
PHYSICAL REVIEW B 91, 104202 (2015)

Localization, delocalization, and topological transitions in disordered
two-dimensional quantum walks

Jonathan M. Edge1 and Janos K. Asboth2

1Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23 106 91 Stockholm, Sweden
2Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences,

H-1525 Budapest P.O. Box 49, Hungary
(Received 2 December 2014; revised manuscript received 16 February 2015; published 5 March 2015)

We investigate time-independent disorder on several two-dimensional discrete-time quantum walks. We find
numerically that, contrary to claims in the literature, random onsite phase disorder, spin-dependent or otherwise,
cannot localize the Hadamard quantum walk; rather, it induces diffusive spreading of the walker. In contrast,
split-step quantum walks are generically localized by phase disorder. We explain this difference by showing that
the Hadamard walk is a special case of the split-step quantum walk, with parameters tuned to a critical point at
a topological phase transition. We show that the topological phase transition can also be reached by introducing
strong disorder in the rotation angles. We determine the critical exponent for the divergence of the localization
length at the topological phase transition, and find ν = 2.6, in both cases. This places the two-dimensional
split-step quantum walk in the universality class of the quantum Hall effect.
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Discrete-time quantum walks [1], which we will simply
refer to as quantum walks, are the quantum analogs of classical
random walks. They are model systems which sit at the
interface between quantum information theory and condensed
matter physics. On the one hand, they form archetypical
systems for studying quantum algorithms [2,3]. On the other
hand, condensed matter physics has recently also shown
interest in quantum walks [4–6] in particular ever since it was
shown that the topological phases [7,8] can also be realized in
quantum walks [9].

Condensed matter physics has a very wide scope, but
one important subject of it is disorder and the associated
localization of single-particle wave functions (for a review,
see Ref. [10]). Thus, to understand quantum walks from the
condensed matter point of view, we need to address the effect
of disorder on the propagation of a quantum walker.

One of the interesting aspects of quantum walks is that
in the absence of disorder, the quantum walker propagates
ballistically [1], thus much faster than its classical counterpart,
which shows diffusive propagation. The ballistic spreading of
the quantum walk is related to the quantum speedup of certain
quantum algorithms, notably Grover’s search algorithm [11],
as the quantum walker is able to explore the search space more
rapidly than its classical counterpart.

If disorder is introduced into the quantum walk system,
it is expected to break the ballistic propagation of the
quantum walk, analogously to the way in which disorder
introduced into a solid-state system will affect electrons due to
disorder scattering. This could be of relevance to the quantum
information applications of quantum walks, as the quantum
speedup of quantum algorithms is intimately related to ballistic
propagation.

Although the effects of disorder on one-dimensional quan-
tum walks have been extensively studied, not much is known
about the two-dimensional case. For one-dimensional quantum
walks, it has been shown that spatial disorder can lead to
exponential localization of all energy eigenstates [12–16]. It
was also found, however, that chiral symmetry can prevent lo-
calization in one dimension [5]. To the best of our knowledge,

the effects of spatial disorder in two-dimensional quantum
walks and its impact on the quantum walk propagation was
only studied in Ref. [17] for the Hadamard walk. In that
paper it was reported that in the disordered system the wave
function remains majoritatively close to the starting position,
unlike in the clean case, where the amplitude of the wave
function at the initial site decreases to zero in the long-time
limit. This concentration of the wave function close to its
initial position (which is according to a looser terminology
used as the definition of localization, as, e.g, in Ref. [18]) was
attributed to Anderson localization.

