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We study how polaronic states form as a function of time due to strong electron-phonon coupling, starting
from a hot electron distribution which is representative of a photoinduced metallic state immediately after
laser excitation. For this purpose we provide the exact solution of the single-electron Holstein model within
nonequilibrium dynamical mean-field theory. In particular, this allows us to reveal key features of the transient

metallic state in the numerically most challenging regime, the adiabatic regime, in which phonon frequencies
are smaller than the electronic bandwidth: Initial coherent phonon oscillations are strongly damped, leaving the
system in a mixture of excited polaron states and metastable delocalized states. We compute the time-resolved
photoemission spectrum, which makes it possible to disentangle two contributions. The existence of long-lived
delocalized states suggests ways to externally control transient properties of photodoped metals.
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I. INTRODUCTION

Ultrashort laser pump-probe techniques in condensed-
matter systems have opened the possibility to generate corre-
lated nonequilibrium phases, such as photoinduced metallic
states in Mott insulators [1], and to study their dynamics
on femtosecond time scales. On a fundamental level, seeing
how correlations evolve in time can shed new light on
many-body effects which have been investigated for decades
under equilibrium conditions. A paradigm example is the
formation of polaronic quasiparticles, i.e., the self-trapping
of an electron in a lattice distortion, or “phonon cloud.” This
phenomenon was predicted in the early days of quantum
mechanics [2] and has been thoroughly investigated for a
large class of systems [3—5], more recently also for ultracold
gases and trapped ions [6,7]. In nonequilibrium, however,
many questions related to the dynamics of systems with strong
electron-phonon coupling remain only partially understood.

Signatures of strong electron-phonon coupling and pola-
ronic effects in photoexcited systems have been found for the
self-trapping of excitons [8—11], in Mott insulators [12,13],
and in organic materials [14-16]. A direct observation of
the self-localization process was achieved by two-photon
photoemission for electrons in surface states which couple
to adsorbate layers [17-20]. While polaronic effects can be
visible already within one phonon period after photoexcitation,
it is not entirely clear how, and how fast, the actual polaron
ground state can be reached. The presence of nonequilibrated
polarons, on the other hand, would determine carrier mobilities
in transient metallic states and can thus be of importance also
for potential technological applications like ultrafast switches.
It is therefore important to pinpoint signatures of excited
polarons to understand their properties and whether these can
be controlled, e.g., by the photoexcitation process.

These questions have motivated considerable effort to
understand the nonequilibrium polaron dynamics from a
theoretical perspective. A large body of work has been
performed for the Holstein model [21], which describes
tight-binding electrons coupled to an optical phonon with
frequency wg. The physical picture for the polaron formation
process which has emerged from these studies suggests two
important bottlenecks: For large wg, one finds long-lived
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beating among well-separated polaron subbands in the many-
body spectrum [22,23], while in the opposite and experimen-
tally very relevant adiabatic regime, in which wq is smaller
than the electron hopping, a semiclassical argument [24,25]
predicts an energy barrier between delocalized and localized
states. In the present work our motivation is to accurately study
the adiabatic and nonadiabatic dynamics of the Holstein model
on the same footing. In a numerical analysis, this requires to
keep many phonon degrees of freedom at each site. The results
reveal how relaxation of high-energy electrons by emission
of phonons and strongly damped coherent oscillations come
together, in particular, in the adiabatic limit, leading to a
nontrivial transient state in which long-lived delocalized states
coexist with excited polaron states.

Even for a single electron (the relevant limit to describe
diluted polarons), the Holstein model is difficult to solve in
nonequilibrium because established approaches like quantum
Monte Carlo [26] cannot be used. Variants of exact diago-
nalization [22,23,27-31] provide an accurate and versatile
description of the electron-phonon dynamics in many regimes,
but they rely on a cutoff of the phonon Hilbert space and
become challenging in the adiabatic regime in which the
phonon cloud involves a large number of oscillator quanta. Our
work is based on nonequilibrium dynamical mean-field theory
(DMFT) [32], which is exact in the limit of large lattice coor-
dination numbers [33]. In DMFT, a lattice model is mapped
onto a single impurity coupled to a self-consistent bath. In
equilibrium, the DMFT equations for the Holstein model in
the limit of low electron density can be written in terms of
a continued fraction for the electron Green’s function [34].
Technically, this solution is similar to earlier diagrammatic
approaches [35,36] and also to the momentum-averaged tech-
nique [37,38], which have provided a solution throughout all
regimes of the single-electron Holstein model in equilibrium
(adiabatic and nonadiabatic, weak and strong coupling). These
diagrammatic techniques rely on a momentum-independent
self-energy, which is approximate in finite dimensions, but
shows good agreement with Monte Carlo, particularly in the
strong-coupling regime [39]. Here we generalize the approach
of Ref. [34] to the case of nonequilibrium DMFT. This
provides an exceptional case in which the nonequilibrium
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DMEFT equations can be solved in a numerically exact way for
anontrivial many-body problem. In contrast, the application of
nonequilibrium DMFT to most models apart from the Falicov-
Kimball model typically requires additional approximations in
the solution of the impurity problem (see, e.g., Ref. [40] for
the Holstein model).

II. MODEL AND METHODS
The Holstein model [21] is defined by the Hamiltonian

H=—J) (cle;+He)+ ) Hy), (M)
(ij) i

H) = woblb; + gni(bi + b)) + esn;. )

loc

The first term in Eq. (1) describes tight-binding electrons with
nearest-neighbor hopping J on a lattice; cj and ¢; are the
creation and annihilation operators of an electron on lattice
site i, respectively. The local part (2) of the Hamiltonian
represents one harmonic oscillator with frequency w, at
each lattice site, i.e., a dispersionless optical phonon mode,
whose coordinate X; = (biT + b;)/ V2 is linearly coupled to
the electron occupancy n; = c;r ¢i; €5 defines the zero of
the energy. We focus on the dilute limit, where correlations
between electrons are negligible, so that expectation values
of observables are proportional to the density ne = (cj ci)
and can obtained from the solution of the model with only
one electron. The hopping J is taken as a unit of energy,
and times are measured in terms of 1/J. The results are
obtained for a Bethe lattice with a semielliptic density of states,
D(e) = V4 — €2/\/2r.

