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Compressibility enhancement in an almost staggered interacting Harper model
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We discuss the compressibility in the almost staggered fermionic Harper model with repulsive interactions in
the vicinity of half-filling. It has been shown by Kraus et al. [Phys. Rev. B 89, 161106(R) (2014)] that for spinless
electrons and nearest neighbors electron-electron interactions the compressibility in the central band is enhanced
by repulsive interactions. Here we would like to investigate the sensitivity of this conclusion to the spin degree
of freedom and longer range interactions. We use the Hartree-Fock (HF) approximation, as well as the density
matrix renormalization group (DMRG) calculation to evaluate the compressibility. In the almost staggered Harper
model, the central energy band is essentially flat and separated from the other bands by a large gap and therefore,
the HF approximation is rather accurate. In both cases the compressibility of the system is enhanced compared to
the noninteracting case, although the enhancement is weaker due to the inclusion of Hubbard and longer ranged
interactions. We also show that the entanglement entropy is suppressed when the compressibility of the system
is enhanced.
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I. INTRODUCTION

The interplay between electron-electron (e-e) interactions
and quasidisorder has drawn much excitement since the
discovery of quasicrystals [1,2]. Much of the work has focused
on a specific model of a one-dimensional (1D) quasicrystal,
namely the Harper (or Aubry-André) model [3,4]. One of the
main attractions of this model is that contrary to conventional
1D disordered systems which are localized for any amount
of disorder [5], the Harper model exhibits a metal-insulator
transition as a function of the quasidisordered potential
strength, even in the absence of interactions [4,6–11]. The
influence of e-e interactions on the metal-insulator transition of
the Harper model was studied in several publications [12–14].
Interest in the Harper model has lately peaked after it has been
shown that for an irrational modulation, the Harper model may
be a 1D topologically nontrivial system, and have topological
boundary states [15–23]. This property, coupled with the fact
that the Harper model may be realized in the context of
cold atoms and molecules [24,25], added to the excitement
surrounding the Harper model.

Recently an additional aspect of the model has been investi-
gated, namely the inverse compressibility, which measures the
change in the chemical potential when an electron is added to
the system. In the context of disordered quantum dots this has
become a very popular measurement to extract information
on the role of e-e interactions in these systems [26–28]. For a
finite system of N particles, �2(N ) is defined as the change in
the chemical potential due to the insertion of the N th particle,
i.e., �2(N ) = μ(N ) − μ(N − 1), where μ(N ) is the chemical
potential for N particles. Since μ(N ) = E(N ) − E(N − 1)
[where E(N ) is the system’s many-body ground-state energy
with N particles], �2(N ) is given by

�2(N ) = E(N ) − 2E(N − 1) + E(N − 2). (1)

For noninteracting systems at zero temperature,

�2(N ) = EN − EN−1 = �(N ), (2)

where EN is the N th single-particle eigenenergy and �(N ) is
the single-particle level spacing.

How do the e-e interactions affect the inverse compress-
ibility? Conventional wisdom leads to the constant inter-
action (CI) model [28,29], which essentially assumes that
the interactions between the electrons are well described
by mean field. This leads to the conclusion that the ef-
fect of interactions on the inverse participation is given
by �2(N ) = �(N ) + e2/C, where C is the total classical
capacitance. Thus, the e-e interactions increase the inverse
compressibility compared to its noninteracting value. This de-
scription fits well the experimental measurements in quantum
dots [28].

However, the CI mean-field description does not hold at
certain conditions. It has been shown [30–32] that close to
the Mott metal-insulator transition occurring at half-filling
of a clean Hubbard model, the inverse compressibility may
decrease with the Hubbard interactions strength. Recently it
has been shown [33] that for the almost staggered Harper
model of spinless electrons with nearest-neighbors e-e in-
teractions, close to half-filling, the system becomes more
compressible as the interactions are increased, although no
metal-insulator transition occurs there. This counterintuitive
behavior stems from the properties of the electronic bands and
density for the almost staggered Harper model. Under these
conditions the noninteracting Harper model has an almost flat
narrow band around zero energy, separated from the other
bands by large gaps. The density of the narrow band around
half-filling is anticorrelated with the on-site potential, whereas
the density of the lower occupied bands follows the potential.
Therefore, once e-e interaction is introduced, the electrons
in the lower occupied bands squeeze out the states in the
narrow central band, resulting in a narrower central band. This
flattening of the central band due to the interaction with the
lower band electronic density results in an increase of the
compressibility.

