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Phononic thin plates with embedded acoustic black holes
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We introduce a class of two-dimensional nonresonant single-phase phononic materials and investigate its
peculiar dispersion characteristics. The material consists of a thin platelike structure with an embedded periodic
lattice of acoustic black holes. The use of these periodic tapers allows achieving remarkable dispersion properties
such as zero group velocity in the fundamental modes, negative group refraction index, birefraction, Dirac-like
cones, and mode anisotropy. The dispersion properties are numerically investigated using both a three-dimensional
supercell plane wave expansion method and finite element analysis. The effect on the dispersion and propagation
characteristics of key geometric parameters of the black hole, such as the taper profile and the residual thickness,
are also explored.

DOI: 10.1103/PhysRevB.91.104304 PACS number(s): 43.35.+d, 46.40.Cd

I. INTRODUCTION

Phononic crystals (PCs) are an artificial medium made of
two or more materials combined together to form a periodic
structure. These materials offer unusual wave propagation
characteristics such as acoustic band gaps [1–5], localized and
guided defect modes [6–8], filtering of acoustic waves [9–11],
acoustic lenses [12–14], and negative refraction [15,16], that
are typically not achievable in conventional materials. PCs
are often classified in two categories, nonresonant and locally
resonant [17], in order to highlight the difference between their
operating modes. The locally resonant materials exhibit low-
frequency resonances (typically in the metamaterial range) lo-
calized at the inclusion while the nonresonant materials exhibit
resonances of the inclusions only in the high-frequency range.
Owing to this mechanism, the wave propagation characteristics
in the low-frequency range are mostly impedance-driven for
the nonresonant materials and inertia-driven for the locally
resonant materials. These local resonances have been shown
to be strictly related to the generation of negative effective
properties (such as density and bulk modulus), which are at
the basis of double negative properties [18].

Despite such remarkable dynamic properties, extensive
integration of these materials into practical devices is still
lacking. The fabrication complexity (particularly for the
locally resonant type) and the nonstructural character (i.e.,
the fact that these materials are typically not load-bearing) of
conventional PC designs are among the main limiting factors.
In addition, the existence of numerous interfaces between
dissimilar materials or internal structures drastically affects the
overall load-bearing capability, the integrity, and the structural
endurance of the host mechanical system.

In this study, we propose a class of two-dimensional
structural PCs obtained by tailoring the geometry of a single-
phase isotropic material able to provide the same high-level
characteristics of locally resonant PCs. These materials are
synthesized by embedding a periodic lattice of carefully
engineered geometric inhomogeneities consisting of tapered
holes. These inhomogeneities can be (virtually) introduced in
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any material by simply manufacturing tapers having prescribed
profiles. This approach would potentially allow turning any
material (amenable to thickness tailoring) into a metamaterial.
Among the fabrication advantages of this design, we highlight
that it does not require any interface between multiple
materials and it can be retrofitted even to existing structures.
This could have critical implications, for instance, in the
development of highly absorbing thin-walled structures with
embedded passive vibration and acoustic control capabilities.
The proposed phononic structure (Fig. 1) consists of a thin
plate made of a periodic lattice of exponential-like circular
tapers, often referred to as acoustic black holes (ABH).

The physical principle exploited in ABHs was first observed
by Pekeris [19] for waves propagating in stratified fluids
and later extended to acoustics in solids by Mironov [20].
Mironov observed that, under certain conditions, flexural
waves propagating in a thin plate with an exponentially tapered
edge will theoretically never reflect back, therefore resulting in
the so-called zero reflection condition. More recently, Krylov
[21,22] exploited this concept to achieve passive vibration
control of structural elements, coining the term acoustic black
hole. The ABH consists in a variable thickness exponential-
like circular taper able to produce a progressive reduction of the
phase and group velocity as the wave approaches the center of
the hole. Typical thickness profiles are of the form h(x) = εxm,
where {m, ε} ∈ R, m � 2, and ε � (3ρω2/E)1/2 to satisfy
the smoothness criterion [20,23]. In ideal ABH tapers, where
the thickness decreases to zero, the phase and group velocities
tend to zero as they approach the center of the ABH. Under
this condition, the wave never reaches the center of the hole
therefore the reflection coefficient approaches zero (the wave is
not reflected back) and the hole appears as an ideal absorber.
Energy balance considerations show that, in the absence of
damping, the center of the hole becomes a point of singularity
for both the particle displacement [20] and the vibrational
energy [24]. In practice, the residual thickness at the center
of the ABH cannot be made zero due to both fabrication and
structural constraints. In the absence of damping, even the
existence of a small residual thickness (compared with the
full thickness of the plate) can produce appreciable levels of
reflected energy (up to 70% [20]). Nevertheless, considerable
wave speed reduction will still take place.
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FIG. 1. (Color online) (a) Schematic of the phononic thin plate
with a square ABH periodic lattice structure, (b) cross section of the
acoustic black hole showing the taper profile, (c) 3D supercell used
for the PWE model made by the combination of the plate unit cell and
by a thick vacuum layer, and (d) the assembled 3D structure obtained
by alternating the ABH plates and the vacuum layers.