In this paper, we study the effects of spatial disorder on the
propagation and localization of the Hadamard walk, and on the
broader family of two-dimensional split-step walks to which
it belongs. Section I collects the definitions of these walks,
recalls their connection and their topological phases. In Sec. II,
we show that phase disorder localizes generic split-step walks,
but not the Hadamard walk: the latter shows slow diffusion
(contrary to the findings of Ref. [17]). In Sec. III, we attribute
this difference to the fact that the Hadamard walk is critical: it
is a split-step walk that is tuned to a topological phase transition
point. We demonstrate this phase transition and calculate the
corresponding critical exponent ν = 2.6, which places the
split-step walk in the quantum Hall universality class. Finally,
in Sec. IV we study disorder in the angle parameters of the
split-step walks. Based on the preceding section, one can
expect that if the angle disorder is large enough, the split-step
walk can become diffusive even with maximal phase disorder.
We show that this disorder-induced delocalization actually
takes place, and find for it the same critical exponent ν as
in Sec. III. We also find that angle disorder alone leads to
diffusion rather than localization, which is probably connected
to the presence of a particle-hole symmetry in this disordered
quantum walk.

I. DEFINITIONS OF THE QUANTUM WALKS

A particle undergoing a quantum walk on a square lattice
is represented by a time-dependent two-component wave
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function

|ψ(t)〉 =
∑
m,n

∑
s=±1

ψ(t)m,n,s |m,n,s〉. (1)

Here, m,n ∈ Z give the horizontal and vertical positions on
the lattice, s ∈ {+1, − 1} is the value of the internal state
that we call spin, and t ∈ N denotes the time, which is only
allowed to take on discrete values. We take as initial condition
a localized state |0,0, + 1〉 and obtain the time evolution by
iterated applications of the time-evolution operator U on the
state

|ψ(t)〉 = Ut |0,0, + 1〉. (2)

We will consider different types of quantum walks, with
the time-evolution operator U consisting of a product of
several shift operators and coin operators, to be defined in
the following.

Shift operators displace the walker by one lattice site in
a direction that depends on its internal state, but their action
is independent of the position of the walker. We consider the
quantum walk on a square lattice with the sites labeled by
(m,n) and so define the following shift operators:

Ŝx =
∑
m,n

∑
s=±1

|m + s,n,s〉〈m,n,s|;

Ŝy =
∑
m,n

∑
s=±1

|m,n + s,s〉〈m,n,s|.

We use absorbing boundary conditions [19] in both the x and
y directions.

Coin operators act locally on the walker, but can
have position-dependent parameters. They can be written
in compact form using the Pauli operators σz|m,n,s〉 =
s|m,n,s〉, σx |m,n,s〉 = |m,n, − s〉, σy |m,n,s〉 = is|m,n, −
s〉, and σ0|m,n,s〉 = |m,n,s〉 for all values of m, n, and s.
We consider the Hadamard coin operator

Ĥ = 2−1/2(σx + σz) (3)

and the spin-rotation operator

R̂[θj ] =
∑
m,n

e−iθmn
j σy |m,n〉〈m,n|,

with θmn
j denoting the position-dependent rotation angles. The

index j differentiates between rotations in one sequence of
operations defining the time step; below, the time-evolution
operator will contain two spin rotations, and so j will take
values 1 and 2. Since R̂[θj + π ] = −R̂[θj ], only angles
between −π

2 and π
2 give distinct rotation operators (the minus

sign is only a phase factor).
The first type of quantum walk we consider is the Hadamard

walk, defined through its time-evolution operator

UH = ŜyĤ ŜxĤ . (4)

It thus consists of a Hadamard coin operation followed by
a spin-dependent displacement in the x direction, another
Hadamard coin operation rotation and a displacement in the y

direction.
We also consider the split-step quantum walk [9], where

the time-evolution operator is defined as

Us = ŜyR̂[θ2]ŜxR̂[θ1]. (5)

FIG. 1. (Color online) Phase diagram for the topological quan-
tum numbers for the split-step quantum walk defined by Eq. (5)
without disorder [19]. As described in Ref. [19], due to the time-
periodic nature of the quantum walk, two topological invariants
can be defined, only one of which changes in the parameter range
under consideration in this paper. The red transparent box shows the
range of θ1 and θ2 which is accessible at the point θ1 = θ2 = π/4
for the parameters in Figs. 4 and 5. The blue four-sided star
shows the parameter set θ1 = 0.35π, θ2 = 0.15π which is frequently
used throughout this paper. The purple eight-sided star shows the
parameters θ1 = π/4, θ2 = −π/4 at which the split-step quantum
walk reduces to the Hadamard walk.