To get an understanding of polaron formation in the
Holstein model, the limit of isolated lattice sites (atomic limit)
is a convenient starting point [41]. In this limit, the presence
of an electron on the site shifts the equilibrium position of the
oscillator: Omitting site indices for convenience, the local part
of the Hamiltonian can be rewritten as

, X

Hie = ZUX +XoP + P14 (es = Epi, (3)
where X = (b + b)/«/z and P = i(bf — b)/\/z are the co-
ordinate and momentum of the oscillator, respectively, Xo =
V28 /woit, and

Ep=% @)

is the lowering of the ground-state energy which defines
the bare polaron binding energy. In the lattice model, the
energy ratio E p /J distinguishes the regimes of weak-coupling
(Ep < J) and strong coupling (Ep > J). For strong cou-
pling, self-localized electron states at energy E = —Ep at
different sites are coupled by the hopping and form a band
of delocalized polaronic states; its bandwidth is reduced with
respect to the free bandwidth by the Frank-Condon factor,
which takes into account the coherent motion of the lattice
distortion with the electron, i.e., the overlap |(0|e'"%0|0)?
between the ground states |0) and ¢'”*¢|0) of the oscillator and
the displaced oscillator (3), respectively. A second important
scale for the Holstein model is the ratio o = wp/J, which
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distinguishes the adiabatic behavior (« < 1), in which the
phonon is slow compared to the electron, from the nonadiabatic
behavior (o 2 1). In the adiabatic strong-coupling regime, the
number of oscillator quanta in the phonon cloud proliferates
(in the atomic limit, (b'b) = g2 /a)(z) = Ep/wy), which makes
the dynamics in this regime qualitatively distinct from that in
the nonadiabatic regime.

To study polaron formation in time, we start the simu-
lations from an initial state in which electrons and lattice
are decoupled, and the mean kinetic energy of the electron
is comparable to the free bandwidth, whereas the lattice
temperature T, is low (T, < J,wp). This initial state may
be taken as a simple model for the situation immediately
after electrons have been promoted into an empty valence
band by photoexcitation from a conduction band, because
the process of rapid interband excitation leaves the lattice
unaffected up to a good approximation. The precise form of
the initial electron energy distribution is not important for the
subsequent dynamics as long as it is broad on the scale of the
bandwidth, and we take it to be a hot electron distribution with
electron temperature 77 ~ 110 J.

To monitor the dynamics of the model, we compute the
time-resolved photoemission spectrum, which can be obtained
from the electronic Green’s function. In the low-density limit,
the relevant propagators for adding an electron (G~) and
removing an electron (G <) are given by

G (1) = ;—STTN=0[€_ﬁHCi(l)Cj(f/)]» (5)

i

G=(t,1) = Try—ile PP cl(t)ei ()], (6)

Zng

where Try—, is the trace over the n-electron sector, and
Z, = Try—,[e"#"]. [Note that we have assumed translational
invariance and normalized G= by the electron density nej, so
that G=(t,r) = i.] The photoemission spectrum as a function
of probe time ¢ and energy w is obtained from G= by partial
Fourier transform and convolution with the envelope S(¢) of
the probe pulse [42],

_ dt 1dl‘2 io(ti—0) 73
l(w,t) = o S(1)S(r2)e G=(t+t,t+1n). (7)

In equilibrium, 5<(t,t/) is translationally invariant in time, so
that /(w) is given by the convolution

[(w) = / do' A<(w — )|S(@))? 8)

of the power spectrum |S(w)|> = |fdte”‘”S(t)| /2 of the
probe pulse with the occupied density of states, A~(w) =
(1/2mi) f dtet® G<(t 0). In addition to the photoemission
spectrum, we compute time-local observables, i.e., the kinetic
energy per site, Eyi,(f) = —J ZW (cjcj)/Lnel, as well as the
average number of oscillation quanta in the phonon cloud (i.e.,
at a site occupied by an electron), Npy(t) = (n; bT )/ ne (the
expectation values are translationally invariant and normahzed
by the electron density).

We compute the dynamics of the Holstein model using the
nonequilibrium generalization of DMFT [32], yielding both
Green’s functions (5) and (6). In equilibrium [34], computing
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the propagator G~ is sufficient, because G~ and G = are related
by a fluctuation dissipation relation. For the nonequilibrium
case, we thus have to reformulate the equations of Ref. [34]
in real time and provide additional equations for G< (or
equivalently, one set of equations on the Keldysh contour).
The resulting equations are Volterra integral equations whose
numerical solution is controlled by the maximum number Np,x
of phonons on each site; the computational effort increases,
however, only linearly with Np., so that we can obtain
converged results with Np,x = 50 for several tens of hopping
times. To keep the presentation concise, the detailed formalism
is explained in Appendix A.

III. RESULTS

A. Weak coupling regime

The weak-coupling regime is rather well described by rate
equations (see below), which can capture the cooling of the
initial hot electron state by emission of phonons. Nevertheless,
itis illustrative to look at the corresponding DMFT solution, to
contrast the behavior for strong coupling below. Figures 1(a)
and 1(b) show the relaxation of the kinetic energy and the
phonon number N, for various coupling strengths g. After a
short transient, the time evolution of both quantities follows a
monotonous relaxation, which becomes faster with increasing
coupling strength. Similarly, the relaxation can be seen in the
time-resolved photoemission spectrum [Fig. 1(c)]. At early
times, the occupied density of states reflects the initial hot
electron state and is smeared over the full band. [In the
uncorrelated equilibrium state, the occupied density of states
is A<(w) o« D(w)e~*/Td ] Subsequently, electrons reduce their
kinetic energy by the emission of phonons, and spectral weight
is concentrated closer to the lower band edge.

For weak electron-phonon coupling, relaxation phenomena
at long times are captured by a kinetic equation [43], which is
also in agreement with exact diagonalization studies [22,31].
For low lattice temperature (7}, << wp), an electron with band
energy € can only emit phonons, at a rate determined by the
coupling g and the density of (final) states,

—— = g’ D(e — wy). )

This result is obtained from Fermi’s golden rule or, equiv-
alently, the imaginary part of the equilibrium self-energy
ImX (e 4+ i0). The g? dependence of the relaxation time is
indeed confirmed by the DMFT results when one fits the
time dependence of the photoemission spectrum /(w,?) in
a certain energy window with a simple exponential function
Aexp(—t/t) + C [thisis analyzed further below; see the curve
1/t in Fig. 5(d)]. Furthermore, from Eq. (9) one sees that
a thermal equilibrium state can never be reached, because
the density of states vanishes if the final energy € — wy is
below the lower band edge. This phase-space effect can be
seen explicitly in our data: At long times, the time-resolved
photoemission spectrum remains shifted with respect to the
spectrum of the equilibrium state at temperature 7 = Ty, [see
dotted horizontal lines in Fig. 1(d)].