In this paper we address the question of whether this
increase of the compressibility is the result of the particular
model studied in Ref. [33]. Specifically, we shall see what hap-
pens to the compressibility when the spin degree of freedom is
taken into account, or equivalently when considering a spinless
two legged ladder. Another case which we explore is when
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next nearest-neighbors interactions are included. To study the
compressibility we mainly rely on the HF approximation,
which has been shown to be extremely accurate for this model
[33] due to the large gap between the flat central band and
the lower band and to the localized nature of the states in
the narrow band. We will also compare some of these results
to density matrix renormalization group (DMRG) numerical
calculations, which for these 1D systems are essentially exact
[34,35], and describe very well the dependence of the ground-
state energy on the number of particles [36]. Using DMRG
we also show that the enhancement of the compressibility
is accompanied by the suppression of the entanglement
entropy.

II. HUBBARD INTERACTION

In this section we discuss the influence of the spin degree
of freedom on the compressibility in the staggered Harper
model close to half-filling. The clearest difference between
a spin-polarized (spinless) and a nonpolarized electron is the
fact that for nonpolarized (spinful) electrons there are Hubbard
interactions. The on-site potential is spatially modulated with
a frequency of almost two lattice-site periods (i.e., staggered),
corresponding to fast modulation with a slow envelope. The
interaction terms are repulsive and short ranged [on-site and
nearest-neighbors (n.n.) interactions]. We assume that in the
limit of weak Hubbard interactions no spin polarization occurs,
i.e., the total Sz = 0 for even filling and Sz = ±1/2 for
odd filling. We show that the compressibility of the system
decreases when the Hubbard interactions are increased by
analyzing the central (flat) energy band close to half-filling.
Due to the Kramers degeneracy, as long as there is no spin
flip (tunneling between the ladders’ legs), the single-particle
solution is just a duplication of the spinless solution presented
in Ref. [33]. Thus, it contains two copies of superlattice states
that reside at the valleys of the potential envelope. Since the
electrons are localized in the potential valleys, adding an
additional electron to a valley will increase the energy due
to the Hubbard interaction. In order to reduce the effect of
the Hubbard interaction the electronic density must rearrange
itself. As a result, the capacitance of the system goes down.

In order to demonstrate that behavior we need to explicitly
solve the tight-binding Harper model for fermions with spin
and with Hubbard and n.n. repulsive interactions given by

H =
∑

s �=s ′=↑,↓

L∑
j=1

[t(c†j,scj+1,s + H.c.) + t ′c†j,scj,s ′

+ λ cos(2πbj + φ)nj,s+Unj,snj+1,s + U ′nj,snj,s ′ )],

(3)

where cj,s is the single particle annihilation operator at site j

with spin s and nj,s = c
†
j,scj,s is the number operator. t,t ′ ∈ R

are the site hopping and spin flipping amplitudes, respectively.
λ > 0 controls the on-site potential amplitude. The potential
is a cosine modulated in space with frequency b and a phase
factor φ. U > 0 and U ′ > 0 are the strength of the repulsive
n.n. and Hubbard interactions, respectively. We discuss the
region λ < 2t , which is the metallic regime [4]. We further
assume that b mod 1 = 1/2 + ε, ε � 1/2 corresponding to

FIG. 1. (Color online) Energy bands of the free Hamiltonian
(U = U ′ = 0). The central band is split due to the gap created by the
spin flipping amplitude t ′. The parameters used through the figures are
t = 1, t ′ = 0.05, λ = 0.7, φ = 0.7π , b = √

30, ε = −0.0228, L =
200. The isolated points correspond to protected edge (topological)
states in the Harper model and are not discussed in this paper.

an almost staggered case. ε ∈ R is nonrational so that the
system is disordered.

