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Revisiting pyramid compression to quantify flexoelectricity: A three-dimensional simulation study
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Flexoelectricity is a universal property of all dielectrics by which they generate a voltage in response to an
inhomogeneous deformation. One of the controversial issues in this field concerns the magnitude of flexoelectric
coefficients measured experimentally, which greatly exceed theoretical estimates. Furthermore, there is a broad
scatter amongst experimental measurements. The truncated pyramid compression method is one of the common
setups to quantify flexoelectricity, the interpretation of which relies on simplified analytical equations to
estimate strain gradients. However, the deformation fields in three-dimensional pyramid configurations are highly
complex, particularly around its edges. In the present work, using three-dimensional self-consistent simulations
of flexoelectricity, we show that the simplified analytical estimations of strain gradients in compressed pyramids
significantly overestimate flexoelectric coefficients, thus providing a possible explanation to reconcile different
estimates. In fact, the interpretation of pyramid compression experiments is highly nontrivial. We systematically
characterize the magnitude of this overestimation, of over one order of magnitude, as a function of the truncated
pyramid configuration. These results are important to properly characterize flexoelectricity, and provide design
guidelines for effective electromechanical transducers exploiting flexoelectricity.
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I. INTRODUCTION

Flexoelectricity is a two-way electromechanical coupling
mechanism between electric polarization and strain gradients
or strain and polarization gradients, rather than between
polarization and strain as in piezoelectricity [1,2]. This
material property may enable electromechanical transducers
made out of nonpiezoelectric materials [3–6], or new ways
to address information in ferroelectric thin films [7]. Because
strain gradients disrupt in general the inversion symmetry of
the microscopic structure of a material, flexoelectricity is very
general for dielectrics, unlike piezoelectricity, only present
in noncentrosymmetric materials. On the other hand, flexo-
electricity is strongly size-dependent because strain gradients
are inversely proportional to the structural size. Therefore,
despite its universality, the flexoelectric effect is significant
only at micro- and nanoscopic scales, making its experimental
characterization challenging.

To quantitatively characterize flexoelectricity in different
materials, measurements of direct flexoelectricity mechani-
cally impose strain gradients in a sample and the induced
voltage is recorded. Common setups to induce strain gradients
in simple geometries include bending of thin films [8–10]
and compression of truncated pyramids or cones [11,12]. It
has been found that flexoelectric coefficients are particularly
large in materials with high dielectric constants, such as
ferroelectrics [9,11,13–15]. However, the magnitude of these
coefficients greatly exceeds theoretical estimates [1,16,17].
This discrepancy has lead to a controversy in the field
of flexoelectricity, demanding further investigations into the
quantification of the flexoelectric response [18]. While re-
cent developments in the field demonstrate that the surface
contributions to the flexoelectric response may be a possible
explanation [19–21], there is still a limited quantitative under-
standing on the flexoelectric coefficients. To translate an ex-
perimental measurement into a material parameter estimation,
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one must resort to a model. Here, we examine if the modeling
assumptions underlying previous experimental estimations of
flexoelectricity may provide a source of significant error.

The most widely used model for flexoelectricity is the
linear continuum theory of flexoelectricity (see the recent
reviews [18,22,23]). In this theory, flexoelectricity is repre-
sented by a fourth-order flexoelectric coupling tensor, whose
symmetry is well understood [24–26]. Mathematically, the
self-consistent electromechanical field equations of flexoelec-
tricity are a coupled system of fourth-order partial differential
equations (PDEs). Despite that analytical solutions are starting
to emerge for simple geometries and loads [27,28], most of
the field operates with approximate solutions that are valid
under very restrictive assumptions [11,29,30]. Furthermore, to
interpret experiments, the two-way flexoelectric coupling is
often ignored, by estimating strain gradients from elasticity
alone [10].