Finally, we note that, due to the energy-dependent relax-
ation time, the long-time asymptotic behavior of averaged
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FIG. 1. (Color online) Relaxation in the weak-coupling regime.
(a) Time evolution of the kinetic energy for three values of the
coupling (T« = 0.1, T] = 10, wy = 1). The inset shows the power-
law behavior of d Ey;,/dt for g = 0.4; the red line represents data,
the dashed black line is a power law ~1/¢3. (b) Time evolution
of the average phonon number for the same parameters. The
horizontal dashed lines indicates the corresponding values of Ny, in
thermal equilibrium at 7 = Tj,. (¢),(d) Time-resolved photoemission
spectrum /(w,t) for g = 0.2. The spectrum is obtained from Eq. (7),
using a Gaussian probe pulse S(¢) o exp(—t2/28%) with duration
8§=3.

quantities is not necessarily exponential. This can be seen for
the kinetic energy: For a density of states D(e) «x /€ — E
with a van Hove singularity at the lower band edge E, (as
for a three-dimensional lattice or the semielliptic density
of states used here), the rate Eq. (9) implies a power-law
long-time asymptotic behavior of Ey;, with d Ey,/dt ~ 173,
(For a one-dimensional density of states, one would expect
an exponential decay [31].) This behavior is observed in
the numerical data [see Fig. 1(a), inset], which is a nice
confirmation of the rate equation analysis.

B. Strong coupling regime: Overview

In the remainder of this paper we focus on the intermediate
and strong coupling regime, where small polarons are formed
in equilibrium. Figure 2 shows the relaxation of Ey;, and
Npn for couplings Ep ~ 1 to Ep ~ 2 and phonon frequencies
wo = 0.2 and wy = 1 in the adiabatic and nonadiabatic regime,
respectively. The sudden coupling of the electron and phonons
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FIG. 2. (Color online) Relaxation of Eyj, and Ny, at strong and
intermediate coupling. (a),(c) Nonadiabatic regime (wy = 1) for
Ep=1(g=1)and Ep =2.25(g =1.5) and Ty = 0.2 and T} =
10. (b),(d) Adiabatic regime (wy = 0.2) for Ep = 1.25 (g =0.5)
and Ep = 1.8 (g = 0.6) and initial conditions 7T; = 1 and T} = 2.
Horizontal dashed lines indicate expectation values of the respective
quantities in equilibrium at 7' = T,.

leads to coherent oscillations, which are more pronounced for
large wy. Furthermore, the absolute value of the kinetic energy
becomes smaller with increasing g, indicating a stronger
localization of the carriers, and Ny, shows a pronounced
enhancement of the phonon cloud. These effects provide a first
glance at the crossover from intermediate to strong coupling.
A further analysis of the photoemission spectrum (Fig. 3)
shows that the observed dynamical results from a mixture
of two different relaxation paths involving either delocalized
and localized states.

In the adiabatic case, wy = 0.2 [Figs. 3(a) and 3(b)], we can
distinguish several characteristic features in the photoemission
spectrum. (i) There is a rapid decay of the weight at high
energies (o 2 1, t < 20), starting from the broad distribution
of the initial hot electron state. (ii) There is a buildup of spectral
weight far below the lower edge of the free band (around
w = —3) within less than one period 2w /wy and a beating
of weight between this region and w ~ 0 at the frequency
wy. (iii) Finally, even though the oscillations are damped, the
spectrum is still different from the spectrum in the thermal state
at temperature T = Ty, [dashed line in panel (b)] and displays
two peaks instead of a single polaron band. Other than at weak
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FIG. 3. (Color online) Time-resolved photoemission spectrum
I(w,t) at strong coupling. (a),(b) Adiabatic regime: wy = 0.2, g =
0.66 (Ep = 2.18), Tiy« = 0.1, T = 10. The spectrum is computed
from Eq. (7) with a Gaussian probe pulse S(¢) oc exp(—t2/28%) and
a probe pulse duration § =3 smaller than the oscillation period
21 /wy. The right panel (b) shows the spectrum at selected times
and a comparison to the equilibrium spectrum at 7' = T, (black
dashed line); the energy zero € is fixed such that w = 0 is the lower
edge of the free band. (c),(d) Similar to panels (a) and (b) for a
comparable value of the polaron binding Ep in the nonadiabatic
regime: wy =1, g = 1.5 (Ep = 2.25), Tiae = 0.1, Tj = 10. Probe
pulse duration § = 1.

coupling, the differences between transient and equilibrium
spectra occur on energy scales considerably larger than wy.
Spectra for the nonadiabatic regime (wg = 1) are shown in
Figs. 3(c) and 3(d): Coherent oscillations are reflected in a
rigidlike shift of the occupied density of states, and a two-peak
structure of the transient state is not observed.

To develop a physical understanding of these observations,
we perform an analysis in two directions: A comparison
to the spectrum of an isolated site will allow us to single
out characteristic spectral signatures of (excited) polaron
states and show how they reflect the structure of the phonon
cloud, and a momentum-resolved spectrum will distinguish
contributions from polarons and delocalized electrons.

C. Atomic limit and spectroscopic signatures of excited polarons

In the atomic limit, the Holstein model can be solved ana-
Iytically, both in and out of equilibrium, using a Lang-Firsov
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transformation [41] or its time-dependent generalization [40].
Details of the solution are summarized in Appendix B. In
the ground state, the polaron corresponds to the displaced
oscillator [Eq. (3) with n = 1], and the occupied density of
states is given by a set of § peaks,

A< (w) = Z P(n)d(w — Ep — nay), (10
n=0

where the weights P(m) are given by the phonon number
distribution in the polaron state. This result has an intuitive
understanding: Photoemission removes an electron from the
bound state at energy —Ep and transfers the oscillator into
its excited state |n) with a probability which is given by the
overlap of |n) and the oscillator state |y) before removing
the electron, |(n|¥)|> = P(n). At zero temperature, |/) =
e'*0P10) is the ground state of the oscillator (3) with Xo =
V2g/w, and P(n) = e‘szz’l/n! is a Poisson distribution
with mean y? = g?/w]. The corresponding photoemission
spectrum, Eq. (8), already matches the lattice result quite
accurately for the parameters of Fig. 3, as shown by the curves
labeled m = 0 in Figs. 4(a) and 4(b). It is thus worthwhile
to take the isolated site also as a starting point to analyze
the peculiar double-peak spectra of the nonthermal state after
dephasing of oscillations transient state at wy = 0.2. (The
dephasing of oscillations is studied in more detail in Sec. III E.)

At first sight, one may assume that a peak in I(w,?)
which is shifted several multiples of wy with respect to the
ground-state polaron implies a highly excited state. We now
argue, however, that the two-peak structure of the spectrum in
the adiabatic case can be taken as the characteristic signature
of a low lying excited polaron state. For this purpose we
compute the photoemission spectrum for an isolated site,
assuming that the displaced oscillator is initially in its mth
excited eigenstate. In this case Eq. (10) still holds, with the
phonon excitation energy nwy in the § function replaced with
(n — m)wy. The phonon distribution function of the exited
state, P,,(n) = |(m|e'?*o|n)|?, is given by

1m!

