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Calculation of energy relaxation rates of fast particles by phonons in crystals
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We present ab initio calculations of the temperature-dependent exchange of energy between a classical charged
point particle and the phonons of a crystalline material. The phonons, which are computed using density functional
perturbation theory (DFPT) methods, interact with the moving particle via the Coulomb interaction between the
density induced in the material by phonon excitation and the charge of the classical particle. Energy relaxation rates
are computed using time-dependent perturbation theory. The method, which is applicable wherever DFPT is, is
illustrated with results for CsI, an important scintillator whose performance is affected by electron thermalization.
We discuss the influence of the form assumed for quasiparticle dispersion on theoretical estimates of electron
cooling rates.
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I. INTRODUCTION

A unified quasiparticle picture of crystalline solids in which
the physics of crystals is understood as a system of interacting
electrons, holes, and phonons (and in some circumstances
other types of quasiparticles such as magnons) has become
a universal way to understand the interaction between crystals
and external probes (e.g., photon, neutron, and electron
beams). Many experimental results can be predicted quantita-
tively using this picture, but some phenomena are described
only qualitatively owing to an insufficient description of
the quasiparticle properties or of their interactions. Often,
analytic models based on model systems (e.g., the electron
gas or the Hubbard model) with quasiparticles and interactions
parametrized by a few numbers give a correct qualitative pic-
ture, but quantitative agreement requires fitting or numerical
simulation. This work aims to make quantitative estimates
based on a unified ab initio approach to the interaction
between electrons and phonons in crystals. This interaction
is well understood qualitatively, but quantitative predictions
from the standard picture rely on many untested and ad hoc
assumptions.

The last decade has seen significant advances in the under-
standing of the microscopic physics and intrinsic performance
limits of inorganic scintillators [1–10], which are used in a
variety of contexts as spectroscopic radiation detectors. A
feature of the emerging understanding of these systems is that
variations in the spatial density of secondary excitations lead
to nonproportionality of the scintillation signal to the energy
of the exciting radiation, which in turn limits the achievable
energy resolution of radiation detectors [1,3–5,7,11]. Detailed
modeling based on Monte Carlo methods [12–14], pursued by
the present authors and their collaborators, is shedding light on
the microscopic processes occurring in scintillators. In this ap-
proach, an attempt is made to parametrize all the microscopic
physical processes (e.g., photoabsorption, plasmon excitation
by secondary electrons, exciton formation and diffusion,
activator excitation and relaxation) that affect the transport
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of energy imparted to the scintillator by irradiation. These
parameterizations are then used to simulate ensembles of
scintillation events; the statistical distribution of the results is
then interpreted as a theoretical prediction of the performance
of real materials. Due to the dependence of scintillation
nonproportionality on the spatial distribution of the excitations
during scintillation, reliable theoretical predictions require a
quantitative description of the dynamics of the excitations and
thus rely heavily on an accurate treatment of electron-phonon
interactions.

II. BACKGROUND

When a material undergoes high-energy excitation (e.g.,
by irradiation by photons or ions with energies up to MeV),
the subsequent relaxation produces a large number of hot
electrons and holes. If the material has a gap in the spectrum
of electronic excitations, particles with kinetic energy smaller
than the gap cannot lose energy by electronic excitation.
In this regime, the particles still exchange energy with the
vibrational degrees of freedom. Although there has been a long
history of scientific work on the electron-phonon interaction
[15–18], most treatments of the electron-phonon interaction
focus on low-energy carriers confined to a single band in
small regions of k space, which is natural in many contexts,
such as superconductivity and low-energy transport, but is
not sufficient for a faithful Monte Carlo treatment of the
thermalization phase. Therefore, the approach developed here
is more general than these methods and provides a consistent
treatment of the cooling of high- and low-energy particles by
the lattice.