To go beyond these simple approximate solutions, one
can resort to computational methods, but because the equa-
tions involve high-order spatial derivatives, flexible meth-
ods such as conventional finite elements cannot be used.
On rectangular or brick geometries, finite difference cal-
culations have been applied to flexoelectricity [31–33]. To
deal with more general geometries with nonuniform grid
refinement, we have recently resorted to mesh-free methods,
relying on smooth basis functions [34], to solve numerically
the continuum equations of flexoelectricity in two dimen-
sions [35]. Surprisingly, we found that previous simplified
calculations on beam and truncated triangle configurations
provided only rough order-of-magnitude estimations of the
flexoelectric response. These previous results suggest that
in three-dimensional (3D) truncated pyramid configurations
found in experiments, common simplified estimates may
significantly deviate from the actual flexoelectric response.
Our main objective in this paper is to revisit the pyramid com-
pression method by performing realistic three-dimensional
simulations of the self-consistent equations of linear flex-
oelectricity. In particular, we aim to evaluate the effect of
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pyramid geometry and boundary conditions on the flexoelec-
tric response.

The structure of the paper is as follows. A summary
of the continuum theory of flexoelectricity along with the
computational model is presented in Sec. II. We then revisit
the truncated pyramid experiment through 3D simulations in
Sec. III and, in particular, discuss the sources of overestimation
in the flexoelectric response. A systematic study of this
response as a function of the truncated pyramid configuration
is presented in Sec. IV. The last section is the conclusion.

II. THEORY, COMPUTATIONAL MODEL, AND
MATERIAL PARAMETERS

The constitutive equation for the electric polarization P in
a linear dielectric solid possessing flexoelectricity is [1]

Pi = χijEj + μklij∇j εkl, (1)

where E is the electric field and ε is the mechanical
strain. The dielectric response is described by the first term,
where χ is the second-order dielectric susceptibility tensor.
The flexoelectric effect is introduced by the second term,
where μ is the fourth-order tensor of flexoelectricity and ∇ε

is the strain gradient. Given the electric polarization in Eq. (1),
the electric displacement D is obtained as

Di = ε0Ei + Pi = κijEj + μklij∇j εkl, (2)

where ε0 is the permittivity of free space and κij is the
second-order dielectric tensor. Equation (2) determines the
electrostatic state of the solid, where the electric field derives
from the electric potential φ, Ei = −φ,i .

The thermodynamically conjugated effect to the direct flex-
oelectric response in Eq. (2) is the converse flexoelectric effect,
introduced via the constitutive equation for the mechanical
stress σ :

σij = Cijklεkl + μlijkEl,k − hijklmnεlm,nk, (3)

where the first term is the elastic response, C being the fourth-
order tensor of elastic moduli. The converse flexoelectric
effect is through the third term, where ∇E is the electric field
gradient. The last term is the strain-gradient elastic response,
h being the sixth-order strain-gradient elasticity tensor. This
term guarantees the well-posedness of the flexoelectric equa-
tions [28,36–38].

Equations (2) and (3) can be shown to derive from an
electromechanical enthalpy energy density for the linear
flexoelectric solid:

H(εij ,Ei,εjk,l) = 1
2Cijklεij εkl − μijklEiεjk,l − 1

2κijEiEj

+ 1
2hijklmnεij,kεlm,n, (4)

as

σ̂ij = ∂H
∂εij

, σ̃ijk = ∂H
∂εij,k

, D̂i = − ∂H
∂Ei

, (5)

where the mechanical stress is obtained from the usual
contribution σ̂ and the higher-order (hyper) stress σ̃ as

σij = σ̂ij − σ̃ijk,k. (6)

The total enthalpy of the system results from integratingH over
the domain, and accounting for the contributions of the external
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FIG. 1. (Color online) Convergence study of the numerical sim-
ulations. Normalized flexoelectric constant μ′ as a function of the
number of degrees of freedom (DOF), i.e., the number of nodes
times 4 (three components of the displacement field and the electric
potential). The inset shows a representative computational node set.

loadings. We refer to Ref. [35] for a complete description
of the theory and its Galerkin numerical discretization. For
reader’s convenience, we provide in Appendix details about
the numerical implementation in three dimensions. We have
carefully checked the numerical convergence, as shown in
Fig. 1.

To perform numerical simulations, we consider truncated
pyramid geometries as shown in Fig. 2. A total force of
magnitude F is applied uniformly at the top and bottom square
faces, whose lateral dimensions are a1 and a2. The electric

a1

a2

h

a1

a2

FIG. 2. (Color online) Truncated pyramid under the mechanical
load F , uniformly distributed at the top and bottom surfaces. The
top square face has length a1 and a bottom length a2. The electric
potential is fixed to zero at the bottom and is constant but unknown
at the top. The edges of the geometry have been rounded to avoid
unphysical singularities.
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potential is fixed to zero at the bottom and to a constant but
a priori unknown value V at the bottom electrode, which is
found as a result of the numerical calculation.