As described in Ref. [19], for rotation angles θmn
j = θj inde-

pendent of position, the system has two topological invariants:
the Chern number and the quasienergy winding [20], which are
determined by θ1 and θ2. The phase diagram for the topological
invariants is reproduced in Fig. 1. The Chern number for
this quantum walk is always zero, but, as we will see, the
quasienergy winding plays an important role in determining
the localization properties.

The split-step quantum walk can be seen as a generalization
of the Hadamard walk. Since H = σxe

−i(π/4)σy = ei(π/4)σy σx ,
we have

UH = SyR(−π/4)S−1
x R(π/4). (6)

Thus, the Hadamard walk is a mirror reflected x ↔ −x version
of the split-step walk, with θ1 = −θ2 = π/4.

II. EFFECT OF PHASE DISORDER

One way to introduce discrete-time independent disorder
into quantum walks is to multiply the wave function at the end
of each time step by a random phase factor, which depends on
position and spin value, but not on time. For this, we define
the phase operators

P̂a[φ] =
∑
m,n

eiφmnσa |m,n〉〈m,n|,

with a = 0 for a spin-independent and a = z for a spin-
dependent phase operator. We take the phases φmn to have
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zero mean value, and distributed randomly in the interval
[−δφ/2,δφ/2). Intuitively, P̂0 mimics an onsite energy in a
tight-binding lattice model, while P̂z can be understood as a
disordered magnetic field. As such, these types of disorder
favor localization in noninteracting two-dimensional lattice
systems [21].

A. Hadamard walk with phase disorder:
Disorder-induced diffusion

To add phase disorder to the Hadamard quantum walk
[Eq. (4)], we define the time-step operator as

UH,a = P̂aŜyĤ ŜxĤ . (7)

For different values of δφ between 0 and 2π , and different
disorder realizations, we initialize the quantum walker at the
center of a 220 × 220 lattice,1 and follow the time evolution
for 1000 time steps.

To detect localization, we will use two of its signatures.
First, in the presence of localization, the wave function in the
long-time limit should decrease exponentially as a function of
the distance from the initial site∑

s=±1

|	(t → ∞)2
m,n,s | ∝ e−2

√
m2+n2/ξ . (8)

The localization length ξ ∈ R of a localized wave function
should be well defined (at least in the vicinity of the initial
site). Second, in the localized case, the spreading s(t) of the
wave function, defined as

s2(t) =
∑
m,n

∑
s=±1

(m2 + n2)|	(t)m,n,s |2, (9)

should saturate, i.e., limt→∞ s(t) = const.
In the Hadamard walk with phase disorder, we find diffusive

dynamics instead of localization. In Fig. 2, we have plotted a
cross section of the probability amplitude squared of the wave
function after 1000 time steps of both the Hadamard walk
with spin-dependent and spin-independent disorder, averaged
over 500 disorder realizations. We see that although the wave
function is strongly peaked towards the center, it does not
decay exponentially: in both cases, it shows a Gaussian profile
characteristic of diffusive behavior [22]. The inset shows the
spreading s(t), which displays no sign of saturation: it is well
approximated by s(t) ∝ t1/2, which again is an indication of
diffusion.

Our results contradict those of Ref. [17], where localization
was found for the disordered Hadamard walk, and also
go against the intuitive picture that onsite disorder induces
localization. Although it cannot, in principle, be ruled out that
localization will eventually set in, the 1000 times steps we
considered give an already significantly larger time scale than
the 20 time steps investigated in Ref. [17]. Why is there no
localization in the disordered Hadamard walk? This is one of
the main questions which we will answer in the following.

1Throughout this paper we choose lattice sizes large enough for the
boundary to have no effect.