Byl m) = Pymy o= S LG, (D)
where Py(n) = e”’zyz” /n! is the Poisson distribution of the
ground state (y = g/wo), and LV (x)is a generalized Laguerre
polynomial (see Appendix B). In particular, we have L(I")(x) =
n+ 1 —x, i.e., the distribution function P;(n) is suppressed
at n = y2 (close to the maximum y? of P,), which implies
a double peak. In general, the mth polynomial has m zeros,
reflecting the probability distribution function of the oscillator
coordinate. A comparison of these excited-state spectra with
the time-dependent spectra of the lattice model shows that the
splitting of the two peaks in /(w,t) [Fig. 4(a)] or the width of
the distribution [Fig. 4(b)] after the decay of the oscillations
is well in agreement with the fact that a low-lying excited
polaron state (m = 0,1,2) is reached. The main difference to
the lattice result is a strong enhancement of the peak around
o = 0 in the adiabatic case, which is analyzed in Sec. III D.

Because in the atomic limit the photoemission spectrum
reflects the number distribution function in the phonon cloud,
it is interesting to analyze P(n) directly in the lattice model
and see whether a similar relation can be established. The
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FIG. 4. (Color online) Photoemission spectrum for the atomic
limit. (a),(b) Time-independent spectra, obtained from a single-
site. Holstein model which is occupied by one electron and in
which the oscillator is initially either in the ground state of the
displaced harmonic potential Eq. (3) [“polaron ground state” m = 0;
see Eq. (10)] or in an excited state [“excited polaron” m = 1,2;
see Eq. (11)]. Parameters are like in Fig. 3: wy = 0.2, g = 0.66,
probe pulse duration § = 3 for panel (a) and wy = 1, g = 1.5, probe
pulse duration § = 1 for panel (b). The blue solid line is the spectrum
taken from Fig. 3. Note that the energy zero €, for the spectra in
the atomic limit is adapted to account for the difference between the
polaron binding energy in the lattice and a the isolated site. (c),(d)
Photoemission spectrum after a sudden switch-on of the coupling g
[obtained from Eqgs. (7) and (13)] for the same parameters as (a) and
(b), respectively.

phonon-number distribution in the lattice, which is defined by
the translation-invariant correlation function

1
Pon(nit) = 7= 3 {8y, (1) (12)

is plotted in Fig. 5 for various coupling strengths in the
adiabatic limit. Initially (at time zero, not shown), the dis-
tribution is a Boltzmann distribution Pyy(12,0) oc e="@0/ Tiar,
In the equilibrium state at coupling g (dashed lines), the
formation of a polaron is indicated by a peak at finite n = neg,
which approaches the Poisson result neq = g2 /a)é = Ep/wy
for large g; see Fig. 5(d). The real-time data [solid lines in
Figs. 5(a)-5(c)] show an initial increase of phonon numbers
(phonon states up to n = 50 must be kept to simulate the
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FIG. 5. (Color online) Phonon number distribution and polaron crossover. (a)—(c) Pp(n) at wy = 0.2 for different couplings and times
(Thaw = 0.1, T = 10). The dashed black line corresponds to the equilibrium state at temperature Tj,,. (d) The position of the maxima in Py (1)
for equilibrium (7.4, orange solid circles) and at time ¢ = 40 (blue solid circles; see right vertical axis). Open symbols show the ratio Aw/w, at
the same time, where Aw is the splitting of the two peaks in the photoemission spectrum. Dashed lines labeled m = 0,1,2,3 show the positions
of the maximum of the distribution functions of the displaced oscillator in its mth eigenstate [cf. Eq. (11) with y = g/w,, the maximum with
the largest n is shown]. The red curve with square symbols (left vertical axis) shows the relaxation time 1/t of the high-energy part of the

photoemission spectrum (see main text).

dynamics in this regime). For the weaker coupling case
[Fig. 5(a)], Ppn(n,t) then evolves towards the equilibrium
distribution. For couplings beyond a crossover scale g &~ 0.58
(g2 = 0.336, Ep = 1.68), where the polaron peak forms in
equilibrium, a maximum »* which is shifted with respect
to neq appears in addition to the zero-centered distribution
[Figs. 5(b) and 5(c)]. Comparison of n* with the position of
the maximum of the distribution of the excited polaron states
[Eq. (11)] for m = 0,2,3 also confirms the previous finding
that the polaron is transferred into an a low-lying excited state.
A similar characterization of excited polaron states by their
number distribution has also been discussed for an isolated
Holstein impurity [23].

The relation (10) in the atomic limit would imply that the
separation of the two maxima n =n* and n =0 in Py, is
related to the separation Aw of two peaks in the photoemission
spectrum /(w,t) by Aw/wy = n* (up to the energy resolution
of the probe pulse). This relation indeed holds quite accurately
in the lattice [see Fig. 5(d)]: the position of the maxima n* at
large time (¢ = 40) depends on coupling and time, but it quite
accurately matches the value Aw(t)/wy [open and solid blue
circles in symbols in Fig. 5(d)]. Hence, the photoemission
spectrum is a good measure for the phonon cloud also in
the lattice model. In particular, we note that in the adiabatic
case excited polarons appear generically for couplings beyond
crossover scale for polaron formation in equilibrium, and since
the splitting Aw is of the order of Ep rather than the small
scale wy, this feature could be taken to monitor the polaron
crossover in experiment. On the other hand, it is interesting to
see that no signature of the crossover is seen in the behavior
of high-energy electrons. For this we integrate the spectrum
I(w,t) over the high-energy part [2 < w < 6 in Fig. 3(a)] and
fit the result with an exponential function A exp(—¢/7) + C.
The relaxation rate 1/t is a smooth function and almost linear
with of g2 over the whole crossover regime [see red line in
Fig. 5(d)].

D. Disentangling free and bound states

We now focus on the marked asymmetry of the two peaks
in the transient spectra [Fig. 3(b)]. Because the peak at higher
energy also roughly coincides with the energy of the lower
band edge in the free band, one may assume that the additional
weight of the peak at higher energy is due to a contribution
from delocalized states. To confirm this picture, we look
at the momentum-resolved photoemission spectrum I (k,w,t)
to show that the asymmetric contribution is localized in k.
I(k,w,t)is obtained from Eq. (7) by replacing the local Green’s
function with the momentum-resolved Green’s function
Gpt,t) = iTrNZl[e’ﬁHc,Tc(t’)ck(t)]/Z. With a momentum-
independent self-energy, dependence on k appears only via
the electron dispersion €, which extends from —2 to 2 for
the semielliptic density of states. The local spectrum is simply
I(w,t) = [deD(€)I(e,w,1).

In Fig. 6, I(ex,w,t) is plotted for two different times. At
early time one observes one maximum wj(ex) in I(€x,w,t)
for each ¢ [see white dotted line in Fig. 6(a)]. The linear
relation w; ~ ¢ still reflects the behavior of free electrons.
At later times, a flat band with two maxima w;(¢;) and
wy(ex) appears, which reflects the polaron states [white
dotted lines in Fig. 6(b)]. The ratio of the two maxima,
I(e,w1(€),t)/1(e,wy(€),1), is, however, strongly enhanced at
€ =—2; it is 25.06, 0.92, and 0.597 for ¢ = -2, 0, 2,
respectively. This confirms that the asymmetry of the two peaks
in the k-integrated spectrum /(w,?) indeed comes mainly
from the region €4 = —2 and thus may be assigned to an
additional contribution from delocalized states, which could
not be disentangled from the upper polaron peak by the
energy-resolved spectrum alone.