The material constants are chosen to fit the behavior of
a strongly flexoelectric material, barium strontium titanate
(BST) in its nonpiezoelectric (paraelectric) phase at room
temperature. We adopt a simple choice for the symmetry
of the material tensors, but general enough to capture the
multidimensional couplings of the field equations. We consider
isotropic elasticity and permittivity and adopt cubic symmetry
for the flexoelectric tensor. Therefore there are only two
independent elastic constants, the Young’s modulus E and
the Poisson’s ratio ν, one dielectric permittivity constant κ11,
two strain-gradient elasticity constants h111111 and h122122

(or in matrix notation h11 and h12, see Appendix), and
three independent flexoelectric coefficients, μ1111, μ1221, and
μ1212 (or in matrix notation μ11, μ12, and μ44). Here, we
only consider the longitudinal and transversal flexoelectric
coefficients, μ11 and μ12, since the shear coefficient μ44 is
poorly characterized. All the material tensors and parameters
are described in Appendix.

III. REVISITING THE TRUNCATED PYRAMID
EXPERIMENT THROUGH 3D SIMULATIONS

The applied force on the truncated pyramid generates
different tractions at the top and bottom surfaces due to
their different areas. As a result, a strain gradient and thus
a flexoelectric polarization are generated. Thus, by adopt-
ing a pyramid geometry, a nonpiezoelectric solid behaves
effectively as a piezoelectric solid. To quantify this effective
piezoelectricity, one can consider a comparison piezoelectric
solid with a parallelepiped geometry of square base of size
a2, height h, and piezoelectric coupling tensor e, which
produces the same polarization as a flexoelectric solid with
pyramid geometry. Let us assume that the material only
has a nonzero longitudinal flexoelectric coefficient μ11 and
elastic constant c11 = E(1 − ν)/(1 + ν)(1 − 2ν), and that the
through-thickness longitudinal strain ε22 is the only nonzero
component. In the piezoelectric solid, strain is constant and
given by ε̄22 = F/(c11a

2
2). In the pyramid, by interpolating

linearly the strain at top and bottom surfaces, the strain gradient
can be estimated as ε22,2 = ε̄22(R − 1)/h, where R = (a2/a1)2

is the area ratio, see Fig. 2. Then, the equation equating the
polarization in the flexoelectric pyramid and in the compared

piezoelectric solid,

eijkεjk = μklij∇j εkl, (7)

simplifies to [11],

e33 = μ11

(
R − 1

h

)
, (8)

providing a definition for the effective piezoelectric constant
e33 of the pyramid. Experimentally, if the electric potential
difference between electrodes V resulting from an applied
force F is recorded, e33 can also be computed by dividing the
nominal polarization in the sample −χ11V/h by the nominal
strain as

e33 = −χ11V

hε̄22
. (9)

Combining Eqs. (9) and (8), the flexoelectric constant μ11 of
the material can be estimated as

μest
11 = − χ11V

(R − 1)ε̄22
. (10)

By performing an electromechanically self-consistent 3D
simulation of the experiment, it is also possible to estimate the
flexoelectric coefficient using Eq. (10). The difference now is
that the actual flexoelectric coefficient μ11 used to produce the
simulation is known, and therefore we can define a normalized
flexoelectric constant μ′ = μest

11 /μ11, measuring the accuracy
of the simple estimation used to interpret experiments. If
the analytical formula in Eq. (10) is a good estimate of the
flexoelectric response, the normalized flexoelectric constant
μ′ should be close to one.

To examine this point, we perform a case study simulation
inspired in the work of Ref. [3], where experiments were per-
formed on an array of truncated pyramids under compression.
In these experiments, electrodes were deposited on the top and
bottom sides of the pyramids to collect the induced charges.
The dimensions of the pyramids in the experiments, also used
here, are a2 = 2.72 mm, a1 = 1.13 mm, and h = 0.76 mm.
The 3D simulation of this pyramid, subjected to a load of F =
200 N, predicts an induced voltage of V = −17.1 V on the top
electrode, as shown in Fig. 3(a). With these data, a normalized
flexoelectric constant μ′ = 3.5 is obtained, indicating more
than a three-fold overestimation of the flexoelectric constant
by the simple analytical estimate.