Frölich [15] made seminal contributions to our under-
standing of the electron-phonon interaction in the form of a
phenomenological treatment that follows from considering the
macroscopic polarization induced by optical modes in polar
crystals. A unified picture of the interaction of electrons with
all modes was developed by Ziman [16], who assumed a
(largely unspecified) independent-particle description of the
electronic structure, in which the electrons in the solid occupy
a collection of Bloch states ψk, and derived expressions
for the coupling of these orbitals by nuclear motion in the
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TABLE I. Various plausible effective masses and corresponding
Frölich coupling constants for electrons in CsI.

Effects included m∗ α

Bare electron 1.0 5.44
Band structure 0.312 3.13
Polaron 1.9 7.50
Polaron + band structure 0.593 4.31

Born-Oppenheimer approximation. An account of this theory
accessible to modern readers is given in the first chapter of
Mahan [19]. The resulting formal theory remains the basis for
most work on the electron-phonon interaction [20,21]. To use
it to make quantitative predictions, the electron-phonon matrix
elements must be estimated in some way.

To illustrate the difficulty posed by the unknown coupling
strength, we consider the Frölich model in which the scattering
rate and hence the transferred power are proportional to the
dimensionless coupling constant α = ( m∗

2ωLO
)1/2( 1

ε∞
− 1

ε0
). This

model requires knowledge of the static and “high-frequency”
dielectric constants, ε0 and ε∞, as well as the effective mass
m∗ of the carrier being scattered. It is not clear exactly which
effective mass should be used. A straightforward application
of standard techniques (i.e., finding the self-energy to first
order using perturbation theory and taking twice the imaginary
part as the scattering rate) yields a model in which the mass
appearing in the Frölich expressions is the band effective mass
without renormalization by polaron effects. If one instead
considers polaron quasiparticles (i.e., electrons dressed by
phonon clouds), the same Frölich expressions are found but
with the band effective mass replaced with the (greater)
effective mass of the dressed polaron. The dependence on the
effective mass in these models originates from a band picture of
the crystal. As we discuss below, the description of the particle
by an effective mass is inconsistent with modern, numerical
knowledge of the actual quasiparticle band structure. In Table I,
we list the values of these various effective masses for electrons
in CsI. In Fig. 1, we plot the power exchanged between a
particle and the lattice calculated for CsI with these different
values for the effective mass. The lack of a clear prescription
for selecting the appropriate effective mass leads to significant
uncertainties in the power transferred and thus in predictions
of the thermalization phase of scintillation.

Attempts to make realistic predictions for energy and
momentum transfer were made by Sparks et al. [22] and
Akkerman et al. [23], who used phenomenological arguments
to parametrize and estimate the electron-phonon matrix el-
ements. We are unaware of any more definitive work. For
previous Monte Carlo simulations [12–14], we have developed
models for the cooling of electrons by phonons based on
this type of work [15,22–24]. With the current work, we
aim to reduce the amount of ad hoc assignments involved
in this estimation by resorting to DFT electronic structure
calculations for the strength of the interaction directly.

In order to find a workable and quantitative method to
estimate the exchange of energy between phonons and charged
particles, we have developed a semiclassical theory in which
the field of a charged particle (moving with a specified
velocity) is treated as a perturbation to the vibrational modes
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FIG. 1. (Color online) Power transferred to the longitudinal op-
tical phonons in the Frölich model at zero (solid lines) and room
(dashed lines) temperature with different coupling strengths α

corresponding to different choices for the quasiparticle effective mass
listed in Table I.

of the crystal and present numerical calculations of the power
transferred between the lattice and perturbing charge that are
based on density functional perturbation theory calculations
of the density response to lattice distortions. We have chosen
a classical description of the particle to maintain compatibility
with our scintillator simulations [12–14,25,26]. This approach
is preferable because a wave-packet description of a particle
in the Bloch picture requires the spatial extent of the region
in space at which the particle might be measured to contain
many unit cells (so that the packet can be limited to a
relatively small region in k space), while we want to model the
interaction of the particle with point defects (e.g., activators)
that are situated at certain definite positions. These models will
invariably involve the distance between the particle and the
point defect, leading to ambiguity if the particle wave packet
is large compared to the unit cell. Although the difference
between quantum and classical descriptions of the particle
that is being scattered is conceptually stark, the resulting
expressions for phonon scattering have the same form. Thus a
close analogy between the classical theory presented here and
the traditional quantum picture can easily be drawn by equating
the coefficients of the energy- and momentum-conserving δ

functions. When viewed in this light, the present work amounts
to fixing the ad hoc interaction strengths in the old models with
DFT calculations. We also remark that the correspondence of
quantum and classical descriptions suggests that, as far as the
energy relaxation is concerned, details of the wave packet in
the quantum description probably are not important.