Let us first discuss the noninteracting Hamiltonian, i.e.,
set U,U ′ = 0 in Eq. (3). A numerical solution in this case
reveals the existence of an almost flat central energy band (see
Fig. 1), split due to the spin flip matrix element to a lower and
higher central band. We are mostly interested in the central
band energy spectrum, and since these energy states which
are close to zero minimize both kinetic and potential energy,
we conclude that the most important contribution comes from
states localized in the potential valleys, i.e., states localized
around the position lz corresponding to 2πεlz + φ = (Z +
1
2 )π [33]. In the valley we can approximate cos(2πεj + φ) ≈
2π |ε|(j − lz)sz and sz = −sign[sin(2πεlz + φ)] = ±1. The
effective Hamiltonian describing the central band is

H val =
∑

s �=s ′=↑,↓

L∑
j=1

[t(c†j,scj+1,s + H.c.)

+ t ′c†j,scj,s ′ + 2πελsz(−1)j (j − lz)c
†
j,scj,s]

=
∑

s,s ′=↑,↓

L

2π

∫ π

0
�

†
k,s{[2t cos(k)σx

+ 2π |ε|szλ(p̂k − lz)σz]δ
s
s ′ + t ′(1 − δs

s ′ )}�k,s ′ , (4)

where

ψk,s =
(

cek,s

cok,s

)

is the sublattice pseudospinor that splits the lattice into even
and odd sites, according to cek,s = 2

L

∑L/2
j=1 eik2j c2j,s and

cok,s = 2
L

∑L/2
j=1 eik(2j−1)c2j−1,s . p̂k ≡ i∂k and σx,σz are the

2 × 2 Pauli matrices.
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Diagonalizing the spin degrees of freedom (which are
independent of k space), we get

ψk,1 = 1√
2

(
cek,↑ + cek,↓
cok,↑ + cok,↓

)
,

ψk,2 = 1√
2

(
cek,↑ − cek,↓
cok,↑ − cok,↓

)
.

This representation allows us to write the Hamiltonian as
a sum of two distinct subspaces, each relates to a different
spin eigenstate. The subspaces depend only on the momentum
k, and therefore can be solved using the same methods used
for spinless fermions [33]. Thus, the eigenenergies for the
Hamiltonian of the potential valleys are Eval

1 = ±√
8n t

ξ
+ t ′

and Eval
2 = ±√

8m t
ξ

− t ′, where m,n ∈ {0,1,2, . . . } and ξ 2 =
t

πλ|ε| . Eval
1 ,Eval

2 correspond to the spin states 1,2, respectively.
The central zero-energy band splits due to the spin flip,
resulting in an energy splitting between the two bands equal
to 2t ′.

The eigenfunctions for the states belonging to the split
central band are

|lz,i〉 ≈ (πξ 2)−1/4
L∑

j=1

(sz)
j Sj e

− (j−lz )2

2ξ2 |j,i〉, (5)

where |j,i〉 = 1√
2
(c†j,↑ ± c

†
j,↓)|∅〉, where |∅〉 is the vacuum

state. These wave functions are Gaussians of width ξ around
lz. In the limit of small t ′ our assumptions hold and this result
is a good approximation of the real ground state.

These states form a basis for the central band, de-
fined by m,n = 0, since 〈lz,i |lz±1,i〉 = 0, 〈lz,1|lz,2〉 = 0, and

|〈lz,i |lz′,i〉| � e
− (lz−l

z′ )2

2ξ2 � 1.
Let us now consider the contribution of the overlap between

the localized states in the central band. The Gaussian decay
of the localized states implies that the Hamiltonian matrix
elements 〈lz,i |H |lz′,j 〉 are not negligible only between nearest-
neighbors states |z − z′| = 1. Thus, the central band states
follow an effective Hamiltonian:

H central = −t̄

Lz∑
z=1

∑
i=1,2

(−1)zc†lz,iclz+1,i + H.c. + t ′c†lz,iclz,i .

(6)

Diagonalizing this Hamiltonian yields the eigenstates

|k,i〉 = L−1/2
z

Lz∑
z=1

Sze
ikz|lz,i〉, (7)

with eigenvalues Ecentral(k) = −2t̄ cos(k) ± t ′.
Now, let us focus on the case where the Hubbard interac-

tions in the Hamiltonian Eq. (3) are turned on (U ′ �= 0), but
no longer range interactions are yet considered (U = 0).