FIG. 2. (Color online) Wave-function cross section at n = 0 after
1000 time steps for a quantum walker initialized at the center of
a 220 × 220 lattice, averaged over 500 disorder realizations. Only
even lattice sites are shown, as the wave function is zero on odd
lattice sites for t = 1000. In total, four types of quantum walks are
shown: UH,a [Eq. (7)] and Us,a [Eq. (10)] with a = 0,z, δφ = 2π .
For Us,a we choose θ1 = 0.35π , θ2 = 0.15π , and δθ = 0.14π . As
we can see, UH,0 and UH,z show similar types of diffusive behavior.
The inset shows the spreading of the wave function for UH,z and UH,0

(same color coding as in the main figure), which is roughly consistent
with the diffusive s ∼ √

t behavior. In contrast, Us,0 and Us,z show
localizing behavior according to Eq. (8).

B. Split-step walk with phase disorder:
Disorder-induced localization

To obtain a full picture of phase disorder and its effects on
localization, we now apply disorder to the generic split-step
walk, which can be seen as a generalization of the Hadamard
walk [cf. Eq. (6)]. We fix the rotation angles at θ1 = 0.35π and
θ2 = 0.15π . As seen on the phase space of the walk, Fig. 1,
this set of parameters is far from the continuous lines along
which the quasienergy gap closes. The time-evolution operator
is then given by

Us,a = P̂a[φ]SyR[θ2]SyR[θ1], (10)

with a = 0 for spin-independent and a = z for spin-dependent
disorder. We remark that both types of phase disorder break
the particle-hole symmetry of the system, which arose since
Us was real [9].

Our numerical results indicate that unlike the Hadamard
walk, the two-dimensional (2D) split-step quantum walk is
localized by phase disorder. As shown in Fig. 3, in the
absence of phase disorder δφ = 0, the wave function spreads
ballistically, as expected. As δφ is increased, however, the
wave function spreads more slowly, and for large values of
δφ, it seems to saturate indicating localization. The inset of
Fig. 3 shows the localization transition through the exponent α

obtained by fitting s(t) ∝ tα to the numerical results over short
(10 < t < 100, green dashed line) and long2(10 < t < 1000,
blue solid line) times. When δφ = 0, we observe ballistic

2For small values of disorder, the walker spreads very rapidly, such
that it reaches the boundary before t = 1000. For these cases, we
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FIG. 3. (Color online) Spreading s(t) of the wave function in
the quantum walk Us,0 of Eq. (10) as a function of time, with
various amounts of phase disorder δφ, averaged over 100 disorder
realizations (log-log plot). The rotation angle parameters are set
to θ1 = 0.35π, θ2 = 0.15π . Upon increasing the phase disorder,
the walk shifts from a delocalized [s(t) ∝ tα] to a localized
[limt→∞ s(t) = const] behavior. Inset: exponent α of s(t) ∝ tα fitted
to the curves between tmin = 10 and tmax (blue solid line: tmax = 100,
green dashed line: tmax = 1000). For δθ = 0, the system behaves
ballistically, with α = 1. For larger disorder, the fitted value of α

decreases with time, indicating localization.

propagation, indicated by a time-independent value of α = 1.
For increasing values of disorder α decreases and, more
importantly, decreases as a function of time. This indicates
that a power-law fit for s(t) does not provide a good fit and that
the system is localizing. Additional evidence for localization
is furnished by the shape of the wave function in the long-time
limit, as shown in Fig. 2.

III. TOPOLOGICAL TRANSITION BEHIND
DELOCALIZATION

The difference in the effects of phase disorder on the
Hadamard walk (diffusion) and the generic split-step quantum
walk (localization) is due to the fact that the Hadamard walk is a
special case of the split-step walk, tuned to a topological phase
transition point. In this section, we expand on this explanation,
and investigate it numerically, obtaining the critical exponents
corresponding to this phase transition via single-parameter
scaling.

To make sure that the effect we observe is generic, we also
include a small amount of disorder in the angle parameters of
the split-step quantum walk. These angles θmn

j will be chosen
randomly and independently for each site, from a uniform
distribution in the interval [θj − δθ,θj + δθ ). Thus, the first
and second rotations have the same disorder δθ , which we fix
in this section to be δθ = 0.2π .

have fitted α in the range 10 � t � tδφ where tδφ is chosen to be a
time before the walker has reached the boundary.

