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Thermoelectric energy conversion is a direct but low-efficiency process, which precludes the development of
long-awaited wide-scale applications. As a breakthrough permitting a drastic performance increase is seemingly
out of reach, we fully reconsider the problem of thermoelectric coupling enhancement. The cornerstone of our
approach is the observation that heat engines are particularly efficient when their operation involves a phase
transition of their working fluid. We derive and compute the thermoelastic coefficients of various systems,
including Bose and Fermi gases, and fluctuation Cooper pairs. Combination of these coefficients yields the
definition of the thermodynamic figure of merit, the divergence of which at finite temperature indicates that
conditions are fulfilled for the best possible use of the thermoelectric working fluid. Here, this situation occurs
in the fluctuation regime only, as a consequence of the increased compressibility of the working fluid near its
phase transition. Our results and analysis clearly show that efforts in the field of thermoelectricity can now be
productively directed towards systems where electronic phase transitions are possible.
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Introduction and rationale. Thermoelectric phenomena in
conductors emerge from the fundamental coupling between the
energy and the electric charge that each mobile electron carries,
and they manifest themselves as coupled transport of heat and
electricity. In a thermodynamic picture, thermoelectric devices
operating as generators or refrigerators are heat engines where
the conduction electrons act as the working fluid. Hence, as
it is purely electronic in nature, the thermoelectric conversion
is a direct process, which is not system size dependent and
does not entail complex dissipative mechanisms owing to the
absence of moving parts. Thermoelectric systems may thus
present strong advantages over traditional heat engines but the
energy conversion efficiency still is far too low to envisage
wide-scale applications in the near future [1].

Interest in thermoelectricity has much varied since its early
days in the 19th century [2–4], showing a particular surge
concomitant of the fast progress in semiconductor physics
in the 1950s and 1960s and the ensuing improvement of
thermoelectric device performance, which is assessed against
efficiency or coefficient of performance depending on the
operating mode. It has become customary to relate either of
these latter to the dimensionless figure of merit ZT , which
combines the materials transport coefficients, namely, the
Seebeck coefficient s, the electrical conductivity σ , the thermal
conductivity κ , and the average temperature T across the
system [5]:

ZT = σs2

κ
T = s2

L (1 + κlat/κe)
, (1)

where κ entails both electron and lattice thermal conductivities
κe and κlat, with κ = κe + κlat, and L = κe/σT is the Lorenz
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number. The ratio L may be viewed as a quantitative measure
of a system’s relative ability to conduct heat with respect
to its ability to conduct electrical charges. To envisage
applications for thermoelectric systems other than those for
which sustainability and reliability are more important than
low-level efficiency and high cost, values of ZT greater than
4 are mandatory [1].

Although they were seen as very promising candidates
for the development of thermoelectric applications, bulk
semiconductors did not prove to be the long-awaited miracle
materials: Goldsmid [6] anticipated that ZT would not easily
reach 1, and that one could hardly hope that it will ever go
beyond 2. The 1990s works of Dresselhaus and co-workers
on transport in low-dimensional thermoelectric systems [7–9]
inspired band-structure engineering, particularly focused on
the effective mass, as a way to increase ZT . So far, these efforts
have had limited success so attention turned to lowering κlat

since thermal energy transferred by phonons simply represents
a useless heat leak. The paradigm in thermoelectric materials
then became Slack’s so-called electron crystal–phonon glass
system [10], which provided a strong impetus for the continued
development of the field of thermoelectricity, which to date
remains as active as ever [11,12].

Recent progress in materials science and nanostructure
engineering [13–16] essentially entails lowering of lattice
heat conduction and enhancement of the Seebeck coefficient
of thermoelectric materials, but even “promising” materials
do not, as of yet, boast the much sought-after minimal
requirements, and they may also suffer from a variety of
practical problems that preclude wide-scale applications [17].
Further, it has become obvious that, despite the tremendous
progress in nanostructure engineering over the last 20 years,
one cannot lower the lattice thermal conductivity arbitrarily,
and not even below a threshold that would permit obtainment
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of at least ZT = 3. Knowing that the Lorenz number is roughly
the same across a wide range of metals, and that the transport
coefficients may not vary drastically under standard working
conditions, explain to some extent the difficulty to obtain
ZT � 1. So, we may turn to an aspect of thermoelectricity,
which is always neglected: the thermodynamics of the elec-
tronic working fluid and its ability to transport entropy. But,
this is not so simple since κe relates to two phenomena: heat
transfer by conduction (described by Fourier’s law) and heat
transfer by electron convection [18], which is given by the
Peltier term of the heat flux [19]. The former is constrained
by the Wiedemann-Franz law, which applies for metals and
degenerate semiconductors; the latter represents the actual
thermoelectric flux and hence it can only be seen as the “useful”
contribution to heat transfer across the thermoelectric system
submitted to a temperature bias.

