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Vortex arrays in nanoscopic superfluid helium droplets
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We have studied the appearance of vortex arrays in a rotating 4He nanodroplet at zero temperature within
density functional theory. Our results are compared with those for classical rotating fluid drops used to analyze
the shape and vorticity in recent experiments [L. F. Gomez et al., Science 345, 906 (2014)], where vortices have
been directly seen in superfluid droplets for the first time. In agreement with the experiments, we have found that
the shape of the droplet changes from pseudospheroid, oblatelike for a small number of vortices to a peculiar
“wheel-like” shape, delimited by nearly flat upper and lower surfaces, when the number of vortices is large. Also
in agreement with the experiments, we have found that the droplet remains stable well above the stability limit
predicted by classical theories for axially symmetric shapes.

DOI: 10.1103/PhysRevB.91.100503 PACS number(s): 67.25.dk, 67.25.dr

Helium-4 droplets created by expanding a cold helium
gas [1] or fragmentation of a cryogenic liquid attain a
limiting temperature below 0.4 K [2], and constitute the
only self-bound superfluid systems. Superfluidity in helium
droplets was established through the dissipationless rotation of
a carbonyl sulfide (OCS) molecule inside them, as indicated
by the appearance of a clean rovibrational spectrum [3]. More
recently, indirect evidence of quantum vortices [4–6] and the
existence of a critical Landau velocity below which impurities
displace inside helium droplets without experiencing any
friction [7] point towards a superfluid character of helium
nanodroplets.

If a rotating helium droplet in the normal phase above the
superfluid transition temperature Tλ = 2.17 K is cooled down,
reaching the superfluid phase, it reacts by storing its angular
momentum either into quantized vortices or into traveling
capillary waves [8]. Conversely, a critical angular velocity ωc

has to be supplied to the superfluid droplet for the nucleation
of vortices with quantized velocity circulation in units of h/M ,
where h is the Planck constant and M is the mass of a 4He
atom. Single vortices in helium droplets have been addressed
theoretically by methods of different complexity (see, e.g.,
Refs. [9–13]).

When the angular velocity is increased above ωc, larger
amounts of angular momentum may be stored into the super-
fluid by increasing the number of nucleated vortices. These
vortices arrange themselves into ordered structures (lattices)
whose existence in bulk superfluid 4He was established long
ago [14,15]. We refer the reader to Refs. [16–18] for a general
presentation of the subject.

Very recently, superfluid He nanoscopic droplets in fast
rotation have been studied by coherent x-ray scattering [19].
The existence of vortex lattices inside the droplets was
established by the appearance of Bragg patterns from Xe
clusters trapped in the vortex cores in droplets made of N =
108–1011 atoms (corresponding to radii from 100 to 1000 nm)
produced by the fragmentation of liquid helium expanding
into vacuum. The shapes of the droplets were consistent with
those of axially symmetric oblate pseudospheroids with a large
aspect ratio (AR), defined as the ratio of the long half-axis
length b to the short half-axis length a along the rotational

axis. While normal liquid drops change their shape as rotation
becomes faster [20–22] to resemble a “peanut” (multilobe
shape) or a “blood cell,” no evidence of such shape shifting
has been seen in helium nanodroplets [19]. As shown in the
following, this is fully confirmed by our calculations.

The presence of dopants was instrumental for detecting
the vortex cores, although their number was sensibly smaller
than the number of helium atoms (NXe ∼ 10−3NHe) and their
presence is not expected to introduce large deformations in the
droplet despite the fact that they locally distort the superfluid
around them (see, e.g., Refs. [10,23]). Possible effects on the
distribution of vortex cores inside the droplet might come from
the additional rotational energy associated to the Xe mass,
especially at the periphery of the droplet. Although such effects
seem to have been observed occasionally in the experimental
images of Ref. [19], we will not consider them here. In the
case of a rotating nanocylinder, these distortions were found
to be negligible [23].

Once the presence of a vortex lattice in a droplet of aspect
ratio b/a is experimentally established, the number Nv of
vortices in the lattice could be determined approximately from
the vortex areal density (Feynman’s formula [24])

nv ≡ Nv/S = 2Mω/h, (1)

where ω is the rotational angular velocity and S = πb2 is
the equatorial cross section of the droplet. Since ω cannot be
directly determined in the experiment [19], the analysis relies
on the classical relationship between the AR —experimentally
accessible through the diffraction contour maps—and the
angular velocity, whose connection with the parameters a and
b is given by the classical theories of rotating liquid drops
[20,21]. In this way the experiments estimated that the number
of vortices in a single droplet could be as large as Nv = 160.
When the vortex density is particularly large, the experimental
images showed also the occurrence of “wheel-shaped” droplets
[19], which have no classical counterpart.

The distinct features of superfluid helium, namely, its
irrotational flow and the possible appearance of quantized
vortices, are of course not included in the classical rotating
droplet model [20,21]. The existence of a large vortex lattice
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might influence the appearance of the rotating droplet, and
the irrotational moment of inertia is known to be very
different from that of the rigid body [25]. These facts call for
theoretically addressing rotating helium droplets with accurate
methods which have proven to provide reliable results for
superfluid 4He in confined geometries.