A. Topological transition by tuning the mean rotation angles

We locate the topological phase transition by tuning the
parameters of the quantum walk: we gradually increase θ2 from
0 to π/2 while keeping θ1 + θ2 = π/2 constant, all the while
keeping maximal phase disorder δφ = 2π and a moderate
angle disorder δθ = 0.2π . This path is marked by the dashed
line in Fig. 1. We characterize the localization properties for
each set of parameter values via the time-dependent diffusion
coefficient

D(t) = s2(t)

t
. (11)

In the long-time limit, the diffusion coefficient D(t) is a
constant in regimes governed by diffusion (metallic or possibly
critical regimes) and decreases in time in the localized regime
(nonmetallic regime). We choose this quantity because it will
be a suitable starting point for the scaling analysis of the
transition point.

Our results for the diffusion coefficient D for various times,
as the rotation angles θj are tuned across topological phase
transition, are shown in Fig. 4. At most values of the angles,
the calculated values of D(t) decrease with time t , and we
can infer that the quantum walk is localized. At the point
θ1 = θ2 = π/4, however, the curves of D(t) corresponding to
various times overlap, and so the system is diffusive. This is a
delocalization transition.

We attribute the delocalization at θ1 = θ2 = π/4 to the
occurrence of a topological phase transition. In the absence of
disorder, the quantum walk has topological invariants (−1,0),
and (+1,0) at the end points of the path, respectively. It is
thus plausible that somewhere along the path a topological
phase transition has to occur. Our observations show that this
transition occurs at the point θ1 = θ2 = π/4, which is also
what one might expect on symmetry grounds.

Another angle from which to understand the delocalization
at θ1 = θ2 = π/4 is the following. At the interface between
two domains of the quantum walk with different topological
phases there are edge states [19]. If both possible topological
quantum numbers occur locally with equal probability, a

FIG. 4. (Color online) Diffusion coefficient as a function of
θ2 − θ1 with θ1 + θ2 = π/2 for δθ = 0.2π , δφ = 2π , obtained by
averaging over 100 disorder realizations on a 220 × 220 lattice.
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percolating network of edge states appears. At θ1 = θ2 = π/4,
the possible local values of θ1 and θ2 are shown by the red
transparent box in Fig. 1. This network can be thought of
as a realization of the Chalker-Coddington network model
for the integer quantum Hall effect [23], tuned to the plateau
transition point. At this point, a nonzero conductance appears,
which in this case is signaled by a diffusively spreading wave
function.

B. Scaling analysis of the localization-delocalization transition

In this section, we perform a scaling analysis of the
transition at θ1 = θ2 = π/4, where the localization length ξ

of Eq. (8) has to diverge. We use the same approach as for
the corresponding transition in the quantum anomalous Hall
effect [24]: we compute high-accuracy data for the diffusion
coefficient D(t), and then we fit these data assuming power-law
divergence of the localization length and single-parameter
scaling. We summarize the main ideas and the results here
and relegate the details to the Appendix.

The split-step quantum walk with generic values of θ1

and θ2 has a phase-disorder-dependent localization length ξ ,
defined in Eq. (8). This quantity effectively determines how
far the wave function may spread. At a topological transition,
the localization length has to diverge (there is no length
scale associated with diffusive, i.e., metallic propagation). We
assume that this divergence happens as a power law, in analogy
with the quantum Hall case [25]

ξ = A|η|−ν . (12)

Here, η is the distance from the critical point, A is a constant
of proportionality, and ν is the critical exponent [10]. When
this transition is obtained as explained above, along the line
θ1 + θ2 = π/2, the role of η is played by

η = θ2 − θ1. (13)

Instead of measuring the localization length ξ directly
[which would require a calculation of D(t) up to much larger
times], we find ν by assuming single-parameter scaling of
the diffusion coefficient D(t) of Eq. (11). Taking finite-time
corrections [22] into account, we have

ln D(t) = F (t1/2νu) + t−yG(t1/2νu); (14)

u = η + O(η2). (15)

Here, the scaling functions F (z), G(z), and u(z), as well as
the exponents y and ν, are to be fitted to the numerical data.
The quality of the fits will provide justification for the single-
parameter scaling assumption.