II. NUMERICAL MODEL

We consider an infinite thin plate with a periodic distribu-
tion of ABH-like tapers forming a square lattice as shown in
Fig. 1(a). The plate has thickness h0 = 0.008 m and a taper
profile h(x) = εxm + hr , where hr is the residual thickness as
shown in Fig. 1(b).

The elastodynamic response of the phononic thin plate is
governed by the Navier’s equations:

ρ
∂2ui

∂t2
= (Cijkluk,l),j , i = 1,2,3, (1)

where ρ is the density, Cijkl is the stiffness tensor, and ui

are the components of the displacement field. Equation (1)
is also subjected to traction-free boundary conditions �T =
σ (�r) · �n(�r) = 0 at the upper and lower surfaces, where �n(�r) is
the normal vector to the surface, σ (�r) is the local stress tensor,
and �r the position vector from the center of the ABH. The
boundary conditions are applied at z = 0 on the bottom surface
and at z = h(x) if 0 � x � r or at z = h0 if r � x � 0.5a1 on
the top surface.

The dispersion relations are obtained from Eq. (1) by using
a three-dimensional supercell plane wave expansion (PWE)
approach [25]. According to this methodology, a supercell
made of the combined thin plate unit cell and of a vacuum
layer is first assembled [Fig. 1(c)]. The periodicity is then
enforced in the three coordinate directions resulting in the 2D
periodic thin plate of interest and in a series of mirror images
in the z direction. The vacuum layer ensures that these mirror
images are dynamically decoupled from each other and simply
result in repeated roots when solving the dispersion relations.

This modeling approach was selected because it allows a
much easier treatment of the traction-free boundary conditions
of the tapered thin plate. In fact, with the supercell approach,
the initial traction-free surfaces in the thin plate become
internal interfaces between the plate and the vacuum layer
therefore removing the need to impose explicitly the boundary
conditions. The model is virtually converted from a thin plate
into an infinite medium made of alternated metamaterial and
vacuum layers. At this stage, the material properties can
be approximated using a three-dimensional Fourier series
expansion. We highlight that this approach does not have
any physical implication and it is used only to simplify the
numerical modeling.

In order to solve Eq. (1), the position dependent density
ρ(�r) and elastic coefficients Cijkl(�r) are expanded in Fourier
series using the reciprocity vector �G = (Gx,Gy,Gz):

Cijkl(�r) =
∑
G

ei �G•�rCijklG
(2)

and

ρ(�r) =
∑
G

ei �G•�rρG, (3)

where ρG and CijklG
are the corresponding 3D Fourier

coefficients and are defined as

CijklG
= 1

V

∫
V

Cijkl(�r)e−i �G•�rdr3 (4)

and

ρG = 1

V

∫
V

ρ(�r)e−i �G•�rdr3 (5)

In the following analysis, the Fourier coefficients in Eqs.
(4) and (5) can be reduced to the single integral as

αG =

⎧⎪⎨
⎪⎩

α

a2
1a2

[ ∫ h0

hr

(
a2

1 − πr(z)2
)
e−iGz zdz + ∫ hr

0 a2
1e

−iGz zdz
]

if (Gx,Gy) = 0,

α

a2
1a2

[ ∫ h0

hr

−2πr(z)2J1

(√
G2

x+G2
y r(z)

)
√

G2
x+G2

y r(z)
e−iGz zdz

]
if (Gx,Gy) �= 0,

(6)

where α = (ρ,Cijkl) and r(z) = ( z−hr

ε
)