FIG. 3. (Color online) Distribution of (a) the electric potential φ and (b) the strain norm ||ε|| in the truncated pyramid under compression.
(c) Distribution of the through-thickness mechanical displacement u2 in the deformed configuration of the pyramid. The deformation is
exaggerated by a factor of 10 for clarity.
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To understand the origin of the overestimation, we plot the
distribution of the strain norm ||ε|| := (ε : ε)1/2 in Fig. 3(b)
together with the distribution of the through-thickness me-
chanical displacement u2 in the deformed configuration of
the pyramid in Fig. 3(c). Sharp changes of the strain are
observed, particularly near the pyramid corners in Fig. 3(b),
resulting in a significant and localized flexoelectric effect. This
is in contrast to the assumptions underlying the analytical
estimates, where a one-dimensional homogeneous distribution
of the strain gradient is assumed. Furthermore, Fig. 3(c) shows
that the pyramid undergoes a bending deformation in addition
to the compressive deformation. Therefore another important
source of discrepancy is the bending deformation mode of the
pyramid, mobilizing the transversal flexoelectric components
neglected in the analytical model. In this simulation, a fully
flexible support of the pyramid is considered, which uniformly
distributes tractions as shown in Fig. 2. We consider later
rigidly supported pyramids. Thus, both strain gradient localiza-
tion due to compression and bending-induced strain gradients
result in a higher effective flexoelectric response as compared
to the naive calculation, resulting in an overestimation of the
flexoelectric coefficient.

IV. SYSTEMATIC DEPENDENCE OF EFFECTIVE
FLEXOELECTRIC COEFFICIENT ON GEOMETRY AND

BOUNDARY CONDITIONS

These results suggest that simple estimations such as
those leading to Eq. (10) are not reliable to compute the
flexoelectric response of truncated pyramids. In principle,
the overestimation indicated by the normalized flexoelectric
constant μ′ should strongly depend on the configuration
and boundary conditions of the pyramid. To support this
hypothesis, we perform a set of simulations considering
different area ratios (R) and inclination angles (α) of the
truncated pyramid. Figure 4 presents the results for different
pyramid configurations. It is clear that the overestimation
increases noticeably by decreasing the area ratio and/or the
inclination angle of the pyramid. The deformation (inset)
shows that the main source of the overestimation is the
bending deformation of the pyramid. For high inclination
angle and high area ratio pyramids, the response is dominated
by the compressive deformation mode and the normalized
flexoelectric constant approaches unity, i.e., the overestimation
decreases. On the other hand, for low inclination angles and
low area ratios, the pyramid approaches a plate configuration
and the response is mainly due to the bending deformation
mode. In this situation, the assumption of pure compressive
deformation in Eq. (8) is not valid, leading to a noticeable
overestimation of the flexoelectric constant (up to μ′ = 45
for R = 2.2 and α = 20◦). This may partially explain the
discrepancy between experimental measurements using the
pyramid compression method and theoretical estimates [18].

The flexoelectric response of truncated pyramids also
strongly depends on the boundary conditions. To highlight
this point, we perform additional simulations of the truncated
pyramid by assuming a rigid bottom support, which constraints
the displacements of the bottom face of the pyramid. In
this situation, a nonuniform traction is induced on the
bottom surface. We consider only the pyramids with an
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FIG. 4. (Color online) Normalized flexoelectric constant μ′ as
a function of the pyramid area ratio R. The results are obtained
considering different inclination angles α. The inset shows the dis-
tribution of the through-thickness displacement (u2) in the deformed
configuration of the pyramid for the lowest and highest area ratios.
The deformation is exaggerated by a factor of 10 for clarity. The color
bar indicates the displacement scale in each case, normalized by a
factor of 10−5 m.

inclination angle of α = 45◦, which are the most common
configurations [11]. The results in Fig. 4 show that the
overestimation of the flexoelectric constant decreases for
rigidly supported pyramids, where the bending deformation
is precluded. However, we still observe an overestimation of
the flexoelectric constant due to sharp changes of the strain
field near the pyramid corners, as discussed earlier in Fig. 3(b).
For intermediate conditions, where the bottom support is not
fully rigid nor flexible, μ′ lies between the rigid and flexible
results. By way of example, for the pyramid building unit
in the experiments of Ref. [3], we obtain μ′ = 3.5 in the
flexibly supported case and μ′ = 1.3 in the rigidly supported
case. Since in these experiments the pyramid building unit
is mounted on a semirigid BST ceramic sheet, we expect an
intermediate overestimation.