Enhancing the thermoelectric convective flux may be done
by increasing the temperature difference across the system,
but this is not a satisfactory solution: although loss through
electronic thermal conduction may be largely compensated
by the competing convective process, heat transfer by lattice
conduction and hence inefficiency also increases. In a context
very different from thermoelectricity, the analysis of the effects
of phase transitions on mantle convection [20] showed that if
the phase transition is exothermic, the release of latent heat
enhances convection. In general, regimes where convection
dominates the heat-transfer process are characterized by high
values of the Prandtl number �, which may be simply defined
as follows [21]:

� = ν

D
= η/ρ

κ/(ρCP )
, (2)

where ν is the kinematic viscosity, D is the thermal diffusivity,
η is the viscosity, ρ is the density, and CP is the heat capacity
at constant pressure of the considered fluid. In simple models,
the thermal conductivity is given by κ = ηCV , so one sees
that the Prandtl number is proportional to the heat-capacity
ratio CP /CV , also known as the isentropic expansion factor
γ . The Prandtl number thus provides a link between the
thermodynamic properties of the fluid and its capacity for
convective heat transfer.

In this work, we are interested in the properties of the
thermoelectric working fluid whose specific study is always
neglected in favor of the engine itself in a broad sense (i.e.,
materials, system configuration, structure). We show that the
most profitable conditions for the convective thermoelectric
transport are those which bring the working fluid near a phase
transition. With the relevant thermoelastic coefficients, we
define the figure of merit Zth, which is the thermodynamic
counterpart of Z. Note that Zth, as a property of the working
fluid, does not contain the lattice term κlat. Clearly, we do not
aim to propose at present an actual system boasting values
of ZT much greater than the highest ones achieved so far;
we primarily aim to show that efforts must concentrate on
electronic systems that may undergo a phase transition for
performance enhancement, and to provide also insight into the
fundamental difficulty to increase ZT . We thus consider the
regime where the so-called superconducting fluctuations [22]
above the critical temperature Tc appear: while still in its nor-
mal phase, the electronic system boasts some particular effects,

which pertain to the superconduting phase. Indeed, with the
presence of fluctuation Cooper pairs, properties such as, e.g.,
conductivity and heat capacity, increase significantly as the
system approaches the critical point. Fluctuation Cooper pairs
play a major role in the thermoelectric properties of high-Tc

superconductors, in relation to their transverse thermoelectric
response to an applied thermal gradient (Nernst signal) which
was theoretically predicted [23], and experimentally observed
in amorphous films of NbxSi1−x [24] and heavy-fermion
superconductor URu2Si2 [25]. Here, we specifically study
the temperature dependence of the thermoelectric coupling
strength of two-dimensional (2D) fluctuation Cooper pairs,
which we systematically compare to that of charged fermions
and bosons in the normal phase.

Thermodynamic analysis. Consider a system, like a reser-
voir, composed of N noninteracting charge carriers with a
given statistics at thermal equilibrium at temperature T . From
the assumption of extensivity of the free energy, one obtains
the Gibbs-Duhem relationship: SdT + Ndμ = 0, where S

is the system’s entropy and μ the chemical potential. This
equality shows that heat and electricity are coupled through
the intensive variables μ and T . Now, in analogy with
the classical gas, using the correspondence V −→ N and
−P −→ μ, we define the following thermoelastic coefficients
of the charge carriers as βN = (∂N/∂T )μ: analog to thermal
dilatation coefficient; χT N = (∂N/∂μ)T : analog to isothermal
compressibility; CμN = T (∂S/∂T )μ: analog to specific heat
at constant pressure; CNN = T (∂S/∂T )N : analog to specific
heat at constant volume. Using extended Maxwell’s relations,
we find that β/χT = SN with SN = (∂S/∂N )T , which reflects
the notion of entropy per particle introduced by Callen [26] and
the ensuing thermodynamic definition of the thermoelectric
coupling sth = βχ−1

T /q, which simply shows that the consid-
ered particles carry an electric charge q and energy.

The relationship between the heat capacities Cμ and CN is
central in this work:

Cμ

CN

= 1 + β2

χT CN

T = 1 + s2
th

�
= 1 + ZthT , (3)

where � = CN/q2χT T is a quantity similar to the Lorenz
number [27]. It is interesting to note the relationship between
χT and a capacitance in circuit theory: On the one hand,
the classical isothermal compressibility is a measure of the
change in the system volume as the applied pressure changes;
now with the correspondence V −→ N and −P −→ μ, we
obtain a measure of the ability of a capacitor to store electric
charges under an applied voltage, so that q2χT is an electrical
capacitance. Therefore, while the Lorenz number L pertains
to coupled transport, the ratio � is a quantitative measure
of a system’s relative ability to store thermal energy with
respect to its ability to store electrical charges. The ratio
Cμ/CN is analogous to the classical isentropic expansion
factor γ , and may be used to define the thermodynamic figure
of merit Zth for the charged working fluid. If conditions are
found for Cμ/CN to reach high values or even diverge at
finite temperature, the electronic working fluid may acquire
properties, which could significantly facilitate entropy trans-
port by convection. For a noninteracting many-particle system
in the normal phase at equilibrium, the computation of the
thermoelastic coefficients β, χT , and Cμ is straightforward
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(see the Supplemental Material [28]). But, the fluctuation
regime necessitates a particular approach [22,29]. Calculations
(detailed in the Supplemental Material [28]) yield the chemical
potential of the 2D fluctuation Cooper pairs:

μcp = αkBTcε ln ε, (4)

where ε = ln T/Tc ≈ (T − Tc)/Tc with Tc being the critical
temperature, α is a dimensionless parameter that enters the
definition of the Ginzburg-Landau free-energy functional [22],
and kB is the Boltzmann constant. The entropy per particle sth

is given by the expression sth = q−1∂μcp/∂T [30]:

sth = αkB

q
ln ε (5)

and the heat-capacity ratio reads as

Cμ

CN

= 1 + ln
1

ε
. (6)

It is positive and exhibits a logarithmically divergent behavior
as T → Tc. It has a universal character for 2D systems that
may be described as fluctuation Cooper pairs. The divergent
behavior of Cμ/CN contrasts with the standard textbook
cases of the ratio CP /CV for classical and quantum gases
in the normal phase for which the isentropic expansion factors
remain finite at finite temperatures, in each case [21].

Effective thermoelectric coupling. As the Seebeck coef-
ficient is s

−→∇ T = q−1−→∇ μ, where
−→∇ denotes the spatial

gradient, it is quite tempting to liken s to sth defined above,
using simple dimensional analysis but this would pose some
conceptual problems: sth, which derives from thermoelastic
coefficients, belongs to the field of thermostatics where
spatial gradients and the ensuing out-of-equilibrium situation
are meaningless, while s describes a process pertaining to
transport theory and irreversible processes [31], where forces
and fluxes are meaningful [32]. In fact, both s, which is the
degree of mutual interaction at the local level between two
irreversible processes [33], and sth, which is the average at
the macroscopic level of the system’s entropy distributed over
its constituents [26], combine and permit the thermoelectric
transport. More precisely, if one considers a simple setup
made of two reservoirs and a conducting channel [34,35], it
is easy to show [27] that the effective thermoelectric coupling
seff combines the thermodynamic properties of the reservoirs
through sth with those of the channel through s, as seff =
sth − s. As noted in Ref. [27], the effective thermoelectric
coupling characterizes two processes: the transport of entropy
through the channel as a response to an external constraint
(see the Supplemental Material [28]), and the production of
entropy as one charge is released from one reservoir and is
absorbed by the other.

Numerical results and analysis. To compare qualitatively
the thermodynamic figure of merit Zth and the thermoelectric
heat-capacity ratio Cμ/CN of a system of fluctuation Cooper
pairs, to those of the standard 2D and 3D Bose gases, and
of the 2D Fermi gas in the normal state, each of these latter
being characterized by its equilibrium distribution, chemical
potential, and density of states, we compute numerically their
thermoelastic coefficients. For simplicity, we adopt the same
notations for all the considered systems, and more importantly
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FIG. 1. (Color online) Thermoelectric heat-capacity ratio
Cμ/CN and thermodynamic figure of merit Zth as functions of ε

for various systems. For the numerical illustration of our analysis,
we assume that the Bose and Fermi particles’ masses are equal to
the free electron mass, except for the Cooper pairs whose mass is
twice as large. The particle concentrations are n = 1012 cm−2 and
1018 cm−3 for the 2D and 3D systems, respectively. The presence
of the dashed lines on both panels simply reflects the logarithmic
behaviors of Cμ/CN and Zth, but outside the limit of validity of the
model (ε � 1), so they have no physical meaning; for the fluctuation
Cooper pairs, only the black parts of the curves are relevant and
meaningful.

we base our discussion on the temperature or, equivalently,
the ε dependence of Zth and Cμ/CN . The 2D Fermi and Bose
systems do not undergo a phase transition, while the 3D Bose
gas does at the condensation temperature Tcond. This permits
the definition of a common parameter ε = ln(T/Tcond) for the
joint analysis of the Bose gases and the Fermi gas; to account
for the fluctuation Cooper pairs with a critical temperature Tc

different from Tcond, we use the same scale as for the three
other systems.