The presence of metastable delocalized states has long
been predicted from semiclassical arguments [24,25] from the
existence of a potential energy barrier between delocalized
and polaron states in the adiabatic potential Vyq(x). In high
dimensions [34], the latter is given by the sum of the classical
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0123456

t=50

FIG. 6. (Color online) Momentum-resolved
spectrum /(k,w,t) for two different times as a function of the
electron dispersion €; in the adiabatic case [same parameters as
Figs. 3(a) and 3(b)]. Dotted lines show the location of the maximum
intensity as a function of w. The inset in (a) shows the adiabatic
potential for g = 0.66 and wy = 0.2 (see text).

photoemission

energy cost wox?/2 for displacing the oscillator at one lattice
site and the corresponding lowering of the ground state due to
the impurity with potential v/2gx. Since the electronic ground-
state energy is not lowered if the impurity potential lies within
the bandwidth, there is always an energy cost for creating
small distortions and thus an energy barrier for bringing the
system into a self-trapped state. In infinite dimensions, V,q(x)
can be computed analytically [34]. In weak coupling, Vi
slightly deviates from the zero-centered harmonic oscillator.
A second minimum in V,4 appears for Ep > 1.28 = E S.}) and
becomes the global minimum for Ep > 1.68 = E 532) ; see inset

Fig. 6(a). Note that the scale Eﬁ?’ is nicely in agreement
with the crossover scale g = 0.58 in Fig. 5, beyond which
we observe the formation of excited polarons. The global
minimum describes the ground-state properties of the localized
state, and the local minimum at x = 0 corresponds to a
delocalized state in the semiclassical picture.

E. Coherent oscillations

In this section we finally discuss the initial coherent
oscillations which follow the coupling of the electrons to the
lattice and the resulting sudden displacement of the oscillator
zero. In the nonadiabatic regime, oscillations are reflected in a
rigidlike shift of the band [Fig. 3(c)]. One can see that this is the
behavior expected for a single oscillator: In the atomic limit,
the Green’s function for a sudden switch-on of the coupling
can be obtained exactly; it is related to the time-translationally
invariant equilibrium one [GZ(f) =i [ dwe™ " A=(w), with

Eq. (10)] by a simple time-dependent factor (see
Appendix B),
G (t.1) = G5t —H QM Q* (1), (13)
O(t) = exp [2ig” /wj sin(wot)]. (14)
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In the photoemission spectrum [Eq. (7)], the oscillating factor
Q(t) roughly acts like a shift of the probing frequency w by
2Ep cos(wpt) when the probe pulse is shorter than 27 /wy,
so that the sin[wo(t + #1)] ~ sin(wot) + tywy cos(wot) in Q(1).
The resulting photoemission spectrum is shown in Figs. 4(c)
and 4(d). (Longer pulses, which average over many cycles,
would lead to time-independent bands split by wy.)

From the comparison of Fig. 3 with Figs. 4(c) and 4(d) it is
apparent that only in the nonadiabatic regime does the lattice
result reflect the coherent oscillations found in the atomic
limit. This shows a qualitative difference between the two
regimes. In the adiabatic regime, the same bare polaron
binding Ep corresponds to a larger number of phonon energy
quanta. An electron can thus easily emit several phonons
to neighboring sites, so that vibrational dephasing occurs
already on the time scale of one phonon period. In the
nonadiabatic regime, in contrast, the total excitation energy
corresponds to very few oscillator quanta right from the
beginning, so that emission of phonons is restricted by phase
space effects and the system remains in long-lived beating
oscillations, which is in agreement with results from exact
diagonalization [22,23].

IV. CONCLUSION

In conclusion, we have obtained the solution of the single-
electron Holstein model within nonequilibrium DMFT. The
DMFT self-energy can be computed numerically exactly
using a nested set of real-time integral equations that gen-
eralize its continued fraction representation of Ref. [34] to
nonequilibrium. The results provide a comprehensive picture
how an excited “hot” electron distribution relaxes due to
optical phonons, both at weak and strong coupling, and in
the adiabatic and nonadiabatic regimes. Most important are
the results for small phonon frequencies (adiabatic regime)
and strong coupling, where polaronic states are expected
in equilibrium. After a quick dephasing of initial coherent
oscillations, the system reaches a state in which excited
polarons coexist with metastable delocalized states. While we
cannot resolve the final relaxation to the ground state (the time
range of our simulations extends to several phonon periods),
the observed transient features are expected to be important
for a photoinduced metallic state at strong-electron-phonon
coupling. (In fact, in real systems the lifetime of the entire
photoinduced state may be shorter than the final equilibration
time.)

Moreover, we discuss how the photoemission spectrum
reflects properties of the phonon cloud and can thus be used
to characterize the transient state: Excited polarons lead to a
characteristic double-peak structure of the almost flat (i.e.,
weakly momentum dependent) polaron band. Delocalized
states, on the other hand, can be identified because their
distribution is peaked in momentum space. Nonequilibrium
polarons and metastable delocalized states appear beyond a
well-defined polaron crossover scale. At the same time, no
signature of the crossover is seen in the relaxation behavior
of high-energy electrons. This suggests that the high-energy
relaxation rates can be used in experiment to estimate the
coupling by a analysis in terms of the Fermi golden rule [44],
even in the regime where small polarons are formed.
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As far as a comparison is possible, our results are in
qualitative agreement with earlier predictions and with results
for low-dimensional systems: A beating between excited
polaron states in the nonadiabatic case is in agreement with
exact diagonalization results for one dimension [22,23]. The
dynamics of the strong-coupling adiabatic regime most diffi-
cult to describe in a quantum mechanical lattice calculation.
A barrier for relaxation from delocalized states to self-trapped
states was predicted by semiclassical arguments [24,25], and
it is in agreement with the occurrence of a level anticrossing
between localized and delocalized ground states in the energy
spectrum [22].

Even though the simple Holstein model is not directly
applicable to many experiments, the coexistence of long-
lived polarons and metastable delocalized states may be
qualitatively correct for systems which at the moment do not
allow for a simple modeling. In fact, the coexistence of a Drude
peak and polaronic features in photoexcited states has been
observed in optical experiments on TaS, [12]. If delocalized
states are stabilized by an energy barrier, this suggests unique
ways to control the properties of photoexcited states: The
number of mobile carriers may be modified by a second pulse
that helps to bring electrons over the barrier, either by field
localization of the electrons, which can transiently increase
the electron-lattice effects [45], or by exciting the delocalized
carriers. In this way the carrier mobility could be lowered
by a pulse, allowing for a controlled switch-on of a metallic
state (by photoexciting carriers), followed by a switch-off (by
localizing carriers). Such possibilities will be investigated in
future work. From a technical perspective, we note that the
structure of the DMFT equations in equilibrium (a continued
fraction) is similar to the momentum-averaged technique [38].
Hence, the Green’s function formalism presented in our work
can be directly applied to extend the latter approach to
nonequilibrium, which would be a promising way to study
the time-resolved optical conductivity of the transient state in
finite dimensions [39].