1
m and the single integrals are calculated via numerical integration using the Simpson

method.
Upon using the Bloch theorem and expanding the displacement vector �u(x,y,z,t) in Fourier series, we obtain

�u(�r) =
∑
G′

AG′ei[(�k+ �G′)·�r−ωt], (7)

104304-2



PHONONIC THIN PLATES WITH EMBEDDED ACOUSTIC . . . PHYSICAL REVIEW B 91, 104304 (2015)

where �k = (kx,ky,0) is the Bloch plane wave vector, ω is the circular frequency, and AG′ is the amplitude of the displacement
vector. Substituting Eqs. (2), (3), and (7) into Eq. (1) and collecting terms, we obtain the 3n × 3n set of equations:⎛

⎜⎝
C11

G,G′ C12
G,G′ C13

G,G′

C21
G,G′ C22

G,G′ C23
G,G′

C31
G,G′ C32

G,G′ C33
G,G′

⎞
⎟⎠

⎛
⎜⎝

A1
G′

A2
G′

A3
G′

⎞
⎟⎠ = ω2

⎛
⎜⎝

ρG,G′ 0 0

0 ρG,G′ 0

0 0 ρG,G′

⎞
⎟⎠

⎛
⎜⎝

A1
G′

A2
G′

A3
G′

⎞
⎟⎠, (8)

where the n × n submatrices CG,G′ are functions of the Bloch
wave vector �k, the reciprocal lattice vectors �G, the circular
frequency ω, and the Fourier coefficients ρG and CijklG

.
The detailed expression for the n × n sub-matrices CG,G′

can be found in [25]. Equation (8) can be written in the
form of an eigenvalue problem whose solution provides the
eigenfrequencies and the eigenmodes of the system.

In the following numerical study, we consider a reference
configuration consisting of a 0.008-m-thick aluminum plate
with tapers characterized by m = 2.2, ε = 5, radius r = 0.05
m, and residual thickness hr = 0.0011 m. The lattice has a
square configuration with lattice constant a1 = 0.14 m. The
reciprocal lattice constants retained for the expansion are Gx =
Gy = ±(6,5,4,3,2,1,0)2π/a1 and Gz = ±(3,2,1,0)2π/a2,
where a2 = 0.064 m. The selection of these reciprocal lattice
vectors resulted from a convergence analysis (results not
shown here) and was confirmed by direct comparison of the
dispersion relation with finite element analysis. The constant
a2 was selected so to dynamically isolate the different slabs in
the z direction.

III. DISPERSION RELATIONS AND GEOMETRIC
ACOUSTIC ANALYSIS

The band structure along the boundary of the first Brillouin
zone (BZ) for normalized frequencies 	 = ωa1

2πCt
up to 0.25

is shown in Fig. 2 where Ct =
√

C44
ρ

is the bulk transverse
velocity for aluminum.

The dispersion curves show several peculiar properties
that are typically observable only in locally resonant ma-
terials. Several nonmonotonous branches can be found in
the low-frequency range. In particular, for the fundamental
nonmonotonous modes the same branch is associated with
different mode types and group velocity regions. As an

FIG. 2. (Color online) Dispersion curves along the irreducible
part of the first Brillouin zone for the ABH phononic plate structure
in reference configuration. The inset shows a schematic of the BZ for
the square unit cell.

example, along the 
-X boundary the S0 mode evolves into the
A0 mode after crossing a zero group velocity point (ZGVP).
Similar behavior is observed for the SH0 mode that evolves
into a higher order flexural mode along the 
-X boundary. The
ZGVP point also separates regions with positive and negative
group velocity. It has long been known [26] that the higher
order Lamb modes in plates can display zero group velocity
points corresponding to waves having finite phase velocity
but vanishing group velocity. However, the occurrence of this
phenomenon is not common in fundamental Lamb modes.
A similar behavior was previously observed only in phononic
plates with pillar structures [27,28]. The ZGVP is related to the
existence of a standing wave associated with a local resonance
of the plate. The branch of the dispersion curve on the right of
the ZGVP is characterized by negative group velocity which
corresponds to backward wave propagation. The dispersion
curves also reveal a remarkable coupling between the different
mode types highlighting the existence of a phenomenon known
as mode hybridization [29,30]. The change in the mode
structure between the (A0) and the (S0) lamb modes occurs
very rapidly in the neighborhood of the ZGVP.