III. SEMICLASSICAL TREATMENT OF THE
ELECTRON-PHONON INTERACTION

In this paper we present a model in which a classical
charged particle interacts with a quantized phonon system. The
properties of the phonon system are derived using adiabatic
Born-Oppenheimer dynamics in the harmonic approximation.
The interaction Hamiltonian is taken as the instantaneous
Coulomb interaction and hence neglects retardation, transverse
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effects, etc. These approximations for the phonons are standard
and have been discussed by many authors [16,17,19]. The
classical treatment of the perturbing charge is nonstandard.
For example, the perturbing particle is not described in terms
of the band structure of the host material and is simultaneously
assigned a precise position and momentum.

We denote an arbitrary point in momentum space with q +
G, where q is from the first Brillouin zone and G is from
the reciprocal lattice. We use Hartree atomic units (e2 = � =
m = 1). We analyze a model of the interaction of a crystal
with an external point particle of charge Z at a time-dependent
position r(t). The fundamental quantities in this analysis are
the positions {Rs,κ (t)} of the nuclei of the atoms that comprise
the crystal. The subscript s refers to the unit cell, and κ refers
to the sublattice which hosts nuclei of charge Zκ . The crystal
has N repeated unit cells which occupy a volume V = N�.
These nuclear positions (and their conjugate momenta) are
quantum-mechanical operators; the Hamiltonian of our theory
is the kinetic energy of the nuclear motion plus the ground-state
potential-energy surface, which depends only on the nuclear
positions. As the perturbing particle moves through the lattice,
it exerts forces on the crystal, which responds by deforming.
We assume the interaction energy is given by

Hint(t) = Z

∫
d3r ′ δntot(r′)

|r(t) − r ′| , (1)

where

δntot(r) = δnnuc(r) + δnelec(r)

=
∑
s,κ

Zκ

[
δ3(r − Rs,κ ) − δ3

(
r − R(0)

s,κ

)]

− [
n(r; {Rs,κ}) − n

(
r;

{
R(0)

s,κ

})]
(2)

is the change in the ground-state charge density of the crystal
(electrons and nuclei) induced by displacing the nuclei from
their equilibrium positions {R(0)

s,κ} to positions {Rs,κ}.
We write the Hamiltonian for our model in terms of

annihilation and creation operators for phonon modes:

H = H0 + H1

=
∑
λ,q

ωλ,q

(
a
†
λ,qaλ,q + 1

2

)
+

∑
λ,q

Hλ,q(t)(a†
λ,−q + aλ,q).

(3)

In the sums here, q runs over the Brillouin zone of the crystal,
and λ runs over the phonon branches of which there are three
times the number of sublattices. The energy of branch λ at
wave vector q is ωλ,q. The time-dependent coupling

Hλ,q(t) =
∑

G

(4πZ)

|q + G|2 nλ(q + G)ei(q+G)·r(t) (4)

is the Coulomb interaction between the charge density
nλ (q + G) induced at wave vector q + G by excitation of
the phonon mode (q,λ) (which has annihilation and creation
operators aλ,q and a

†
λ,q) and the charge density Zei(q+G)·r(t)/V

of the perturbing particle, which has charge Z and is moving
through a crystal with volume V .

To complete the theory, the induced density nλ (q + G)
must be specified. We do so in the context of density functional

perturbation theory (DFPT) in a plane-wave setting [27,28].
This choice yields ab initio predictions based on detailed
electronic structure calculations and distinguishes the current
work from previous efforts which relied on ad hoc forms for
the electron-phonon interaction.