Note added. We would like to mention the recent publi-
cation of work by Dorfner et al. [46], providing a compre-
hensive analysis of the single-electron Holstein mode in one
dimension. Although the main focus of this paper is not in the
adiabatic regime, the results for the weak-coupling regime are
in agreement with our discussion.
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APPENDIX A: NONEQUILIBRIUM DMFT FOR THE
HOLSTEIN MODEL

1. Nonequilibrium DMFT for the Holstein model

In this Appendix we present the exact solution of the
nonequilibrium DMFT equations for the Holstein model in
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FIG. 7. (Color online) The Keldysh contour, ranging from time
0™ on the upper real-time branch to some maximum time f,,,, back
to 0, and to the imaginary time —i8. Arrows indicate the direction of
contour ordering. We use the notation ¢ > ¢’ (t < t"), where 7 is later
(earlier) on C than ¢'. In the figure, —i > t3 > 1, > 1; > 0.

the low-density limit. For an introduction to the Keldysh
formalism, as well as the notation for Keldysh Green’s
functions, self-energies, and Dyson equations, we refer to
Ref. [32]. Nonequilibrium DMFT for the Holstein model has
been discussed in Ref. [40], so we only briefly outline the
general formalism and then focus on the low-density limit.
In DMFT, the lattice model Eq. (1) is mapped onto a single
impurity model with action

S=—i / dt[Hiee(t) — pcfe]l —i / didt' ct (1) A, 1)e(r)
C C
(AD)

on the Keldysh contour C (see Fig. 7). The action describes
coupling of one “Holstein atom” to a bath of noninteracting
electrons by the hybridization function A(z,#’) (u is the
chemical potential). From the impurity problem one obtains
the local contour-ordered Green’s functions,

Gt = —i%Tr[Tcesc(t)cT(t')]. (A2)
The hybridization function is determined self-consistently;
we use the closed-form self-consistency relation A(z,7') =
G(t,t"), which corresponds to a Bethe lattice with a semiel-
liptic density of states D(e) = /4 — €2//2. In general,
the action with the hybridization function is equivalent to
an Anderson impurity Hamiltonian Hiyp = Hioe + > p(ep —
u)aj,ap + Zp[Vp(t)a,T,c + H.c.] in which the impurity site is
coupled to a number of bath orbitals p with a certain choice
of the parameters V,(¢) and €; i.e., G may also be computed
with action § = —i fC dt[Himp(t) — uN]. (For the mapping
in nonequilibrium, see Ref. [47].) In the following discussion
we switch between the action and the Hamiltonian notation as
appropriate. The final result can always be written in terms of
the hybridization function, so the precise time dependence of
the parameters V() is not needed.

2. Green’s functions in the low-density limit

To implement the low-density limit, one takes the limit
u — —oo, keeping only leading terms in the fugacity & =
eP*. With the equivalent impurity action, the contour-ordered
Green’s function (A2) can be written as

Tr[ePHN Toe i Je dtHm@ (1)t (1]
Tr[elsMN']-Cg_i le d?Himp(;)]

G(t,1')=—iel 1" . (A3)
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by taking the term uN, which commutes with Hyp, out of
the integral. One can then perform an expansion in powers of
& by separating the trace in contributions from N = 0,1, ...
particles, Tr[e##*N ...]1 =" &"Try_y[---]. The result is
written as

TR @e(t,1) + EOc(t,1)]
x [G(t,1") + OF)],

G@,t) =
(A4

where the factor [@¢(z,t") + £B¢(r,1)] takes care of the fact
that the leading contribution is 1 if # is later than #" on C and &
otherwise and G(t t') is given by

Gt,t) = —ZLOTrNZO[Z/{(—iﬁ,t)cu(t,t’)cTU(t’,O)], (AS)

Gt,1') = Zl—Terl[U(—iﬂ,t/)CW(t’,t)CU(t,0)], (A6)
0

fort > t" and t < t’, respectively; U(¢,t’) is the standard time-

evolution operator which is given by the equation

i0U(t,1") = Himp(OU(2,1);  U(t,1) = 1. (A7)
Because the normalization factor Z; /Z is the average particle
number n(u) to leading order in &, one can see that the
propagators (5) and (6) are given by Egs. (A5) and (A6),
respectively.

In the following we refer to the function G(t t'), which
contains the leading terms of G in the low-density limit as the
projected Green’s function. Before discussing the interacting
case, it is useful to have a brief look at properties of the
projected Green’s function G( in the noninteracting case
(g = 0). For the action (A1), Gy is given by the standard Dyson
equation (i9; + u — €5)Go(t,t') — A % Go(t,1') = 8¢(¢,¢') on
the contour C, where C = A % B is the convolution C(¢,t') =
f dsA(t,s)B(s,t’). By using the ansatz (A4) for Go and A,

one can show that the projected functions Go and A satisfy the
integral-differential equation

(0 — €p)Go — [A O Gol(t,t) =0, (A8)
to be solved for ¢ > ¢’ with an initial condition Go(t,t) = —i,
where C = A O B is the cyclic convolution, i.e., the convolu-
tion integral C(¢,t') = fé , dsA(t,s)B(s,t') is restricted to the
range in which the variables ¢',s,t appear along C in clockwise
order,

/ dsf(s) :/ dsf(s), t' >t, (A9)
C,t t'>s>t

/ dsf(s) =/ dsf(s)—i—/ dsf(s), t>t.
C,t t'>=s>—ifB 0t >s>t
(A10)

The Dyson equation for the projected functions G(t,t) has
been derived and discussed in great detail in relation to the
nonequilibrium generalization of the noncrossing approxima-
tion Ref. [48]; the latter can also be obtained as the low-density
limit of a (pseudoparticle) theory, and hence the mathematical
structure of the Green’s function theory is the same. The
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numerical solution of the integral equation is also discussed in
Ref. [48].

