In the magnon
case, effects on the magnon DOS caused by the Van Hove
singularity and magnon softening at the Curie temperature
have to be considered in addition. The quantum heat baths
are tested in molecular dynamics, spin dynamics, and
spin-lattice dynamics simulations. The results are in good
agreement with experimental observations and theoretical
predictions over a wide temperature range from 0 K to
above the Curie temperature of ferro-/paramagnetic transition.
Comparison with corresponding simulation results based on
classical heat bath confirms that quantum statistics is important
in the entire ferromagnetic phase.
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APPENDIX: THE MEAN ENERGY OF SPIN ENSEMBLE

The average energy 〈E〉 of the spin system is given by

〈E〉 = −1

2

∑
n,m

Jnm 〈Sn · Sm〉 = −1

2

∑
n

〈Sn · Hn〉, (A1)

where the effective field Hn acting on the nth spin is given by
Hn = ∑

m�=n JnmSm. Averaging over all atoms, we may define
the mean effective field H by

H ≡ 〈Hn〉 =
∑
m

Jnm 〈Sm〉 =
∑
m

Jnm 〈S〉. (A2)

We note that H is strongly temperature dependent via 〈S〉,
which is directly proportional to the crystal magnetization
(see Sec. II A). The last equality in Eq. (A2) implies that in
equilibrium the average spin vector 〈Sm〉 is the same for all
atoms.

Putting Hm = H + δHm, Sm = 〈S〉 + δSm, where
〈δSm〉 = 0 = 〈δHm〉, we may write∑

m

Jnm〈Sm · Hm〉 = 〈S〉· H
∑
m

Jnm+
∑
m

Jnm〈δSm ·δHm〉.

(A3)

Within the quasiharmonic approximation, we may neglect the
second-order fluctuation terms of Eq. (A3) and write∑

m

Jnm 〈Sm · Hm〉 ∼= 〈S〉 · H
∑
m

Jnm = H 2. (A4)

According to chap. 7 in Ref. [18], neglecting terms second
order in fluctuations means that all spins are effectively inter-
acting with the uniform field H . Within this approximation,

Hn
∼= H , and

〈εn〉 = − 〈Sn · Hn〉 ∼= −
∫

H · Sn exp (β H · Sn) d3 S∫
exp (β H · Sn) d3 S

= −
∫ 1
−1 HS cos θn exp (βHS cos θn) d cos θn∫ 1

−1 exp (βHS cos θn) d cos θn

= − 1

β

∫ βHS

−βHS
x exp (x) dx∫ βHS

−βHS
exp (x) dx

= 1

β
[1 − x coth (x)] , (A5)

where x = βHS and, according to Eq. (13), the spin magni-
tude S is constant. Thus Eq. (A4) can be written as

H 2 = −H0

S
〈εn〉 = H0

βS
[x coth (x) − 1] ⇒ H

= H0

(
coth (x) − 1

x

)
, (A6)

where H0 = ∑
m JnmS is the amplitude of the effective field

of a collinear spin ensemble. We note that spontaneous
magnetization requires H to have a nonzero solution, which
in turn requires a minimum value for H0.

The average energy in Eq. (A1) can be evaluated using
Eq. (A5). Thus

〈E〉 = N 〈εn〉
2

= −NHS

2

[
coth (x) − 1

x

]

= −NH0S

2

[
coth (x) − 1

x

]2

. (A7)

When x 
 1, [coth(x) − 1
x

]2 → 1 − 2
x

and we may, within
the quasiharmonic approximation, write

〈E〉 = N

β
− 1

2
NH0S. (A8)
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