Several ZGVPs were also observed in the high-frequency
limit. Although this phenomenon was previously observed
both in phononic structures [29] as well as in homogeneous
thin plates [26], we observe that the fundamental mechanism
inducing the transition to negative group velocity is quite
different. In conventional phononic plates, the high-frequency
ZGVPs are induced by the mechanical impedance mismatch
between the background and the inclusions which ultimately
results in strong back-scattering effects. In ABH phononic
plates, the transition to negative group velocity is due to the
local inhomogeneity of the ABH cell that bends progressively
the incoming wave. The inhomogeneity created by the ge-
ometric taper produces a spatially dependent phase velocity
region that bends the acoustic ray in the direction of the
decreasing phase velocity gradient, that is towards the ABH
center. This mechanism was confirmed by performing a ray
acoustic analysis of the single ABH unit.

The governing equations defining the ray trajectory of a
bending wave inside a cylindrically symmetric tapered hole
can be written (neglecting modes conversion) in the form [31]:

dr

dθ
= r

1

tan α
, (9)

dα

dθ
= −1 − r

n

dn

dr
, (10)

nr sin α = const, (11)

where r and θ are the coordinates of a polar system having
origin at the ABH center, α is the angle between r and the
wave vector k, n(r) =

√
h(r)
h0

is the local refraction index, and
h(r) is the local thickness. Note that these results are valid
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FIG. 3. (Color online) (a) Schematic of the unit cell and of the
reference system used for the ray acoustic analysis. (b) and (c)
show the results of geometric acoustic analysis illustrating the effect
of different tapers on an incoming ray. (b) corresponds to the ray
trajectory for the reference configuration showing that the ray is bent
backward as it travels through the tapered area while (c) corresponds
to an ideal ABH taper (i.e., hr −→ 0), which would produce full
absorption of the incoming ray.

in the short-wavelength limit, which is assumed as that range
where the wavelength of the incoming fundamental flexural
mode λA0 � r , where r is the radius of the ABH.

Depending on the properties of the incoming ray and on the
geometric characteristics of the taper, particularly the taper
exponent and the residual thickness, the wave can be either 1)
slowed down and captured by the ABH therefore contributing
to the generation of a local resonance [Fig. 3(c)] or 2) bent
in the backward direction [Fig. 3(b)]. In the short-wavelength
limit, these conditions can be related to the generation of a
ZGVP and to backward propagation, respectively.

IV. BI-REFRACTION PHENOMENON

To further understand the wave propagation characteristics
of the ABH lattice structure, we calculated the equifrequency
contours (EFC) for the fundamental nonmonotonous mode
S0 − A0f (Fig. 4). Results highlight the existence, in the same
band, of a dual EFC contour associated with different group
velocity directions. This aspect is of particular interest because
it was shown in previous studies [29,32] to be a fundamental
condition for the existence of birefraction.

FIG. 4. (Color online) (a) EFC for the fundamental non-
monotonous mode S0 − A0f . The black arrow and the black dashed
line indicate the incident wave vector and the conservation line,
respectively. The red arrows indicate the direction of the refracted
waves. The black dashed circle represents the EFC of an incident
wave propagating in a homogeneous flat plate. (b) Schematic of the
birefraction mechanism.

FIG. 5. (Color online) Full field simulations illustrating the
positive-negative bi-refraction phenomenon. The incident wave was
emitted from a line source oriented at a 10◦ angle with respect to
the ABH slab and impinging along the 
-M interface of the ABH
lattice. The wave front emerging from the ABH slab clearly show the
occurrence of the bi-refraction effect (red and blue arrows).