3. The interacting case

To obtain a solution for the interacting projected Green’s
function G, we insert an identity 1 = » » |p){p]| for the N =
0 electron sector in Egs. (AS5) and (A6) to the left of the
annihilation operator c; in the N = 0 sector, a full basis is
given by the phonon-number states |p) = ey )l |0)ph|0)

regroup the resulting terms, it is convement to 1ntr0duce a
cyclic propagator,

oy U@, 1<t
UL, 1) = {uu/,oﬂm-m,n, V<t (All)
y
= T¢ exp |:—i/ dsHimp(s):| , (A12)
C.t
and auxiliary propagators
Gpp(t,1)=—i[Oc(t,1) — Oc(t' . plcUe(t,))cT|p'). (A13)

With these definitions it is straightforward to regroup Eqgs. (A5)
and (A6) into

oo

~ 1
Gty = —— 3 (P DIP)Gpp 1.0,

0 p=0

(Al4)

The factor (p|U.(t',1)| p) satisfies

(PIUNNP') = 8 e TIPD[Oc(t,t) + Oc(t',1)ePP™].
(A15)

The next step is to derive the Dyson equation for G. For

this purpose, we evaluate G by expanding U/, in terms of the
electron-phonon interaction He, = g(t)clc(b + b'),

gpp(tt)—Z( iyt / dt, / dt - - / Hdtn
C,t C

C,t/ N

S (P|Tc€ﬂ Je dSHO(‘Y)CHep(tI) T Hep(tn)chp/>'

(A16)
Here H) is the noninteracting part of Hjy,p,, and the operator He,,

acts on the one-electron sector, in which it can be expressed in
terms of phonon number states,

Hep = > c!1m) X (1), (A17)
where X, = g(t)(m|b + b'|m’) is given by
Xmm’ = g(t) vm + 18;11’,m+1 + g(t)\/zam/,m—l- (A18)

Hence, we have

In—1

) ‘ "
g]}pf(t,t’) = Z(—i)nﬂ / dt / dty - - / dt,

n=0 C.t C.t c.r

x )

mymy,...my m,

m”m; (tn )go,m; P (tn ’t/),

gO,pml (tvtl)Xmlm’] gO,m’]mz(tl ,fz) e

(A19)
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where Gy is the noninteracting resolvents. Equation (A19)
could be shortened into

G=G+GOX0G+GOXOGOXOG:--
(A20)
=G +GOXOG,

where all objects are matrices, and C = A O B is the cyclic
convolution defined above.

This matrix-integral equation has to be solved for the
diagonal elements G,,. Before doing this, we look at the
noninteracting resolvent Gy. Since electrons and phonons
decouple, one can see from the definition that Gy is the product
Go(t,t') = Go(t Y {plU.(t,t")|p’), where Go(t t') is the pro-
jected Green’s function for the pure electrons, which satisfies
the projected Dyson equation (A8). Because (p|U.(¢,t")|p’) is
just an exponential factor [cf. Eq. (A15)], it is easy to show
that

(8 — €5 — pw)Go.pp — [A, O Gopplt,) =0, (A21)
with the initial condition Gy, (t,t) = —i8,,, Where
A, (t.1") = A, ) (plU2,8)|p). (A22)

Hence, we can bring Eq. (A20) to differential form by acting
with G ! from the left,

(0 — e = po)Gpy — [, © Gppl(t,1")
N Z XP’P+a(t)gp+a,p(t,l‘/) =0

a==1

(A23)

with the boundary condition G, (¢,t") = —ié,,y. This equation
has a tridiagonal structure. Like any matrix equation of that
form, the equations for diagonal elements can be derived in
recursive form. (For example, a similar recursive structure
is solved in the nonequilibrium variant of inhomogeneous
DMFT [49].) We summarize the results:

(iat — €5 — pa)O)gpp
- [(A,+A,+B,) O Qpp](t,t/) =0, (A24)
A1ty = pgGY (1,151, (A25)
[i0, — €7 — (p — DwolG/ (1,t")
— [A,+A,-) 0 G ) =0, (A26)
By(t.1') = (p+ Dg)GY! (1.5t (A27)
[i0 — € — (p+ Dol G'LL (1.1")
— [Aps1 + Bpr) O G 0.t =0 (A28)
where initial conditions are G, (t,t) = élppi]l(t,t) = —i. Solv-

ing Eqs. (A24)-(A28), consistently and plugging the solution
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into Eq. (A14) by tuning €, such that the —iG<(t,)=1,
enable us to come up with an exact numerical solution of a
single-polaron problem.

Phonon-occupation numbers [Eq. (12)] can be read off di-
rectly from the Green’s function, P(p) = iG,,(t4,1-)/ne Zo,
where ng =iG(ty,t-) =Y, iGy(ty.1); cf. Eq. (Al4).
Momentum-resolved Green’s functions Gy, as a function of the
(time-independent) band energy € are obtained from the local
Green’s functions and the hybridization function by the DMFT
equations as described in Ref, [32], but reduced to low-density;
i.e., we solve the equations G=Z+ZOAOG for Z, and
then Gk =7 + e Z O Gy, for Gy. -

In equilibrium, computing the propagator G~ is sufficient,
because G~ and G = are related by a fluctuation dissipation
relation; from a Lehmann representation of Egs. (5) and (6)
one can see that their spectral representations A~ ~(w) =
+i [dte' G™=(1,0) satisfy

A~ ()

= Ne P?A (w), (A29)

where the normalization N ensures f A=(w)dw = 1. Hence,
Ciuchi et al. [34] obtained an exact solution for G> in
terms of resolvents Q;p,(t — 1), which is solved by Laplace
transformation.

APPENDIX B: ATOMIC LIMIT

1. Lang-Firsov transformation

Here we consider the atomic limit of the Holstein model.
The Hamiltonian is given by

H = alg(t)(b' + b) — n] + wob'b, (B1)

with 7 = cfc. We formally allow for a coupling g(z) with
arbitrary time-dependence; of particular interest is the case of
a sudden quench, with g(t) = go for t < 0 and g(t) = g, for
t > 0. We compute the spectral function of the electron and
the phonon distribution function.

To decouple electron and phonon degrees of freedom, we
use the Lang-Firsov (LF) transformation, which is a basis
change that introduces a time-dependent shift of phonon
coordinate. For a general time-dependent LF transformation
we make the ansatz

W (1) = e/lPXo@+X P (B2)

and A = W'(r)AW(t) denotes unitary transformation of op-
erators A. Here X = (b + b)/ﬁ and P =i(bt — b)/\/z
are phonon position and momentum ([ X, P] = i), and X(¢)
and Py(t) depend on the electron operator only, such that
X =X — Xpand P = P + P,. This transformation was used
in Ref. [40] to derive the strong-coupling solver for the
Hubbard-Holstein model, where it was constructed so that
electron and phonon parts decouple: When X(¢) and Poy(?)
satisfy the classical equations of motion,

X(/) = —a)OPO, (B3)

P = woXo — f(1), (B4)
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with a force f(t) = \/Eg(t)ﬁ, then the Hamiltonian for the
new basis is

wo , » 2 ~
Hpp = 7(X + P7) —alu + A@)], (B5)
Aty = B8O o) + 20 / df sinfwo(r — D]g ().
wo 0

(B6)