For U ′ → ∞ the model can be solved analytically. In that
limit only the interaction term is important. The eigenenergies
are therefore E = 0 and E = U ′. The latter case occurs when
two particles with opposite spins occupy the same site. This
will cost infinite energy and therefore such states are decoupled
from the theory. The remaining states contain a single particle
per site.

Next we consider the case where U ′ is much bigger than
the other energy scales in the theory, i.e., U ′ � t,t ′,λ. Using
perturbation theory with t as the perturbation parameter on
the Hubbard model reveals that ferromagnetism is the lowest
energy state. Adding t ′ to the theory will not change the ground
state, since the correction in t ′ will be of at least third order in
perturbation theory.

As is discussed in Ref. [33], because the central band is
essentially protected by the large gaps to the other bands, the
HF approximation results are very accurate. Therefore, we
approximate the Hubbard interaction using the HF method for
interaction strength values smaller than these gaps U ′ � √

8 t
ξ
:∑

j

nj,↑nj,↓ ≈
∑

j

[〈nj,↑〉nj,↓ + nj,↑〈nj,↓〉 − 〈nj,↑〉〈nj,↓〉].

(8)

Rewriting the Hamiltonian in Eq. (3) with U = 0, and ignoring
the constant term which is simply a shift in the energy, results
in

H =
∑

s �=s ′=↑,↓

L∑
j=1

{t(c†j,scj+1,s + H.c.) + t ′c†j,scj,s ′

+ [λ cos(2πbj + φ) + U ′〈nj,s ′ 〉]nj,s}. (9)

We find that the averaged electronic density between the val-
leys of potential is 〈nj,s〉 ≈ 1

4 − 1
2 (−1)j n̄( λ

2t
) cos(2πεj + φ),

with n̄(x) = x

π
√

1+x2 K( 1
1+x2 ), and K is the complete elliptical

integral of the first kind. Hence,

H HF =
∑

s �=s ′=↑,↓

L∑
j=1

{
t(c†j,scj+1,s + H.c.) + t ′c†j,scj,s ′

+
[
λeff cos(2πbj + φ) + 1

4
U ′

]
nj,s

}
, (10)

where λeff = λ − U ′n̄( λ
2t

).
The solutions of H HF are closely related to the solutions of

H in the noninteracting case. Yet, the width of the valley states
ξ has changed due to the change in λ.

Moreover, for n.n. interactions (U �= 0) it is possible to
use the HF approximation, and obtain the HF eigenstates
and eigenvalues, which are identical to the noninteracting
solutions, up to the modified parameters t̃ and λ̃ [33]. The
many-body density and the exchange terms are proportional
to those obtained already for the spinless case [33] up to a
proportionality constant of 1/2, due to the spin degrees of free-
dom. Therefore, 〈pj,s〉 ≈ 1

2 p̄[ λ
2t

cos(2πεj + φ)]. Between the
potential valleys this can be approximated by 〈pj,s〉 ≈ 1

2 p̄( λ
2t

).
We can now write the HF Hamiltonian with both Hubbard

and n.n. interactions:

H HF =
∑

s �=s ′=↑,↓

L∑
j=1

{
teff(c

†
j,scj+1,s + H.c.)

+t ′c†j,scj,s ′ + [λeff cos(2πbj + φ)

+1

2
U + 1

4
U ′]nj,s

}
, (11)

with teff = t + 1
2Up̄( λ

2t
) and λeff = λ + (2U − U ′)n̄( λ

2t
).
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We again can solve the system with the modified parame-
ters, and obtain the HF eigenvalues and eigenstates,

EHF
val = ±

√
8n

teff

ξ
±s t ′ + 1

2

(
U + 1

2
U ′

)
,

(12)

|lz,i〉 ≈ (πξ 2)−1/4
L∑

j=1

(sz)
j Sj e

− (j−lz )2

2ξ2 |j,i〉,

where the Gaussian decay parameter ξ = ξ ( teff
λeff

) is modified

due to the effective values taken by λ and t . ξ 2 is multiplied
by a numerical constant equal to 1.16 as in [33].