IV. COMPUTATIONAL METHODS

A. Integral to evaluate

Within DFPT, the ground-state energy of the crystal and
attendant quantities such as the Kohn-Sham orbitals and the
electronic density are expanded in powers of the strength
of a perturbation applied to the crystal system. For phonon
physics, the relevant perturbations are displacements of the
nuclei and the application of a homogeneous electric field. A
great advantage of DFPT is that these perturbations do not
have to be commensurate with the crystal ground state, and
calculations at arbitrary wave vectors can be accomplished
without constructing a supercell commensurate with the
perturbation. In practice, we use the ABINIT code [27–30]
to construct the first-order density response n

(1)
κ,i,q to small

displacements of each sublattice κ along each crystal axis
i on a regular grid of points q in the Brillouin zone. (For
each q the cell-periodic response is output in real space;
we use fast Fourier transform routines to convert them to
momentum space.) The same calculations yield the phonon
band structure and the eigenvectors of the dynamical matrices
that characterize the motion of the various atoms in the crystal
when a phonon mode is excited. These methods are described
in Ref. [27].

In order to make predictions useful for modeling the
dynamics of charged particles traversing the crystal, we have
taken these ingredients from DFPT and computed the rate
of change of the energy stored in the phonon system using
perturbation theory applied to Eqs. (3) and (4). Using second-
order time-dependent perturbation theory and assuming that
the perturbing particle’s kinetic energy is given in terms of its
velocity v by v2/2, we find (after averaging over positions of
the perturbing particle at time t = 0) the following expression
for the rate of excitation (upper sign) or deexcitation (lower
sign) of the λ,q phonon mode:

�
(±)
λ,q = 2πN

V

∑
G

∣∣∣∣4πZnλ(q + G)

(q + G)2

∣∣∣∣
2

× δ

(
±ωλ,q − (q + G) · v + 1

2
(q + G)2

)
. (5)

This equation has the form of a sum over channels (in this
case the Fourier component q + G of the induced density) of a
coupling strength times an energy-conserving δ function. The
sum is incoherent: the square of the interaction Hamiltonian is
taken before summing over Fourier components. This feature
results from averaging over trajectories with the same velocity.
It is interesting to note that Eq. (5) can also be obtained
from a quantum description of the scattered particle in which
the unperturbed eigenstates are plane waves eik·r/V 1/2 with
energies k2/2.
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An explicit expression for the induced density is

nλ(q + G) =
∑
κ,i

u∗
κ,i,λ(q)√

2Mκωλ,q

[
ñ

(1)
κ,i(q + G)

− iZκe
−iτ κ ·(q+G)(q + G) · x̂i

]
, (6)

where Zκ , Mκ , and τ κ are the charge, mass, and location in
the first unit cell of the atoms occupying the κth sublattice.
The first term in brackets in Eq. (6) is the electronic response;
the second is the nuclear response. The phonon quantities
ñ

(1)
κ,i , uκ,i,λ, and ωλ,q are, respectively, the induced density,

phonon eigenvector, and phonon energy (band structure).
All of these are taken directly from the ABINIT output; i

denotes the direction in which the atoms move, and x̂i is a
unit vector in this direction. To avoid infrared divergences
in the scattering rate for acoustic phonons, we evaluate the
power Prad = ∑

λ,q ωλ,q�λ,q transferred to the lattice by the
perturbing particle instead of the scattering rate.

We can also consider the rate of scattering for a particle
moving through the crystal whose phonon modes are in
thermal equilibrium at a given temperature T . In this case the
power transmitted from the perturbing particle to the crystal,
averaged over a thermal ensemble of systems, is

〈Prad〉 =
∑
λ,q

ωλ,q{[N (T ,ωλ,q) + 1]�(+)
λ,q − N (T ,ωλ,q)�(−)

λ,q},

(7)

where

N (T ,E) = (eE/(kBT ) − 1)−1 (8)

is the Bose occupation factor (kB is the Boltzmann constant).
Equation (7) is the expression we wish to evaluate.