To illustrate this phenomenon, we superimpose the EFC
corresponding to an incident wave at a fixed frequency prop-
agating in a homogeneous constant thickness plate (dashed
black circle). The wave vector of the refracted beam must
satisfy the k‖-conservation relation [29] kinc

‖ = kref
‖ + G‖,

where kinc
‖ and kref

‖ are the components of the wave vector
of the incident and refracted wave parallel to the interface,
G‖ is the parallel component of the reciprocal lattice vector.
The group velocity is given by Vg = ∇	(�k), which is always
perpendicular to the EFCs and pointing towards the direction
of increasing frequency. In our case, dual EFCs with opposite
group velocities co-exist at the same frequency, therefore
bi-refraction should be expected. As shown in Fig. 4(a), 
-M
is assumed as the interface boundary and the black solid arrow
represents the possible incident beam. The refracted beam
are determined by finding the intersection point between the
corresponding EFC and the conservation line (marked by the
black dashed lines perpendicular to the 
-M boundary). Since
the refracted beams are in the direction of the group velocity
at the crossing point (red and blue arrows), bi-refraction
with positive-negative directions can be achieved. A full
field simulation was performed to illustrate the transmission
properties of the ABH material at these frequencies. An
ABH slab aligned along 
-M direction was embedded into
an initially homogeneous thin aluminum plate. A flexural
plane wave front was generated by a line source located in
the flat plate and oriented at an angle of about 10◦ with
respect to the ABH slab. The flexural wave was generated
at the nondimensional frequency 	 = 0.0673 corresponding
to the bi-refraction region indicated by the EFC analysis. The
numerical results (Fig. 5) clearly show the occurrence of the
bi-refraction effect in the transmitted wave front emerging
from the ABH slab.

V. EXISTENCE OF DEGENERATE POINTS AND
DIRAC-LIKE CONES

Another interesting property of the ABH phononic plates
is the existence of several degenerate points not only at the
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FIG. 6. (Color online) (a) Close-up view of the dispersion rela-
tions around 	 = 0.594 showing the existence of a double degenerate
singularity. The insets I–IV show the modal displacements corre-
sponding to the modes labeled LU, RU, LB, and RB. The black
arrow shows the wave vector direction. Inset V shows the dispersion
relations when a small perturbation of the taper coefficient m is
applied. The slight change in the geometric configuration makes
the bell-like structure disappear while maintaining the degeneracy,
therefore indicating that the characteristics of the EFCs are dominated
by the geometric symmetry of the lattice structure. (b) shows the EFS
contour around the degenerate point.

boundary but also at the center 
 of the BZ. The latter is of
particular interest and deserves further attention. Each point
results from the intersection of upper and lower branches where
only a degenerate mode at �k = 0 exists. Both double and triple
degeneracies were observed on the 
 point depending on the
selection of the taper parameters and of the frequency range.
We will show that, while the double degeneracy is associated
with an interesting phenomenon of mode anisotropy, the triple
degenerate point leads to the formation of Dirac-like cones
(DC) [33–35] at the center of the BZ. An example of both
types of degeneracies is reported here below.

Figure 6(a) shows an example of double degeneracy at
the 
 point. The singularity around 	 = 0.594 originates by
the coalescence of two equifrequency surfaces (EFS). The
dispersion relations in the neighborhood of the degenerate
point are parabolic with zero slope at �k = 0, therefore
indicating zero group velocity.

By analyzing the branches emanating from the singularity
point (either along the 
-X or the 
-M boundary), we observe
that they correspond to pairs of dissimilar flexural modes
with different symmetry (see insets in Fig. 6(a) for the modal
displacement pattern). The branches along the 
-M boundary
are characterized by a spurious dipole eigen-structure with
mirrorlike symmetry, while branches along the 
-X boundary
exhibit a hexapole shape with a 90◦ rotation around the z axis.

A close-up view of the EFS around the degenerate point is
shown in Fig. 6(b). Note that the shape of the lower branch
clearly indicates anisotropic behavior while the upper branch
(close to the singularity point) is a quasicircular cone, there-
fore suggesting quasi-isotropic characteristics in the selected
frequency range. Each cone is composed of different modes
in the different propagation directions, therefore indicating
that the ABH-PC presents a peculiar mode anisotropy even
in presence of quasi-isotropic dispersion behavior (upper
branch). This concept is, in principle, analogous to the super-
anisotropy characteristic previously observed in certain type

of metamaterials [33] exhibiting degenerate singularities at the
center of the BZ.

Unlike the superanisotropic metamaterials where the de-
generate point was generated by accidental degeneracy [33],
this type of double degeneracy appears to be induced by the
symmetry of the ABH lattice structure. This observation is
supported by the result shown in the inset (V) in Fig. 6(a)
where a small perturbation of the ABH taper coefficient m from
2.2 to 2.5 (while keeping the remaining geometric parameters
unchanged) destroys the conelike behavior while maintaining
the degenerate point.