We computed the high-accuracy data for the fitting pro-
cedure by simulating the quantum walk on an 800 × 800
lattice for varying number of time steps over many disorder
realizations. A large number of disorder realizations were
used for the runs at shorter times [4001, 4001, 2001, 1001 to
obtain D(t) at t = 32,80,203,512, respectively], whereas due
to self-averaging, fewer disorder realizations already provided
enough accuracy for the runs at longer times (200 realizations
for t = 8192,3250,1290). The resulting values of D(t) were
then fitted with the scaling ansatz [Eq. (14)] using a Taylor
series expansion of the functions F, G, and u to various orders.

FIG. 5. (Color online) Top panel: estimator of critical exponent
obtained. Rather than providing a histogram we have plotted the
curve as a sum of 60 normalized Gaussians as given by Eq. (A5)
(Nmax = 60). In the bottom panel, we show an example scaling fit
to the diffusion coefficient data, demonstrating that the data for
different t and θ2 − θ1 can be fitted to a single scaling function.
Here, J = 8, K = 3, and L = 1 were chosen and ν = 2.592 at
ξ 2/ndf = 0.94 was obtained. The 68% confidence interval was
found to be [2.557,2.625].

Instead of converging to a single solution, we obtained a good
fit to the data for different forms of the scaling functions, and
also different values of the exponents (an example is shown in
Fig. 5, lower panel). To represent our estimate of the critical
exponent ν, we define an estimator function E(ν), whose
integral between any two values νmin and νmax reflects our
degree of confidence that νmin < ν < νmax. The construction
of this function, along with the details of the fitting procedure,
are explained in the Appendix.

As seen in Fig. 5, our estimator of the critical exponent ν

is a bimodal function, with a peak around νm = 2.616 (full
width at half the maximum of 0.125), and a second peak at
ν2 = 2.384. The value corresponding to the larger peak νm =
2.616 is very close to the quantum Hall critical exponent [25] of
2.593 ± 0.003. The smaller peak is close to previous estimates
of the exponent of the quantum Hall transition [10], which are
now attributed to bistability of the fitting procedure, possibly
related to finite-size effects [26]. To summarize, the transition
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which we observe is compatible with the integer quantum Hall
transition universality class.

IV. DISORDER IN THE ROTATION ANGLES OF
THE SPLIT-STEP WALK

We already introduced disorder to the rotation angles of
the split-step quantum walk, although with a small value of
δθ = 0.2π , in the previous sections. We now examine what
happens to the quantum walk as this disorder grows. We first
consider a split-step quantum walk that is localized by maximal
phase disorder. As we turn on the angle disorder δθ , we will
find that at special values of δθ , the walk delocalizes. We then
consider a split-step walk with no phase disorder, only angle
disorder. We find that, contrary to what one might expect, angle
disorder does not induce localization.

A. Competition of phase and angle disorder:
Disorder-induced delocalization

We now consider what happens if we first localize a
quantum walk by phase disorder, as in Sec. II B, and then
increase the disorder in the rotation angles δθ = δθ1 = δθ2

to π . At this maximal value, as well as at δθ = π/2,
all inequivalent values of the rotation angles are equally
likely. According to the network model pictured described
in Sec. III A, we expect a percolating network of edge states
and thus expect delocalized behavior at these values of the
rotation angle disorder.

Our numerics clearly show the disorder-induced delocal-
ization, at both δθ = π/2 and π . We plot the time-dependent
diffusion coefficient D(t) in Fig. 6, as a function of δθ , at
fixed mean values of the rotation angles θ1 = 0.35π , θ2 =
0.15π , and maximal phase disorder δφ = 2π . The diffusion
coefficient decreases with time, indicating localized dynamics,
except near the points of maximal disorder δθ = π

2 and π :
there, the system is diffusive.