The results in Fig. 4 for a flexible support can be
summarized by the following fit:

ln μ′ ≈ 7.1 − 2.6 ln R − 5.2α + 0.30 (ln R)2

+ 0.88α ln R + 0.85α2, (11)

where α is expressed in radians. This equation provides a
simple way to correct the simplified estimate in Eq. (10) for
pyramids on a flexible support, which should be divided by μ′.
For a rigid support, the overestimation is weakly dependent
on R (for α = 45◦, it ranges from 1.3 to 1.6). Thus our results
show that the pyramid compression test is complex to interpret,
particularly when the support is flexible. The simple estimate
in Eq. (10) provides a reasonable approximation when the
support is much more rigid than the flexoelectric sample.

The simulations can also be used to design electromechan-
ical transducers based on flexoelectric truncated pyramids,
which exhibit high effective piezoelectric effect thanks to a
careful geometric configuration. For this purpose, we define
the normalized effective piezoelectric constant e′ = he33/μ11

as a design criterion, where e33 is obtained in Eq. (9) using
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FIG. 5. (Color online) Normalized effective piezoelectric con-
stant e′ as a function of the pyramid area ratio R. The results are
obtained considering different values of the inclination angle α. The
result of the simplified analytical model, e′ = R − 1, is also plotted
for comparison purposes.

the simulation results. This coefficient measures the efficiency
with which the flexoelectricity is exploited to obtain an
effective piezoelectricity. Figure 5 presents this constant for
different pyramid configurations. For comparison purposes,
the result of the simplified analytical model in Eq. (8), e′ =
R − 1, is also plotted. For high area ratio pyramids where the
compressive deformation is dominant, the effective response
follows quite closely the analytical estimation. However,
by decreasing this ratio, the bending deformation becomes
more prominent, overweighing the decreasing effect of the
compressive mode. This enhancing effect due to bending is
more noticeable for lower inclination angles. The role of
the bending deformation becomes evident by comparing the
response of the flexible and rigid support pyramids (α =
45◦) in Fig. 5. As expected, in the absence of the bending
deformation in the rigidly support configuration, the response
closely follows the simplified analytical model. In contrast, if
allowed to bend by the flexible support, the system becomes
a much more efficient flexoelectric transducer, increasing the
effective electromechanical coupling by an order of magnitude
for small area ratios.

As discussed earlier, the bending deformation dominates
the response in pyramids with low inclination angles and low
area ratios, e.g., α = 20◦ and R = 2.2. In this regime, the
pyramid shape is similar to a plate configuration. By further
decreasing the area ratio, the plate thickness decreases as well,
magnifying the transversal strain gradient due to bending.
This effect explains the flexoelectric response enhancement
observed in pyramids with α = 20◦ and 45◦ below a certain
area ratio. In general, the lower is the inclination angle of
the pyramid, the higher is the effective electromechanical
coupling. In summary, configurations generating strain gra-
dients as a result of compressive stresses distributed over
a nonuniform cross-section are not as efficient flexoelectric
electromechanical transducers as configurations introducing
strain gradients though bending (pyramids of small angle
α). However, pyramidal systems mobilizing bending develop
complex strain gradient states, and therefore they may be

inadequate for material characterization. High area-ratio (R)
pyramids of intermediate or high angle α may strike a compro-
mise since they exhibit significant flexoelectric transduction,
their response is weakly dependent on boundary conditions
and angle, and they may be reasonably approximated using
the simplified model underlying Eq. (10), which only overes-
timates the flexoelectric coefficient by a few-fold.