We highlight that this behavior is of particular interest
due to the existence of an atypical mode anisotropy. The
appearance of double degenerate points joining parabolic
dispersion curves on the 
 point is common in many periodic
materials. In fact, the parabolic nature of these curves follows
from the time-reversal symmetry of the wave equation which
imposes ω(−k) = ω(k). However, this symmetry would also
imply mode isotropy in the different directions which instead
is clearly violated in our structure.

For a different selection of the geometric parameters,
we also observed the occurrence of triple degeneracies with
Dirac-Cone-like behavior. By changing the ABH taper coeffi-
cient to m = 2.58 (while leaving the remaining parameters
unchanged), we identified triple degenerate points in the
center of the BZ as shown in Fig. 7(a). Contrarily to the
double degeneracy described above, this point at 	0 = 0.4212
exhibits the typical Dirac-Cone-like behavior [see Fig. 7(b)]
characterized by symmetry about the Dirac point (DP) and
by locally linear dispersion. The linearity results in a constant
and nonzero group velocity in the neighborhood of the DP, as
opposed to the double degenerate case. Unlike the previously
discussed degeneracy or the metamaterial configuration con-
sidered in Ref. [33], this DP was not associated with either
mode anisotropy or superanisotropy. Also in contrast with the
previous type of singularity, this triple point results from an
accidental degeneracy [36]. This observation is confirmed by
the results in Fig. 7(c) where, following a slight perturbation
of the ABH taper (taper coefficient m changed from 2.58 to 3),
the cones separate and the triple degenerate point splits into a
nondegenerate and a double degenerate mode.

FIG. 7. (Color online) (a) The dispersion relations around 	 =
0.4212 showing the existence of a triple-degenerate point and a Dirac
Cone (red box) when the taper parameter is set to m = 2.58. (b)
EFS plot around the DP showing the formation of the Dirac Cones.
(c) When the geometric configuration is slightly perturbed (taper
coefficient m changed from 2.58 to 3) the degenerate point and the
DC disappear, therefore indicating that the triple point and the DC
are due to an accidental degeneracy.
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FIG. 8. (Color online) (a)–(c) show the field pattern of the eigen-
states of the three degenerate modes near the DP.

Of particular interest are also the transmission properties
of the phononic ABH material when excited at or in the
neighborhood of the Dirac-like point [Fig. 7(a)]. Previous
studies have already highlighted the existence of a wide
range of peculiar transmission properties such as the zero-
refractive-index material [33,36], the pseudodiffusive trans-
mission [37,38], and the Zitterbewegung [39,40]. It was
shown in Refs. [36,41] that in photonic crystals with square
lattice geometry, the effective medium theory [42] could still
be applied in the short wavelength limit if the triple degenerate
state at the center of the BZ zone can be mapped to the
superposition of monopole and dipole eigenstates. This study
resulted in the observation that, at the Dirac Point, double
zero-effective properties indicating diffusive instead of wave-
like propagation can be achieved. Nevertheless, the effective
theory approach was not applicable to the study of the DP in
our ABH material because, beyond the fact that the DP point
occurs in the high-frequency range (λ0 = 0.63a calculated
from the A0 mode in the background material), the analysis of
the three degenerate eigenstates (Fig. 8) showed that the above
conditions were not satisfied.

For the above reasons, the wave transport properties around
the Dirac point were investigated by direct numerical simula-
tions using the finite element model in Fig. 9(a). The structure
consisted in a flat plate with an embedded slab of ABH material
with geometric properties consistent with those of the ABH-PC
configuration previously discussed. Perfectly matched layers
were used at both the left and the right boundaries to avoid
reflections while the top and bottom boundaries were treated
with periodic BCs in order to simulate an infinite plate. The
structure was excited by a flexural A0 plane wave generated
at the left boundary. The model was assembled and solved for
the steady-state response using COMSOL MULTIPHYSICS.

Two excitation conditions were explored. The first condi-
tion consisted in a plane wave at a frequency 	1 = 1.0271	0

off the DP but still in the linear dispersion range of the DC,
while the second consisted in a plane wave at a frequency
	2 = 1.0088	0, which is very close to the DP.