We believe that the disorder-induced delocalization we
observe here accompanies a topological phase transition,
much like in the case of Fig. 4. Indeed, for δθ < π/2 the

FIG. 6. (Color online) Diffusion coefficient as a function of δθ

for δφ = 2π , θ1 = 0.35, θ2 = 0.15, obtained by averaging over 100
disorder realizations on a 220 × 220 lattice.

majority of sites have parameters corresponding to topological
invariants of (+1,0), whereas for π/2 < δθ < π , the majority
topological invariant is (−1,0). It is thus plausible that at
δθ = π/2, a topological phase transition occurs. We performed
a scaling analysis on this transition, with now the control
parameter being η = δθ − π/2. We obtained consistent results
of ν = 2.58 ± 0.05, in agreement with the mode of the
distribution of νm = 2.6 shown in Fig. 5. This confirms that
the exponent ν is universal: its value does not depend on the
method we use to drive the system across the transition.

B. Diffusive behavior in the presence of only
rotation angle disorder

Finally, we investigate the spreading of the split-step
quantum walk in the presence of only rotation angle disorder.
We fix the mean rotation angles to θ1 = 0.35π and θ2 = 0.15π .
This choice of the mean rotation angles places the system in an
insulating phase with topological invariants (+1,0), as shown
by the blue four-sided star in Fig. 1.

In Fig. 7, we show the result of increasing the rotation angle
disorder from δθ = 0 to 2π . We observe the expected ballistic
behavior at δθ = 0, and already for rather small values of δθ

we see the crossover to the diffusive regime with s ∝ t1/2.
Unlike in the case with phase disorder, though, we do not
observe any signs of localization here.

Although we do not have a complete explanation for this
absence of localization, we believe it is related to the particle-
hole symmetry of the system, that is not broken by rotation
angle disorder. The time-evolution operator has only real
elements in position basis, and thus the effective Hamiltonian
possesses particle-hole symmetry represented by complex
conjugation. In time-independent lattice systems, the presence
of this symmetry leads to nonuniversal behavior, and in some
cases to diffusion instead of Anderson localization [10].

FIG. 7. (Color online) Spread of the quantum walker averaged
over 100 disorder realizations for θ1 = 0.35π, θ2 = 0.15π in the
absence of phase disorder, as the angle disorder is increased from
0 to its maximal value of π/2. Just like Fig. 3, the inset shows the
fitted power-law exponent of s(t) ∝ tα . For large δθ , we obtain a
time independent α ≈ 1

2 , unlike in the case where phase disorder was
present.
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V. SUMMARY AND CONCLUSION

To summarize, we have found that the Hadamard walk is not
localized by phase disorder, while generic split-step quantum
walks are. We gave an intuitive physical explanation for this
difference, namely, that the Hadamard walk is a split-step
walk tuned to a topological phase transition. We corroborated
this picture by numerically demonstrating that this transition
can be reached through angle disorder as well, at precisely
the value that this explanation predicts. We determined the
critical exponent for the divergence of the localization length
for both of these routes to criticality, and found ν = 2.6, which
places the split-step quantum walk with phase disorder in
the universality class of the quantum Hall effect. We have
also found that angle disorder alone does not localize the
split-step quantum walk, which may be due to the fact that
this disorder does not break the particle-hole symmetry of the
system.

A useful next step to strengthen our interpretation of
the localization effects of disorder would be the calcula-
tion of the topological invariant of the disordered split-step
walk, the quasienergy winding. Here, any of the existing
approaches to the Chern number in disordered systems
can be of use. One could extend the definition of the
quasienergy winding [20] using noncommutative geome-
try [27,28], or measure the winding number of the scattering
matrix [24,29,30].

Another interesting question to pursue concerns at which
point (and whether) the disorder-driven delocalization tran-
sition occurs for nonuniform disorder distributions, e.g.,
Gaussian disorder distributions for θ1 and θ2 or a binary
distribution [with the two sets of (θ1,θ2) having different
topological invariants].