B. Tabulation of the scattering potential

We have developed a computer program to complete the
evaluation of Eq. (7) as a function of temperature and the
velocity of the perturbing particle. The program first computes
and tabulates (on the plane-wave grid inherited from ABINIT

and a regular grid of q points spanning the irreducible Brillouin
zone) in a binary file the combination

2πN

V

∣∣∣∣4πZnλ(q + G)

(q + G)2

∣∣∣∣
2

(9)

that appears in Eq. (5). We call this quantity the scattering
potential.

Since the scattering potential is ill defined at the origin, we
employ a special treatment of the � point to find the first-order
induced dipole moment that is based on the first-order orbitals
at �. One can derive a multipole expansion for the induced
density by expanding the exponential e−iq·r = 1 − iq · r + · · ·
involved in the Fourier transform of the induced density. Each
term in this expansion gives rise to a multipole tensor. The
monopole term vanishes because the total charge of the system
is fixed (the phonons simply move around existing charges).
Similarly, when a long-wavelength acoustic phonon is excited,
the crystal experiences a uniform translation in space. Since
the density is rigidly translated, there is no induced dipole

moment for long-wavelength acoustic modes. We calculate
the first-order density near q = 0 using

iñ
(1)
κ,i,q ≈ q ·

⎡
⎣ occ∑

α

∫
�0

d3r ψ (0)
α ∇ψ

(1)
α,κ,i,q=0

−ψ
(1)
α,κ,i,q=0∇ψ (0)

α + c.c.

⎤
⎦ . (10)

Here α denotes the band and crystal momentum of an occupied
orbital ψ (0)

α in our calculation of the ground state of the
crystal, and ψ

(1)
α,κ,i,q=0 is the corresponding first-order orbital

(output in the 1WF files by ABINIT) resulting from a uniform
displacement of the κ sublattice in the ith direction. The
vector in square brackets in Eq. (10) is tabulated for all the
combinations of i and κ and saved to disk. In this step, we
ensure that the dipole moment induced by a rigid translation
of the crystal vanishes by shifting the dipole expansion
coefficients for all sublattice by the same amount. This is
numerically necessary since∫

d3q

(2π )3 q−nδ(αq + q · v + q2/2) (11)

diverges for n � 3, and any small dipole moment induced
by the excitation of a long-wavelength acoustic mode (with
energy αq) will lead to divergence in the calculated power.

During the course of the integration the value of the
scattering potential for a given phonon mode is required at
arbitrary points in momentum space. We use linear interpo-
lation of the tabulated values of Eq. (9) when none of the
tabulated points involved in the interpolation is q = G = 0.
Otherwise, we assign the origin the value of the scattering
potential deduced from the dipole expansion equation (10).
This gives interpolated results that become identical to the
dipole expansion near the origin and smoothly change over to
direct linear interpolation outside the first shell of points in the
q grid.

C. Adaptive integration for the transferred power

With the scattering potential and dipole expansion coeffi-
cients tabulated, Eq. (7) can be evaluated. To do so, we employ
an adaptive integration method based on the tetrahedron
method. The δ function in Eq. (7) enforces conservation
of energy and momentum on the emission and absorption
of phonons: the scattering processes that contribute to the
transferred power all lie on the kinematically allowed surface
defined by

0 = ±ωλ,q − (q + G) · v + 1

2
(q + G)2

= 1

2
[v − (q + G)]2 ± ωλ,q − v2

2
= Ef − Ei, (12)

where Ef and Ei are the energies after and before the collision,
respectively. Our iterative integration method is based on
integration over cubes in q + G space. For a given velocity of
perturbing particle and phonon branch, we start our procedure
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with eight cubes chosen to enclose the kinematically allowed
surface. Each cube has one corner at the particle velocity.
Since the right-hand side of Eq. (12) attains its minimum at
q + G = v, these corners are inside the kinematically allowed
surface if Eq. (12) has a solution. The side length of these eight
cubes is chosen so that the right-hand side of Eq. (12) is positive
for all other (exterior) cube corners. This guarantees that three
faces of each cube intersect the kinematically allowed surface
if it exists. The cubes are decomposed into tetrahedra. The
contribution to the integral (7) is then computed for each of
these using standard techniques [31]. The program now has a
list of cubes and a current (generally very poor) approximation
of the contribution of each cube to the desired integral.