When the structure is excited at the 	1 we observe a
planar wave emerging on the right-hand side of the ABH slab
[Fig. 9(b)]. We already noted above that in this frequency
range the ABH material cannot be mapped to a zero or near-
zero effective property material, therefore the propagation
inside the slab is still of wavelike type and the wave front
reconstruction mechanism is mostly controlled by scattering
effects. As a further demonstration of this mechanism we
explored the response of the same flat plate configuration when
a defect [the circular through hole labeled “i” in Fig. 9(a)] is
introduced in the ABH slab. The response shown in Fig. 9(d)

FIG. 9. (Color online) (a) Schematic of the model used to in-
vestigate the wave transport properties around the Dirac Point in
the ABH-PC plate. The plate has perfectly matched layers on the
left and right boundaries and periodic boundary conditions on the
top and bottom boundaries. The excitation consists in a flexural
plane harmonic wave generated at the left boundary. The element
labeled (i) indicates the location of a structural defect consisting
in a through hole. The response of the plate is shown in terms of
the flexural displacement field generated at steady state in the intact
plate at a frequency (b) 	1 = 1.0271	0, which shows the occurrence
of a planar wave reconstruction behavior, and at a frequency (c)
	2 = 1.0088	0, which shows the occurrence of the Talbot effect. (d)
and (e) show the same response when the propagation occurs in the
defected plates with defect located at i. The analysis of the transmitted
field shows that the Talbot effect is able to induce defect immunity
while the planar wave front transmission is altered by the presence of
the defect as it should be expected in absence of double zero-effective
properties.

where the emerging wave front is clearly distorted by the
presence of the defect. This behavior is opposed to what
expected if the slab exhibited a diffusive propagation behavior
which would lead to the defect being undetectable from the
downstream field, a condition referred to as defect immunity.

The second interesting wave transport phenomenon was
observed when exciting the ABH slab at frequency 	2 that is
closer to the DP, as previously mentioned. Results [Fig. 9(c)]
show the existence of the so-called Talbot effect [43] that
consists in a near-field diffraction mechanism. According to
this effect, a plane wave propagating through a finite slab
of the periodic material is modified so that the emerging
wave (on the other side of the slab) replicates the periodic
geometry of the slab itself. The numerical results in Fig. 9(c)
clearly show the presence of the Talbot effect which alters the
transmitted field according to the lattice geometry. One inter-
esting characteristics of the Talbot effect is the insensitivity to
defects in the lattice structure. This property is illustrated by
propagating the same plane wave through a periodic slab with
an internal defect. Results [Fig. 9(e)] show that the scattered
field from the defect cannot be detected from the analysis
of the transmitted wave field therefore confirming the defect

104304-6



PHONONIC THIN PLATES WITH EMBEDDED ACOUSTIC . . . PHYSICAL REVIEW B 91, 104304 (2015)

immunity ability associated with Talbot effect. We note that a
similar transmission behavior was also reported at frequencies
close to a doubly degenerate DC in honeycomb lattice PC
made of iron inclusions embedded in water [44]. The inability
to describe the current material in the high-frequency range of
interest for the DP via the effective medium theory does not
allow to gain further insight into the fundamental mechanism
at the basis of the wave reconstruction and the Talbot effect. An
approach based on group theory or multiple scattering might
be able to provide further insight, although the development
of these modeling tools for tapered structures would require a
dedicated study which is beyond the scope of this letter.