V. CONCLUSIONS

We have performed, to the best of our knowledge, the
first 3D simulations of linear flexoelectricity in dielectric
solids. The simulations are based on a continuum model of
flexoelectricity, in which the resulting high-order coupled
partial differential equations are numerically approximated
using mesh-free approximants and a Galerkin method. We
have revisited the pyramid compression method, which is
one of the common setups for quantifying the flexoelectric
response. This configuration is computationally challenging
since the complex fields near the pyramid edges need to be
resolved accurately. The simulation results show that a simple
analytical estimates used to interpret truncated pyramid ex-
periments overestimate the flexoelectric constant. This obser-
vation can partially explain the discrepancy between different
experimental measurements and theoretical estimates [18]. We
have found that the sources of the overestimation are (1) strain
gradients localized around geometric features, and (2) bending
deformations when pyramids lie on a flexible support, and
that these effects strongly depend on geometry and boundary
conditions. Suppressing these sources of additional strain
gradients minimize the overestimation, and therefore render
the simplified estimations accurate. However, exacerbating
additional strain gradients, either by considering low area
ratio configurations or by reducing the pyramid inclination
angle α on flexible supports, can significantly increase the
effective electromechanical coupling of the device induced by
flexoelectricity.
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APPENDIX: NUMERICAL APPROXIMATION AND
CONVERGENCE ANALYSIS

Mesh-free methods provide an approximation to continuum
field equations based on basis functions that do not rely on
a mesh or its connectivity. In recent years, the information-
theoretic concept of maximum entropy has been put forth
to develop mesh-free approximation schemes, in particular
the local maximum-entropy (LME) approximants [34,39].
Essentially, these methods allows us to determine a set
of smooth basis functions pa(x), each localized around its
corresponding node of the grid. We expand the continuum
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displacement and electric potential fields as

u(x) =
N∑

a=1

pa(x)ua, φ(x) =
N∑

a=1

pa(x)φa,

and their derivatives as

∂jui =
N∑

a=1

∂jp
aua

i , ∂j ∂kui =
N∑

a=1

∂j ∂kp
aua

i , ∂jφ =
N∑

a=1

∂jp
aφa,

where the first and second variations involve the gradient and Hessian of the LME basis functions, respectively. From now on,
we omit the arguments of the basis functions for simplicity, i.e., u = ∑N

a=1 paua .
Introducing these expansions into the continuum total electromechanical enthalpy [35], we obtain its discrete representation

as

H (U,φ) = 1

2

∑
a,b

uaT

(∫



Bu(pa)CBu
T (pb)d


)
ua +

∑
a,b

uaT

(∫



Hu(pa)μT BT
φ (pb)d


)
φb

− 1

2

∑
a,b

(∫



Bφ(pa)KBT
φ (pb)d


)
φaφb + 1

2

∑
a,b

uaT

(∫



Hs(p
a)hHs

T (pb)d


)
ua

−
∑

a

(∫
�t

tpadS

)
ua +

∑
a

(∫
�D

ωpadS

)
φa,

t are the imposed mechanical tractions, and ω the prescribed change density. The stiffness tensor C, the dielectric tensor K, the
flexoelectric tensor μ, and the strain-gradient tensor h have been written in Voigt form as

C =

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤
⎥⎥⎥⎥⎥⎦,

K =
⎡
⎣κ11 0 0

0 κ11 0
0 0 κ11

⎤
⎦,

μ =
⎡
⎣μ11 0 0 μ12 0 0 μ12 0 0 0 μ44 0 0 0 μ44 0 0 0

0 μ12 0 0 μ11 0 0 μ12 0 μ44 0 0 0 0 0 0 0 μ44

0 0 μ12 0 0 μ12 0 0 μ11 0 0 0 μ44 0 0 0 μ44 0

⎤
⎦ ,

h = l2
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 0 0 0 c12 c12 0 0 0 0 0 0 0 0 0 0 0 0
0 c11 0 c12 0 0 0 0 c12 0 0 0 0 0 0 0 0 0
0 0 c11 0 0 0 c12 c12 0 0 0 0 0 0 0 0 0 0
0 c12 0 c11 0 0 0 0 c12 0 0 0 0 0 0 0 0 0