The program then proceeds iteratively by considering
the first cube on the list. This cube is subdivided into
eight daughter cubes, and the integral is estimated in each
of these that intersects the kinematically allowed surface
using the tetrahedron method. If the sum of the integrals
over the daughter cubes is within tolerance of the previous
estimate for the parent cube, this contribution is accumulated,
and the cubes are discarded from the list. If the estimate from
the subdivided cubes differs from the previous one by more
than the tolerance, the parent cube is replaced on the list by its
contributing daughters, and the integration continues with the
daughter cubes at the top of the list. Eventually, the cube list
is exhausted, and the accumulated result is the final value of
the integral. The cubes involved in the first few iterations are
schematically illustrated in Fig. 2. This procedure has been
found to give good numerical results for models (e.g., the
Frölich model) for which analytic results are available.

V. RESULTS AND DISCUSSION

We have completed calculations using these methods for
the ionic scintillator CsI. As mentioned above, the phonons are
computed using the ABINIT code. We used norm-conserving
pseudopotentials of the Troullier-Martins [32] type obtained
from the ABINIT website for all calculations presented here.
The local-density approximation (LDA) parametrization of
Goedecker et al. [33] was used.

For CsI, a 12 × 12 × 12 regular grid (resulting in 84
symmetry inequivalent points) of points in the Brillouin zone
was employed for both the electronic and phonon structures.
The energy cutoff was set at 20 hartrees. The resulting
phonon band structure is plotted in Fig. 3. It is seen to be
in good agreement with the measured [34] phonon spectrum.
Our calculations find the longitudinal-optical phonon mode
at � to have frequency 4.13 × 10−4 hartrees = 0.0112 eV =
90.7 cm−1. This energy has been labeled ωLO in Figs. 4, 5, and
7. The phonon eigenvectors and first-order induced densities
were printed out. At �, the first-order wave functions were
also printed out.

These ingredients were then used as described in Sec. IV
to compute the rate of energy transfer between particles and
the lattice at �1000 randomly selected velocities v such
that the corresponding kinetic energy is less than 10 eV
(corresponding to the energy range over which phonons
might play a significant role in energy transfer in CsI). The
contributions to the transferred power by the LO mode are
plotted in Fig. 4 at zero and room temperatures. Also plotted

Starting
1st iteration
2nd iteration
3rd iteration

FIG. 2. (Color online) Schematic drawing of cubes used in the
adaptive integration scheme. In this two-dimensional analogy, the
cubes are represented by squares, and the volume circumscribed by
the kinematically allowed surface is shaded in gray. The initial cubes
(purple solid lines) all share a common vertex at the particle velocity,
and all other vertices are outside the kinematically allowed surface.
The 7 cubes resulting from the first subdivision (red dashed lines),
the 17 cubes resulting from the second subdivision (blue dash-dotted
lines), and the 38 cubes resulting from the third subdivision (green
dotted lines) are also shown.

in Fig. 4 is the Frölich model for m∗ = 1 (the α = 5.44 trace
from Fig. 1).

We plot the contributions to the transferred power by the
acoustic modes in Fig. 5. The ab initio room-temperature
results are noisier than corresponding results for the optical
modes. We have added smooth lines (using GNUPLOT’s BEZIER
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FIG. 3. (Color online) Computed phonon band structure along
the [111] and [100] directions in CsI compared to measurements
taken from Ref. [34].
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FIG. 4. (Color online) Computed power transferred by the longi-
tudinal optical phonons compared to the Frölich model with coupling
strength α = 5.44 (appropriate for electrons with vacuum electron
mass m∗ = 1 in CsI).

smoothing) through the calculated results in figures where
appropriate. This variation comes from dependence of the
results on the direction of the velocity (we use velocities
randomly chosen from a uniform angular distribution). The
small (vanishing in the small q limit) phonon frequencies near
the zone center give rise to large Bose occupation factors and
hence large rates of stimulated absorption and emission of
phonons [terms proportional to N (T ,ωλ,q) in Eq. (7)]. Since
these terms largely cancel, the difference of these terms in
Eq. (7) has large fractional variation. We plot the contributions
to the total power from stimulated absorption and emission
(and their difference) in Fig. 6.