Projecting the HF Hamiltonian on the central band yields

H HF
central = −t̄HF

Lz∑
z=1

∑
s �=s ′=↑,↓

(−1)zc†lz,sclz+1,s + H.c.

+ t ′c†lz,sclz,s ′ + 1

4
(2U + U ′)c†lz,sclz,s . (13)

The eigenvalues and the eigenstates of the central band are
then given by

Ecentral(k) = (−1)n+12t̄HF cos(k) + 1

4
(±4t ′ + 2U + U ′),

|k,i〉 = L−1/2
z

Lz∑
z=1

Sze
ikz|lz,i〉, (14)

k = 2πn

Lz

, n = 1, . . . ,Lz,

with Lz = �2|ε|L� as the number of valley states. The hopping
amplitude t̄HF is given by

t̄HF ≈ e
− 1

4ξ2ε

[
2teffe

− 1

4ξ 2
sinh

(
1

4ξ 2|ε|
)

−λeffe
−(πεξ )2

]
.

(15)

Thus the inverse compressibility �2(N ) can be calculated
using (2) and the eigenvalues are presented in Eq. (14).

As shown in Fig. 2, �2(N ) decreases with the n.n.-
interaction U , in agreement with the case of spinless fermions
[33]. However, the Hubbard interaction U ′ enhances �2(N ).
As was shown in Eq. (10), the Hubbard interaction reduces
the value of the effective Harper potential amplitude λeff.
The decrease in λeff increase the width of the Gaussian wave
functions. Thus, there is more overlap between different states
and therefore any change of configuration in the system, such
as adding another particle, requires more energy. For U = 2U ′
the system returns to the noninteracting Hamiltonian value of
�2(N ). The interplay between U and U ′ determines whether
�2(N ) will be larger (U < 2U ′) than its noninteracting value
or smaller (U > 2U ′) than it.

For an intuitive understanding let us revisit Fig. 1. The
states which occupy the lowest energy band reside in the
valleys of potential. When the Hubbard interaction is turned
on, occupying these states become too costly in energy for
some of the spins. In order to avoid the Hubbard interaction
they tend to occupy the surroundings of potential peaks, where
there are less spins to interact with. This tendency delocalizes
the Gaussian wave functions. However, since only half of the

FIG. 2. (Color online) The variation of the inverse compressibil-
ity �2(N ) of the lower central band states with the n.n. interaction (U )
and the Hubbard interaction (U ′). �2(N ) decreases with U , which is
in line with the results of Ref. [33] and increases with U ′. Thus, the
Hubbard interaction delocalizes the particles, smearing their wave
functions and increasing the amount of energy needed for adding
another particle to the system.

particles participate in the interaction between the opposite
spins it is less significant (by a factor of 1/2) than U .

An exception to this behavior is found for the state at the
edge of the lower splitted band. As detailed earlier, due to the
spin flipping amplitude t ′, a gap of size 2t ′ opens between
the lower central band occupied by 1√

2
(↑ + ↓) states and the

higher central band with states corresponding to 1√
2
(↑ − ↓).

�2(N ) decreases with U ′ and increases with U at the edge,
similar to the behavior observed close to the half-filling point
of the 1D Hubbard model [30].

III. NEXT-NEAREST-NEIGHBORS INTERACTIONS

In order to understand the behavior of the compressibility
for a system with long range interactions, we consider here the
influence of next-nearest-neighbors interaction. For simplicity
we discuss spinless fermions. The results of this section can
be easily extended for fermions with spin using the methods
described in the previous section.

The Hamiltonian is given by

H =
L∑

j=1

[
t(c†j cj+1 + H.c.) + λ cos(2πbj + φ)nj

+Unjnj+1 + U2njnj+2)
]
, (16)

and the mean-field approximation yields

L∑
j=1

nj+2nj ≈
L∑

j=1

(〈nj+2〉 + 〈nj−2〉)nj

−〈nj 〉〈nj+2〉 − 〈p̃j 〉c†j+2cj

+ H.c. + |〈p̃j 〉|2, (17)
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where 〈nj 〉 is the (already known) background density. The
background exchange energy is 〈p̃j 〉 ≡ 〈c†j cj+2〉. Here we
ignore constant terms, since they do not contribute to �2.
Using the known value of 〈nj 〉|ε=0,