We present here a density functional theory (DFT) study
at zero temperature of pure superfluid helium droplets hosting
an increasing number of vortices. A previous attempt to study
multivortex configurations in superfluid droplets is described
in Ref. [26], where a simplified model assuming linear vortices
and a rigid spherical droplet was used.

We have recently analyzed a simpler model system, namely,
a rotating superfluid 4He nanocylinder hosting arrays of linear
vortex lines [23], that constitutes the starting point of the
present study. Within our approach, a self-bound superfluid
4He droplet is described by a complex effective wave function
�(r,t) related to its atomic density as ρ(r,t) = |�(r,t)|2. In the
fixed-droplet frame of reference (corotating frame) we seek for
stationary solutions �(r,t) = e−ıμt/��(r), where the chemical
potential μ and the time-independent effective helium wave
function � are obtained by solving the time-independent
equation

[Ĥ − ωL̂z]�(r) = μ�(r), (2)

where Ĥ is the DFT Hamiltonian [27], L̂z is the angular
momentum operator around the z axis, and ω is the angular
velocity of the corotating frame.

To determine �(r) describing a configuration where Nv

vortex lines are present, we follow the “imprinting” strategy,
i.e., we start the imaginary-time evolution of Eq. (2) leading
to the minimum energy configuration with a helium wave
function [23]

�0(r) =
√

ρ0(r)
Nv∑
j=1

[
(x − xj ) + i(y − yj )√
(x − xj )2 + (y − yj )2

]
, (3)

where ρ0(r) is the density of the vortex-free droplet and (xj ,yj )
is the initial position of the j -vortex linear core with respect to
the z axis of the droplet. During the functional minimization
the vortex positions will change to provide, at convergence,
the lowest energy vortex configuration. It is worth stressing
that we work in Cartesian coordinates and that no symmetry
is imposed to the solutions of Eq. (2), and thus during the
imaginary-time evolution both the initial vortex positions and
their geometry change (the initial linear vortices become
eventually more or less bent—see Fig. 1). We checked that
different initial positions of the vortices in the “imprinted”
wave function produce, for a given rotational frequency, the
same final configuration, thus excluding any bias in the results.
We refer the reader to Ref. [23] and references therein for
technical details on how this equation has been solved.

While it is known [9] that vortex nucleation is hindered by
free energy barriers, the imprinting technique does not allow
one to say anything about their heights: A proper study of
the energy barrier for nucleation implies a full real-time study
of droplet rotation, which is beyond the scope of our Rapid
Communication.

Due to the high computational cost of our calculations, we
have limited this study to a helium droplet made of NHe =

FIG. 1. (Color online) Helium droplet configurations hosting
(from bottom to top) Nv = 2, 4, 7, and 9 vortices. The left column
shows the density in the z = 0 symmetry plane (top view), while the
right column shows side views (x = 0 plane).

15 000 helium atoms having a radius R = r0N
−1/3
He with r0 =

2.22 Å, i.e., R = 54.7 Å. This droplet is still much smaller
than the experimental ones, which in turn limits the number
of hosted vortices. However, our findings can be compared
with the experimental results on much larger droplets once
scaled with a dimensionless characteristic rotational velocity
� defined as [21]

� =
√

Mρ0R3

8γ
ω, (4)

where ρ0 = 0.0218 Å
−3

is the helium atom density and γ =
0.274 K Å

−2
is the surface tension of the liquid. For the NHe =

15 000 droplet, � = 1 corresponds to ω = 1.13 × 1010 s−1.
Figure 1 shows configurations hosting Nv = 2, 4, 7, and

9 vortex arrays obtained with � = 0.43, 0.54, 0.62, and 0.69,
respectively. Comparing the top and lateral views, it is apparent
that the droplet becomes increasingly deformed, oblatelike, as
Nv (and thus �) increases. Also apparent is how the droplet
surface locally deforms and the vortex lines bend, forced by
the physical requirement that their open ends hit the surface
perpendicularly. The bending is smaller for larger Nv and, at
variance with the classical droplet results [20–22], the droplet
becomes “wheel-like,” as indeed observed in the experiments
[19].

By increasing the angular velocity, the number of vortices
that can be stabilized inside the droplet increases. Eventually,
a maximum number of vortices can be hosted, above which the
rotating droplet will no longer be stable. For the NHe = 15 000
droplet we have found that the maximum Nv value is 9.
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FIG. 2. (Color online) Circulation lines of the velocity field
corresponding to the Nv = 9 configuration of Fig. 1. The inset
displays in a color scale the regions around the vortex cores where
the modulus of the velocity field is higher (bright spots). The dark
spots are regions of low vorticity due to the interference between the
velocity fields of neighboring vortices.

The higher the angular velocity, the more packed the vortex
array is around the rotation axis. This leaves a “strip” around
the equator of the droplet that is free of vortices that can be
clearly appreciated in the Nv = 9 case, as shown in Fig. 2,
where we display several circulation lines of the superfluid
velocity field. The inset shows in a color scale the regions
around the vortex cores where the modulus of the velocity field
is higher (bright spots). As expected, the calculated circulation
of the velocity field of the superfluid along a path surrounding
the vortex array equals Nv , and equals unity around every
single vortex.