Examination of Fig. 5 shows that our ab initio estimates
have much more energy exchanged through the acoustic
modes, especially at low energies, than the previously used
phenomenological model (again we show the phenomenolog-
ical model for m∗ = 1, but the conclusion is not changed by
the use of any reasonable effective mass). At representative
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FIG. 5. (Color online) Computed power transferred by the longi-
tudinal acoustic phonons compared to the phenomenological model
of Ref. [13] evaluated with the vacuum electron mass m∗ = 1. Our
ab initio estimates are much larger than the phenomenological model
at all energies of interest.
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FIG. 6. (Color online) Contributions to the transferred power at
T = 297 K by stimulated processes.

particle velocities (e.g., the particle kinetic energy is half of
the band gap) the power removed from the particle by acoustic
modes is several times larger than that removed by the LO
modes. This is opposite to the behavior of the Sparks et al.
[22] model. The more efficient cooling by acoustic modes
leads to overall greater transferred power as seen in Fig. 7,
which shows our total computed results (including all phonon
branches throughout the Brillouin zone) compared to our
previous model [13]. There is more energy transferred, and
it mostly goes through the acoustic modes.

Bardeen and Shockley [35] pioneered the usual approach
to electron interactions with acoustic phonons with the
introduction of deformation potential (i.e., the change in the
band structure induced by local changes in lattice parameter
accompanying acoustic phonon excitation), which can be
closely related to the elastic constants of the material. This
picture is based on the assumption of a delocalized electron that
can interact with only the G = 0 component of the scattering
potential (umklapp processes are forbidden). Our model is a
complementary picture in which the particle is assumed to be a
classical point charge with no spatial extent. Such a particle is
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FIG. 7. (Color online) Computed transferred power as a function
of particle energy for room and zero temperature in CsI compared to
the phenomenological model from Ref. [13].
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much more likely to scatter from the variations in the potential
within the unit cell.

All of the theories of electron-phonon scattering discussed
here have the familiar form [displayed in Eq. (5)], in which
each loss channel contributes to the scattering from a given
initial state to each kinematically allowed final state by an
amount equal to the strength of coupling of the initial and
final states [in the current work this coupling strength is
Eq. (9)]. If the strength of the electron-phonon interaction
does not depend on the particle velocity (e.g., if the instan-
taneous Coulomb interaction is used, as is done in all the
models discussed here), the particle dispersion enters only
through kinematical constraints (i.e., conservation of energy
and momentum). Knowledge of two physical properties is
needed to make useful predictions: the interaction strength
(which determines the magnitude of the factor multiplying
the δ function) and the kinematics of a collision between
an electron and phonon (which determines the zeros of the
δ-function argument). Our understanding of electrons and
phonons is based on standard models [15–19,22–24,36,37]
which assume effective-mass dispersion. In this work we
have replaced semiphenomenological and ad hoc assumptions
about the interaction strength with ab initio calculations. Our
calculations yield a stronger particle-phonon interaction than
the standard models. Our use of classical dispersion for the
particle that is being scattered is equivalent to the normal
effective-mass approximation for dispersion.

It has recently been noted [2,26] that the effective-mass-
approximation predictions for particle velocity [v(k) = k/m∗]
agree very poorly with those from modern band-structure
calculations over the energy range of interest. For low-energy
electrons in a system with a nondegenerate conduction band
such as CsI, there is only one band that can host carriers,
and the assignment of the effective mass is unambiguous and
can be found reliably from ab initio calculations. But if the
particle’s energy is large enough (about 0.47 eV above the
conduction-band minimum in our LDA calculations), there are
multiple bands available for the electron, and the assignment
of an effective mass to these carriers is ambiguous. Also,
at higher energies, the computed bands are generally much
shallower than the effective-mass approximation (leading to
much higher effective masses). This can be understood by
noting that while the electron Bloch states are eigenstates
of the crystal momentum k, they are not eigenstates of the
total momentum k + G. Instead, the Bloch states contain
higher Fourier components with total momentum contributions
in different directions. Therefore, the expectation value of
the momentum operator will experience vector cancellation
of the momentum states and will tend to systematically
underestimate the magnitude of the momentum of individual
measurements. As a consequence, for higher-energy bands, the
dispersion E(k) will not be expected to adequately describe
the dynamics of particles propagating with a wave packet
composed largely of a narrow spread of momenta.