L∑
j=1

(〈nj+2〉 + 〈nj−2〉)

=
∑

j

[
1 − 2n̄

(
λ

2t

)
cos(2πbj + φ)

]
. (18)

Interestingly, the exchange term disappears (the calculation
appears in the Appendix) resulting in

〈p̃j 〉 = 0. (19)

This structural robustness can be attributed to the symmetry
of the noninteracting Hamiltonian’s wave functions used in
the calculation. Thus, the additional interaction only changes
the value of λeff without changing the structure of the HF
Hamiltonian. The effective Hamiltonian becomes

H HF
central =

Lz∑
z=1

−t̄HF(−1)zc†lz clz+1 + H.c., (20)

where t̄HF given by Eq. (15) with teff = t + 1
2Up̄( λ

2t
) and λeff =

λ + (2U − 2U2)n̄( λ
2t

). Here we ignored on-site terms, which
just lead to an overall energy shift.

We also calculate �2(N ) using DMRG [34,35], for the fol-
lowing parameters: b = √

30 (corresponding to ε ≈ −0.023)
and φ = 0.7π . The length of the system is L = 200, and we
calculated the ground-state energy E(N ) for each number
of electrons N = 91,92, . . . ,108. For t = 1, the potential
amplitude was chosen as λ = 0.7, which results in a flat
central band, with the typical �2 greater than the numerical
accuracy. Interaction strengths of U = 0, U2 = 0, and U = 0.1
with U2 = 0,0.025,0.05,0.075 are considered. The boundary
conditions are open, since it significantly improves accuracy
[34] and we retain 384 target states. The accuracy of �2 is
about ±1 × 10−4t and the discarded weight is ∼10−7.

The resulting change in the compressibility can be viewed
in Fig. 3. Comparing the analytic values to the results obtained
using the numerical DMRG results, we find good agreement
between the two methods. Here the Gaussian decay parameter
ξ 2 is modified according to ξ 2 → 1.16ξ 2(1 − 0.4U2). The
1.16 factor arises from using the linear approximation of the
potential also between the valleys, leading to a too fast decay of
the wave function as was discussed for the n.n interactions [33].
For the n.n. interaction an additional linear dependence of ξ on
U2 is needed. It seems that the longer range interaction results
in an additional correction of the wave function behavior in
the valleys.

With the additional interactions the compressibility (1/�2)
decreases. Intuitively the increase in the value of λ due to
the interaction results in a decrease in the Gaussian decay
parameter ξ 2, which results in a greater overlap between the
wave functions. This can be interpreted as a change in the local
nature of the system due to the next n.n. interactions which
delocalizes the wave functions. Thus, adding another particle
costs more energy. This additional energy cost is reflected in
the growth of �2(N ).

FIG. 3. (Color online) The variation of the inverse compressibil-
ity �2(N ) in the central band of the spinless Harper model with
the n.n. interaction (U ) and the next n.n. interaction (U2). �2(N )
increases with the next n.n. interaction, since the interaction broadens
the Gaussian wave functions. Thus, adding a particle to the system
has a nonlocal effect, and therefore it costs more energy. HF analytic
results denoted by symbols and DMRG results denoted by straight
lines. The DMRG numerical results are in agreement with the analytic
results we get using the HF method.

The opposite behavior between the n.n and next n.n.
interactions can also be observed in the behavior of the bipartite
entanglement entropy. The entanglement entropy of a system
in a pure state |�〉 is defined as the von Neumann entropy
of the reduced density matrix of region A, ρ̂A = TrB |�〉〈�|,
where the degrees of freedom of the rest of the system (region
B) are traced out, resulting in

SA = −Tr (ρ̂A ln ρ̂A) . (21)

For the 1D Harper model the system is divided between regions
A and B, where region A is of length LA while region B is the
remaining L − LA sites.