Our interpretation of the localization phenomena relied on
qualitative similarity with disordered quantum (anomalous)
Hall insulators; we even obtained the same critical exponent.
However, there are also ways in which these two disordered
systems differ from each other. In the quantum anomalous Hall
insulator study, a disorder-induced splitting of the transition
from Chern number +1 to −1 into two transitions was
observed [24]. In this paper, on the other hand, no such
splitting of the transition from quasienergy winding +1
to −1 was found. To better understand these differences,
perhaps the four-step walk [19] can help, as it can realize
all possible combinations of trivial/nontrivial Chern number
and quasienergy winding.
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APPENDIX: DETAILS OF THE SCALING ANALYSIS

We determine the critical exponent ν by a scaling analysis
as used in Refs. [24,31], which will allow us to classify to
which universality class this localization transition belongs.
Instead of measuring the localization length ξ directly from the
numerics, we assume single-parameter scaling, and determine
ξ from the diffusion coefficient D(t) of Eq. (11). The scaling
law for the logarithm of the diffusion coefficient in dynamical
localization [22] reads as3

ln D(t) = F̃ (ξ−2t). (A1)

Here, the scaling function F̃ (z) is some continuous, differen-
tiable function of its argument z.

We insert the power-law diverging behavior for ξ , given
by Eq. (12), into Eq. (A1), rescale the function F̃ , and add
finite-time corrections [22] to obtain

ln D(t) = F (t1/2νu) + t−yG(t1/2νu); (A2)

u = η + O(η2). (A3)

Here, the function F is related to F̃ as

F (z) = F̃ (z2ν/A2), (A4)

where A is the constant from Eq. (12). The function G takes
into account finite-time corrections, with y denoting the first
subleading exponent. We expand the formulas for ln D and u

of Eq. (A2) in Taylor series

ln D =
J∑

j=0

fj (t1/2νu)j +
K∑

k=1

t−ygk(t1/2νu)k−1,

u = η +
L∑

l=3

ulη
l.

Since the function ln D must be even, j may only take
even values. In contrast, k and l may only take odd values,
although k = 0 is also allowed, k = 0 corresponding to the
absence of finite-time corrections. We choose the order of the
approximation by fixing J,K,L ∈ N, and then fit the Taylor
coefficients fj , gk , ul , and the exponents y and ν to the D(t)
data. This allows us to obtain an estimate for the critical
exponent ν.

We fitted the numerically obtained data for D(t) with 90 dif-
ferent functions, defined by different values of J ∈ {2 . . . 10},
K ∈ {0,1,3 . . . 9}, and L ∈ {1,3,5}. In a first approach, we
systematically increased the order of the approximation, i.e.,
the values of J, K , and L, until we obtained a reasonable
goodness of fit. Unfortunately, this did not yield a uniform
convergence, neither when the standard χ2 test was used [value
of χ2 per degree of freedom (χ2/ndf ) of order 1], nor when
the more sophisticated goodness of fit measure [32] Q was
used. We thus resorted to an alternative approach, as explained
following.

3We choose ln D instead of D to perform scaling on since this
makes the fitting simpler, as only a lower-order expansion of the
fitting function is required. This follows Ref. [24].

104202-7



JONATHAN M. EDGE AND JANOS K. ASBOTH PHYSICAL REVIEW B 91, 104202 (2015)

We represent our results for the critical exponent ν, by
use of an estimator function E(ν), obtained by the following
procedure. Out of the 90 different fitting functionsFi , we reject
those which gave a value of χ2 outside of an acceptance range
0.5 < χ2/ndf < 2. For the remaining 60 functions Fi , with
critical exponents νi , we used the bootstrap method to evaluate
the goodness of fit Qi , and the 68% confidence interval for the
critical exponent: ν ∈ [νi − σ−

i ,νi + σ+
i ]. The estimator E(ν)

is then defined as

E(ν) = 1

Nmax

Nmax∑
i=1

√
2πσi exp

(
− (ν − νi)2

2σ 2
i

)
, (A5)

with Nmax = 60, and σi = (σ+
i + σ−

i )/2. This is the probabil-
ity density of the critical exponent, if we deem all acceptable
outcomes of our fitting procedure equally likely.

[1] J. Kempe, Contemp. Phys. 44, 307 (2003).
[2] N. Shenvi, J. Kempe, and K. Birgitta Whaley, Phys. Rev. A 67,

052307 (2003).
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