It is worth noting that the methods presented here can
be used not only for electrons but also for charged nuclear
particle radiation such as protons, alpha particles, and recoil
ions. In this case, the approximation of using classical motion
for the particle is expected to be less problematic. Back-of-
the-envelope estimates based on the Rutherford scattering

cross section suggest that our approximations will be valid
for heavy ions of high energy (with small scattering angles).
For slow, heavy ions, our approximations are expected to break
down as the average scattering angle increases. Specifically,
high-angle scattering is important for low-energy projectiles,
which experience greater momentum transfers than swift
particles. A rough criterion for the sufficiency of the grid
upon which the scattering potential is tabulated is that, in
atomic units, the product of energy cutoff that defines the
plane-wave grid and the projectile energy (in atomic units) be
greater than the ratio of the mass of the projectile to that of
an electron. At the same energy scale (and for related reasons)
the pseudopotential approximation will also become suspect.
The neglect of multiphonon processes also is not applicable to
slow, heavy ions since the typical energy transfer for collisions
involving such particles exceeds the phonon energies. We find
that the single-phonon approximation is valid when the ratio
of the projectile mass to the average mass of the nuclei in the
material is much less than the product of the projectile energy
and a representative phonon frequency. Finally, slow, heavy
ions are likely to be screened by electrons in the material, and
the current formulation does not account for this important
process.

VI. CONCLUSIONS

We have used detailed band-structure calculations to di-
rectly compute the density response to phonon excitation in
CsI and used these results to estimate the power by which
a charged particle moving through the material is slowed.
Our results show significantly higher power, especially for
acoustic modes, than the conventional models. We suggest
that thermalization time and distance estimates be reassessed.
We find that the dispersion relation for quasiparticles has
a significant effect on the rate at which energy is lost
by a quasiparticle. The discrepancy between the dispersion
resulting from band-structure calculations and the ubiquitous
effective-mass approximation poses a serious challenge to the
effort to update classic phenomenological models with first-
principles numerical models. A coherent picture that recovers
the standard models of electron-phonon interaction has not yet
been found. Experimental insight into quasiparticle motion and
scattering by phonons would be very valuable to illuminate the
microscopic physics of these important processes. We plan to
use various descriptions of phonon scattering and quasiparticle
dispersion in an attempt to improve our models of inorganic
scintillators, but more direct experimental insight into the
electron-phonon interaction would be very welcome.
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J.-F. Hergott, and L. Le Déroff, Phys. Rev. B 61, 9883 (2000).

[22] M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin,
L. J. Sham, E. Loh, and D. F. King, Phys. Rev. B 24, 3519 (1981).

[23] A. Akkerman, T. Boutboul, A. Breskin, R. Chechik, and A.
Gibrekhterman, J. Appl. Phys. 76, 4656 (1994).

[24] J. Llacer and E. L. Garwin, J. Appl. Phys. 40, 2766 (1969).
[25] F. Gao, Y. L. Xie, Z. G. Wang, S. Kerisit, D. X. Wu, L. W.

Campbell, R. M. Van Ginhoven, and M. Prange, J. Appl. Phys.
114, 173512 (2013).

[26] M. Prange, D. X. Wu, Y. L. Xie, L. W. Campbell, S. Kerisit, F.
Gao, Proc. SPIE 9213, 92130L (2014).

[27] X. Gonze, Phys. Rev. B 55, 10337 (1997).
[28] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
[29] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,

P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté
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