Figure 3 shows the calculated stability diagram. As for the
rotating bucket [23,28,29], the energetically favored structures
for Nv > 5 are made of a ring of vortices encircling a vortex
at the center of the droplet.

It is worth observing that Eq. (1), which strictly applies to
an extended vortex triangular (Abrikosov) lattice made of a
large number of vortex lines, is also fulfilled in the present
case in spite of the limited number of vortices. This occurs
in the case of Nv = 7, where the equilibrium structure (see
Fig. 1) is a “patch” of a triangular lattice whose areal density
is nv = 2/(

√
3d2), d being the mean intervortex distance.

By equating this expression to Eq. (1)—with the value � =
0.62 used to obtain the seven-vortex configuration shown
in Fig. 1—one gets d = 28.3 Å. An average vortex-vortex
distance d = 28.2 Å can be estimated from Fig. 1, which
compares very well with the result of the classical vortex
theory [20–22].

Figure 1 shows that, disregarding the vortex array, the
shape of the droplet is almost axially symmetric. To determine
its AR we have calculated a and b from the moments of
the density distribution, obtaining [30] b/a = [〈x2〉/〈z2〉]1/2,
where 〈x2〉 = ∫

ρ(r)x2dr and 〈z2〉 = ∫
ρ(r)z2dr.

The AR dependence on the angular velocity � is shown in
Fig. 4, together with the curve derived from the classical model

FIG. 3. Stability diagram for a number of vortex lines Nv =
0,1,2, . . . ,9 as a function of the dimensionless angular velocity
�. The zero of the energy scale corresponds to the energy of
the vortex-free droplet. The vertical axis is the energy per atom
in the corotating frame referred to that of the vortex-free droplet.
The triangles mark the crossings between different stability lines.

for a rotating liquid droplet [20], and used in Ref. [19] to fit
their data. Although the angular velocity in free nanoscopic
droplets is difficult to control (and thus a more convenient
independent variable would be the angular momentum), we
use � as the independent variable in Fig. 4 for the sake of
comparison with the results of Ref. [19] (solid line). Moreover,
fixing the angular momentum of the droplet is computationally
more involved, as it requires one to iterate on the angular
velocity to get the desired L value.

FIG. 4. Calculated aspect ratio b/a as a function of the dimen-
sionless angular velocity �. The solid line shows the fit to the
experimental (b/a) data reported in Ref. [19], obtained from the
classical model for axisymmetric rotating droplets [20].
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The figure shows that for a given angular velocity, the
classical droplet model overestimates the calculated aspect
ratio. Most likely, the calculated points in Fig. 4 should
get closer to the classical curve for larger droplets having
many vortices, which unfortunately are beyond the current
possibilities of the DFT approach. Notice also that in the
experiments of Ref. [19] axially symmetric stable droplets
were observed with aspect ratios as high as b/a = 2.3,
corresponding to � = 0.71, considerably larger than the shape
instability threshold of classical droplets leading to multilobe
configurations, � = 0.56. Our calculations also yield a similar
behavior.

It appears from Fig. 4 that as Nv increases, the dependence
of the AR on � within the corresponding stability region (i.e.,
within each group of crosses shown in Fig. 4) becomes increas-
ingly important, i.e., the droplet is more easily deformed. Such
an increase of the AR proceeds by the flattening of the droplet
as the vortex cores are pushed, as the frequency is increased,
towards the center of the droplet.

Another interesting difference between classical and super-
fluid behavior, which is likely related to the deviations from
classical theory just discussed, emerges if we look at the ratio
between the moment of inertia around the z axis, Iz calculated
from the droplet mass distribution, and that obtained from
the response of the superfluid to rotation, Iω = 〈L̂z〉/ω. The
ratio Iω/Iz is shown in Fig. 5 as a function of Nv , taking
for � a value in the middle of each stability region. One
may notice that the higher the angular velocity, the closer
the moment of inertia becomes to the rigid-body moment of
inertia.

To summarize, within DFT we have shown that the shape of
rotating helium droplets hosting a number of vortices evolves
from spheroidal at low angular velocities to wheel-like at high
angular velocities. On the one hand, multilobe configurations
present in classical viscid droplets [22] are hindered by the
appearance of vortex arrays whose regular distribution is
hard to accommodate into peanutlike (or higher lobe number)

FIG. 5. Calculated ratio Iω/Iz shown as a function of the number
of vortices Nv .

shapes. On the other hand, the physical requirement that the
ends of the vortex lines hit the droplet surface perpendicularly
favors their parallel alignment for large vortex arrays, and
hence the appearance of wheel-like shapes, as indeed observed
in the experiments. Finally, in spite of the apparent differences
between normal and superfluid rotating droplets, the classical
relationship between the aspect ratio and the angular frequency
is fairly fulfilled, the classical relationship underestimating
the actual angular frequency by less than 10% for the relevant,
larger vortex arrays. Thus, it can be used with some confidence
in the analysis of the experimental results.
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