(Note that for a time-dependent basis transformation, terms
W1W have to be included in the Hamiltonian in addition to
WTHW). For the transformation we get

W = ! (PXotXPo) _ e[b(Xo-‘riPo)—b"(Xo—iPo)]/«/E' (B7)

We can now use that the operator 7 is time-independent in the
transformation, so that it can be taken out of the integral for
Xo + i Py,

W = e[by*(t)—biy(l)]ﬁ, (B8)

0) _. oo
y(t) = &)e_’w‘)’ + i/ dfe =D g (7). (B9)
0

o
For the quench (13),
y(t) = 8L 8L 80 ot (B10)
w( w(

The transformed electron operators read, using Eq. (B8),

¢ = WHD)eW(t) = cet? O-bv®), (B11)

&= Wi W) = clebvO-br'®, (B12)

2. Phonon distribution function

The phonon distribution function P(m) is obtained from
the expectation value of the projector |m)(m|, where |m) =
ﬁ(bT)’"w) is the m-phonon state. After the Lang-Firsov
transformation, we must evaluate the expectation value of
W1 ()P, W(t) in the free boson model (B5) with one electron,
ie.,

X ,—Blay . ;
Pim)="Y_ (11" OOl 2. (B13)
=0 “Ph

Of particular interest is the case when the system is initially
not in a thermal state, but in some given eigenstate of the
displaced operator. To obtain this excited state (I > 0) or
ground state (I = 0) distribution function, the sum is restricted
to one term,

Pi(m) = [(mel" @=brOl 2

— 2 —pt *
= ¢ 7@l [(m|e bly @) pby (t)|l)|2,

(B14)
(B15)

where in the second line we have used the Baker Hausdorff
formula. The ground-state expectation value is thus simply a
Poisson distribution,

2
o—vor YO

Py(m) = oy

(B16)
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In the case of a sudden quench, the mean |y(¢)|> is an
oscillating function of time, reflecting the oscillations of the
coordinate X.

Distributions P;(m) for excited states / > 0 are only needed
when the system is stationary in time, y (1) = y*(t) = y. Using
again the Baker Hausdorff formula, this we can write P;(n +
D) = e " | AL, ()P, with Ap(y) = (n +1]e"'7 e~ |1). The
latter can easily be expanded in a power series,

l
=y ,
Ann(y) = Y =117
r=0 ’

l

_ (_y)ryl+r f\ntrpr
B ; ri(l+r)! i+ HEYEN

B i Yy VDl VI
= A0 ST TN
Hence, we have

2
2 oo ! e
Pz(l+n)=ey)”2(l+n)![Z r! (n—r)’

r=0

B17)

(B18)

which can be written as Eq. (11) using the series representation

Li(x) = Z(—l)’%(ﬁi‘:)

r=0

of the generalized Laguerre polynomials.

3. Green’s functions and photoemission spectrum

We now compute the Green’s function,

Gt,1') = —i%tr[Tce_ifC O (1], (B19)
in particular the lesser and greater components, which are
then used to compute the photoemission spectrum and the
inverse photoemission spectrum, respectively. Because Hy r in
Eq. (B19) does not couple electrons and phonons, the Green’s
function can be written as a product of a purely bosonic and
electronic Green’s function,

G(t,t') = g(t,t wy(t,1), (B20)

1 P N
31) = ——tlTee™ ledfi=r0-1heycl(h),  (B21)

el
’ 1 —i [, diwobtb by*()—bTy (1) b1y () —by*(")
wp(t,t") = ——tr[Tee " Je TP 0PV yie?y v,
ph

(B22)

The real-time components of the electronic Green’s func-
tion take the usual form,

(1) = i fgl—pn — a(O)e! Iy O, (B23)

27 (1,1) = —ifl — fal—p — MO} fr 01 (Bog)
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where fg(x) =1/(1+ e#*) is the Fermi function. For the
bosonic factor wy, we first evaluate the real-time dependence
of the operators, leading to

Ltr[e—woﬁb"’b T, POV O=b Oy (@)
ph
x bV E)=b)y (1)

wy(t,t') =

(B25)

with b(t) = be™™ and bi(r) = bTe!®. We can then use
Eq. (74) of Ref. [40],

1

w;, (1,1") = exp <—w
2sinh (£2)

+y (O (e E 00

— [y ®* + ly()I*] cosh (’%‘”) }) (B26)

{y*(t))/(l‘,)ew[gi(tt’)]

wy (1,1") = wy (¢',0) = w; (1,1')". (B27)
Further simplifications are possible for the quench (13).
Inserting Eq. (B10) we obtain, after some algebra,

Wy () = Wit = 1) exp {tﬂgo;ﬁ
0

x [sin(wpt’) — sin(wot)]}, (B28)

where w70
state at the finite coupling (considering y> as a time-
independent constant.) To compute the Green’s function for
the quench case, we furthermore must evaluate the exponential

factors in Eqgs. (B23) and (B24). Using Eq. (B6), we obtain

(t — t’) are the bosonic factors for the equilibrium

2

¢ [ difpAam] — ei(t*t’)[/ﬁré] exp {i (g0 — g&1
@y

x [sin(wot) — sin(wot)] } (B29)

Using the decomposition (B20), the electronic Green’s func-
tions (B23) and (B24), and the explicit form (B28), we observe

PHYSICAL REVIEW B 91, 104301 (2015)

that the nonequilibrium factors containing the sin terms in the
electron and phonon factors cancel for the retarded Green’s
function, but not for the lesser Green’s function. The Green’s
function can thus be written as

G™(t,t') = G5t — 1), (B30)

G=(t,1') = G (t —1H QM Q™ (1), (B31)

O(t) = exp [21' sin(aor) B2 S081 8 Vg 1}, (B32)
@y

where Geg(t —t') is the equilibrium Green’s function at
coupling g; (taking A; = g} /wy),

Goy() = —ill = f(—p = 2" wp (1), (B33)

Gy = ifp(—p — ez (—1).

The equilibrium Green’s function is well known and has a
spectral representation, which is stated in the main text [41].
More generally, we can compute the time-translationally
invariant Green’s function for any state in which the coupling
is not dependent on time and the oscillator is initially in a
phonon number state |/). For this we must calculate

(B34)

wy (1,8)) = (1|?O7 =21 Oy ey =y (B35)

We insert an identity 1 = ), |m)(m| between the exponential
operators and take the time-dependence from the operators to
the eigenfunctions |m), |n),

i(1— —t —pt Ty —
wy (t,) = Y AT ) (e ).
m

(B36)

The expectation value is identified with the number distribution
Eq. (B14). Thus, we obtain the spectral form

o0
wy (1)) =Y e py(m),

m=0

(B37)

whose Fourier transform [together with the electronic contri-
butions Egs. (B23) and (B24) and the symmetry (B27)] leads
to the spectrum given by Eq. (10) in the main text.
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