VI. PARAMETRIC ANALYSIS

It was previously mentioned that the different properties
and coupling mechanisms observed in ABH metamaterials
strongly depend on the geometric parameters of the taper,
namely the residual thickness and the taper exponent. It is
therefore important to study how the band structure develops
and how the different modes are affected by the design
parameters. Due to the complexity of the structure, we
explored this dependence via a parametric analysis. Figure 10
shows the evolution of the dispersion relations with the
residual thickness. Figures 10(a)–10(c) correspond to different
residual thickness cases where the coefficients ε are set to
1, 3, and 5 meaning that the hole geometry varies from
shallow to deep. Figure 10(a) represents the shallow hole case
(hr = 0.006 26) where the effects of the ABH should be less
evident. As expected, the dispersion curves are quite similar
to those of guided waves in a flat plate. In the low-frequency
range, we observe the S0, SH0, and A0 modes and several
folded branches of the A0 mode due to the folding effect
induced by the periodicity. The only significant difference
is observed in correspondence to the mode crossing points.
At these points, we observe splitting of the original modes
and the generation of the nonmonotonous hybrid modes
connected by the ZGVP. The remaining part of the dispersion
relations is essentially unaffected. By increasing the ABH
slope [Figs. 10(b) and 10(c)], the splitting and hybridization
mechanisms become more evident even at higher frequency.
A physical interpretation of this anomalous dispersion can
be made in term of the coupled-wave theory [45]. When
two modes are coupled by a distributed mechanism (in our
case the periodic inhomogeneity created by the ABH taper),
significant interaction only occurs at synchronism, that is,

FIG. 10. (Color online) Dispersion relations for different resid-
ual thickness values: (a) hr = 0.0063, (b) 0.0039, and (c) 0.0011.

FIG. 11. (Color online) Dispersion relation for different taper
exponent values: (a) m = 3, (b) 5, and (c) 7.

near points where their dispersion curves cross. The coupling
causes a characteristic splitting of the dispersion curves at
the crossing point while, elsewhere, the modes are essentially
unaffected.

The other key design parameter is the exponential taper
coefficient m. We consider a progression of the ABH profile
from smooth (low m) to sharp (high m). For all cases, the
residual thickness is maintained constant at hr = 0.0011m by
properly adjusting the coefficient ε. The dispersion relations
are shown in Figs. 11(a)–11(c) for m = 3, 5, and 7. Of
particular interest is the appearance of a band gap between
the fundamental flexural mode A0 and the negative branch
of the fundamental nonmonotonous mode A0f (see green
dashed box) following the splitting of the folded A0 mode.
This band gap is related to the increased back-scattering
occurring at large m where the ABH smoothness criterion
is no more satisfied [20,23]. Overall, the higher frequency
modes (above the fundamental) are more evidently affected
by the change in the taper exponent. As an example, mode
I and II show substantial changes as m increases. These
two modes are characterized by monopolelike and dipolelike
modal displacement fields inside the ABH and therefore are
very sensitive to changes of the ABH profiles. Note also the
formation (around 	 = 0.1244) of a nearly flat band (mode I).
This flat mode suggests the existence of a deaf band which
does not couple with any external wave [46].

FIG. 12. (Color online) Dispersion relation for the limit case
limm→∞. (a) Schematic of the unit cell which tends to a cylindrical
inclusion, and (b) dispersion relation showing that the coupling
between the fundamental Lamb modes via the ZGVP disappears in
the absence of the smooth ABH taper.
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We observe that in the limit case of a large m coefficient
(limm→∞) that represents a very steep ABH unit, the configu-
ration will tend to a cylindrical notch having the same radius
and the same residual thickness [see Fig. 12(a)]. In this limit
case, the ZGVP disappears leading to the typical decoupled
fundamental Lamb modes S0 and A0. This result suggests that
the cause of the ZGVP and of the correlated mechanisms,
such as the negative bi-refraction, is in fact due to the specific
geometry of the tapered inclusions. Nevertheless, we cannot
exclude the existence of other tapered geometries exhibiting
similar properties.

VII. CONCLUSIONS

In conclusion, we have introduced a class of two-
dimensional nonresonant single-phase phononic crystals made
of a periodic lattice of acoustic black holes. The remarkable
dispersion characteristics of this material are of particular

interest because obtained by exploiting an extremely simple
design that does not require either the classical multi-phase
material or the resonant structure approach. In addition, this
design allows extending wave propagation mechanisms so
far observed in periodic materials to thin-walled structural
components therefore blurring the distinction between en-
gineered materials and structures. Despite their outstanding
simplicity, ABH-PCs provide the same plethora of wave
propagation effects typically observed in locally resonant
materials, including negative refraction, bi-refraction, Dirac
cones, and mode hybridization. The intrinsic nature of the
ABH-PC also allows extensive control of the propagation
properties during the design phase by simply acting on the
geometric parameters of the taper. It is expected that this
type of structural materials could have critical applications for
the development of high-performance thin-walled structures
providing, as an example, unprecedented vibration and noise
control capabilities.
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