The entanglement entropy for a typical state in the
central band is depicted in Fig. 4. The behavior of SA is
nonmonotonous, quite different than the entanglement entropy
of a clean wire, and has several intriguing features. Here
we will concentrate on the feature directly pertaining to
the compressibility. The most obvious feature are the peaks
appearing in SA(LA). It is apparent that the positions of the
peaks not immediately adjacent to the edges correspond to
the positions of the central band states |lz,i〉. These peaks are
very robust and do not change when the interaction strength is
changed. On the other hand, the entanglement of the minimum
between the peaks are influenced by the interactions. When
n.n. interactions (U ) are introduced the entanglement in the
minimum regions are suppressed (this is clearly seen in the
enlarge segment in Fig. 4). When next n.n. interactions (U2)
are added, the entanglement minimum remains closer to its
noninteracting value. This follows exactly the pattern exhibited
when the inverse compressibility �2(N ) is reduced. One can
speculate that the entanglement is related to the extension of
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FIG. 4. (Color online) The entanglement entropy SA as function
of the bisection point LA for the ground state with 102 particles (i.e.,
the N = 7 state in the central band of the spinless Harper model
with 200 sites) with different n.n. interactions (U ) and the next n.n.
interactions (U2). It is apparent that maximums in SA correspond to
the Gaussian localized states, or the edge states, and that SA around
the maximums is not influenced by the interactions. The entanglement
minimum between the Gaussian states though are influenced by the
interactions. When U increases [resulting in a decrease in �2(N )]
the entanglement decreases. On the other hand, when U2 increases
[resulting in an increase in �2(N )] the entanglement is enhanced. A
zoom into the central minimum is presented in the inset.

the band state |lz,i〉 into its nearest neighbor, and thus the
suppression of �2(N ) is related to the suppression of the
entanglement. It is interesting whether it might be possible
to directly relate the compressibility to the entanglement in
a similar manner to the relation between fluctuations in the
number of particles and entanglement [37]. This is left for
further study.

IV. DISCUSSION

In this paper we considered the variation of the inverse
compressibility �2(N ) with respect to repulsive Hubbard
interaction and next n.n. interaction in the central band of
the almost staggered fermionic Harper model in the vicinity
of half-filling. The behavior of the central band states is
studied using the HF approximation, justified by the flatness
of this band and its isolation from the other bands. For
the next n.n. interaction we also calculated �2(N ) using
DMRG. The comparison between the two methods promise
reliable results. We found both for the Hubbard interaction

and for the next n.n. interactions an increase in �2(N ),
which corresponds to a decrease in the compressibility of
the system. Thus, the increase in the compressibility due to
the n.n. interactions is somewhat suppressed once Hubbard or
next n.n. interactions are considered. It is interesting to note
the different role played by the Hubbard interactions for the
clean 1D Hubbard model and the Harper model. For the clean
Hubbard model close to the metal-insulator phase transition
at half-filling of 1D systems, the Hubbard interaction enhance
compressibility [30]. This behavior is also manifested for the
Harper model close to the edge of the lower central band. On
the other hand, for the rest of the central band, the Hubbard
term effectively reduces the strength of the on-site potential
in the system (λeff < λ) and thus the energy gaps become
smaller, weakening the enhancement of compressibility. Open
questions, such as the classification of interaction terms [which
terms lead to delocalization and decrease in �2(N ), and which
localize the wave functions and increase �2(N )] and the full
understanding of the nonmonotonous entanglement entropy,
remain for further study.
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APPENDIX

For the Hamiltonian with U = ε = 0, the energy spectrum
of the central band is Ek,± = ±

√
4t2 cos2(k) + λ2 cos2 φ. The

corresponding eigenstates are

χ
†
k,± =

√
L

2
(c†ek,c

†
ok)

(
χek,±
χok,±

)
,

where(
χek,±
χok,±

)
= 1√

2Ek,±(Ek,± − λ cos φ)

(
2t cos(k)

Ek,± − λ cos φ

)
.

The exchange energy is given by 〈χk,±|c†j+2cj |χk,±〉 =
e−2ik(χ2

ek,± + χ2
ok,±).

Normalization yields

χ2
ek,± + χ2

ok,± = 1.

Assuming the lower band is fully occupied,

〈c†j+2cj 〉|ε=0 =
∫ π/2

−π/2

dk

π
〈χk,−|c†j+2cj |χk,−〉 = 0.
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