c12 0 0 0 c11 c12 0 0 0 0 0 0 0 0 0 0 0 0
c12 0 0 0 c12 c11 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c12 0 0 0 c11 c12 0 0 0 0 0 0 0 0 0 0
0 0 c12 0 0 0 c12 c11 0 0 0 0 0 0 0 0 0 0
0 c12 0 c12 0 0 0 0 c11 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c44 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c44 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 c44 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c44 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c44 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c44 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c44 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c44 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where c11 = E(1 − ν)/(1 + ν)(1 − 2ν), c12 = Eν/(1 +
ν)(1 − 2ν), and c44 = (c11 − c12)/2. The value of μ12 is

chosen to be equal to μ11 and it is assumed that μ44 = 0. With
these parameters and following [28], we obtain a conservative
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TABLE I. Material parameters

E ν μ11 κ11 l1

152 GPa 0.33 121 μC/m 141.6 nC/Vm 10 nm

value for the length scale l1, to guarantee positive definiteness
of the strain energy. The material parameters of BST [3,40]
are presented in Table I.

The gradient operators Bu and Bφ and the Hessian operators
Hu and Hs can be written in Voigt form as

Bu =
⎡
⎣∂/∂x 0 0 ∂/∂y 0 ∂/∂z

0 ∂/∂y 0 ∂/∂x ∂/∂z 0
0 0 ∂/∂z 0 ∂/∂y ∂/∂x

⎤
⎦,

Bφ = [
∂/∂x ∂/∂y ∂/∂z

]
,

Hu =

⎡
⎢⎣

∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
0 0 0 0 0 0

0 0 0 ∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
0 0 0

0 0 0 0 0 0 ∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

...

∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2 0 0 0
∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
0 0 0 ∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

0 0 0 ∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z

⎤
⎥⎦ ,

Hs =

⎡
⎢⎣

∂2

∂x2 0 0 ∂2

∂x∂y
0 0 ∂2

∂x∂z
0 0

0 ∂2

∂y2 0 0 ∂2

∂y∂x
0 0 ∂2

∂y∂z
0

0 0 ∂2

∂z2 0 0 ∂2

∂z∂x
0 0 ∂2

∂z∂y

...

∂2

∂y∂x
∂2

∂z∂x
0 ∂2

∂y2
∂2

∂z∂y
∂2

∂y∂z
∂2

∂z2
∂2

∂y∂z
0

∂2

∂x2 0 ∂2

∂z∂x
∂2

∂x∂y
0 ∂2

∂x∂z
0 ∂2

∂x∂z
∂2

∂z2

0 ∂2

∂x2
∂2

∂y∂x
0 ∂2

∂x∂y
0 ∂2

∂x∂z
0 ∂2

∂y∂z

⎤
⎥⎦ .

The discrete algebraic equations for the equilibrium can be
derived following the usual Galerkin procedure as[

AUU AUφ

AφU Aφφ

][
U
φ

]
=

[
fU
fφ

]
,

where the local contribution of each quadrature point to the
matrix of system has the structure

Aab
UU = Bu(pa)CBT

u (pb) + Hs(p
a)hHT

s (pb),

Aab
Uφ = Hu(pa)μT BT

φ (pb),

Aab
φU = Bφ(pb)μHT

u (pa),

Aab
φφ = −Bφ(pa)KBT

φ (pb),

fU = tpa, fφ = −ωpa,

where the derivatives of the basis functions are evaluated at
the corresponding quadrature point.

To assure the accuracy of the results, we perform a
convergence analysis through a number of simulations. The
pyramid configuration presented in Sec. III is chosen for the
analysis and is discretized with five node sets of variable
resolution. To capture the sharp changes of the strain and
electric field near the edges of the pyramid, the nodal
spacing is chosen to be smaller near the edges than in
the bulk. To increase the resolution of each node set, the
nodal spacing is decreased near the pyramid edges. Figure 1
presents the normalized flexoelectric constant μ′ as a function
of the number of degrees of freedom (DOF). The convergence
of the results is clear from Fig. 1. The convergence is slow
since a fine node distribution is required to properly capture
the localized effects at the pyramid edges. In all simulations,
we build a Delaunay tetrahedralization of each node set and
generate a standard Gauss-Legendre quadrature rule of 11
points per tetrahedron, an overkill integration rule.
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