Focusing first on the two Bose gases and the Fermi gas,
we see on Fig. 1 that as their temperatures increase, the
ratios Cμ/CN increase monotonically while the figures of
merit Zth do not: they reach a maximum value for each
particular case and then decrease. This behavior observed
for the ratio Cμ/CN is akin to that of the ratio CP /CV

discussed in textbooks, and is of limited interest here since
the increase results from the rise of temperature. We also
see that as Zth = s2

th/�T decreases after reaching its maximum,
a temperature increase cannot guarantee optimal conditions for
the working fluid. More precisely, for the two Bose gases �

increases but more slowly than q2s2
th does, and it saturates,

which means that the capacity at which the system may store
thermal energy dominates its capacity to store bosonic charges
as the temperature increases up to a certain point. For the Fermi
system � decreases and, in this case, it is the capacity of the
system to store fermionic charges that dominates its capacity
to store thermal energy. This may appear as a counterintuitive
fact due to the Pauli-blocking mechanism, but it is precisely
this latter which permits this: for a given particle number,
the Bose distribution falls off more rapidly than the Fermi
distribution does and it even gets smaller from a point which
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depends on the temperature, and as shown by its definition, the
electrical capacitance q2χT follows essentially the behavior of
the statistical distribution to which it is related. Now, unlike the
three cases discussed above, the range over which Cμ/CN and
Zth vary for the fluctuation Cooper pairs is restricted to 0 <

ε � 1. The key point here is that the thermodynamic figure
of merit and the thermoelectric heat-capacity ratio behave in
the same fashion: both diverge as T approaches Tc, which
is a finite temperature. This is precisely the desired behavior,
which ensures that the working fluid’s thermoelastic properties
are optimal, but this is possible only at the cost of very specific
conditions on the system’s temperature over a restricted
range, which satisfies the criterion L∇T/Tc � ε, where L

is the system length along the direction of the temperature
gradient. Further, if the actual temperature variation over the
macroscopic dimension of the device exceeds the range of
validity of the expression for the chemical potential μcp in
Eq. (4), the divergence of the thermodynamic figure of merit
Zth would be replaced by a polynomial increase. The exact
shape of this dependence would be governed by the geometry
of the device. Nevertheless, the strong increase of Zth would
take place and all qualitative conclusions from our analysis
would remain valid.

Discussion and concluding remarks. We showed with the il-
lustrative case of 2D fluctuation Cooper pairs that approaching
the phase transition of the electronic working fluid provides
the best and ultimate way of significant performance increase,
as the thermoelectric coupling as well as the heat-capacity
ratio and the thermodynamic figure of merit show a divergent
behavior as T → Tc. That the heat-capacity ratio may diverge
implies that Cμ increases faster than CN does for the 2D
fluctuation Cooper pairs as the system approaches the critical
temperature. In classical thermodynamics, the heat capacity
at constant pressure CP may increase while the heat capacity
at constant volume CV may not, the more compressible a
fluid is. Therefore, the electronic systems of interest for
thermoelectric applications are those whose compressibility is
sufficiently high so that the thermoelectric heat-capacity ratio
Cμ/CN may significantly increase or even diverge at finite
temperature. This is consistent with the conclusions of a study
of the superconducting properties of carbon nanotube ropes

[36]: as the compressibility increases, the system becomes
inhomogeneous as reflected by the density-density correlation
function. It is also of interest to note that Eq. (6) assumes a very
simple form and that it may be applied to any system which
may be described with a fluctuation Cooper pair approach.
Possible systems include those that allow excitonic BCS-type
pairing of two electrons [37,38], and particularly those which
couple to light such as quatron polaritons [39]. Indeed, owing
to their minute effective mass and high critical temperature
[39], an estimation of the parameter α of Eq. (5) for quatrons
(in the Supplemental Material [28]) shows it is seven orders
of magnitude greater than that of standard 2D fluctuation
Cooper pairs. This indicates that one may expect a huge
fluctuation bosonic thermoelectric effect above the quatron
superconducting transition, and that quatrons could also boast
a giant thermomagnetic response.

We specialized our study on the thermodynamics of the
electronic working fluid rather than the actual transport
problem or, equivalently, on the chemical potential rather than
the electrochemical potential. It is the difference of this latter
between two reservoirs that generates the electromotive force
responsible for the electrical current in thermoelectric devices
[40]; so, inasmuch an electrical potential does not affect
the temperature dependence of the thermoelastic properties
of the working fluid, we could essentially concentrate on
their optimization, the necessity of which has been clearly
demonstrated with the temperature dependence of Cμ/CN

and that of Zth for different systems. That Zth may diverge
in one case, but not for the standard three others (irrespective
of statistics and dimensionality), thus explains why after
decades of intense efforts to improve their performance,
thermoelectric devices still remain poorly efficient energy-
conversion devices. The fluctuation regime studied in this
work, where either phonons or excitons are put to work to
bind electrons, illustrates the actual possibility to prepare
highly compressible electrically charged working fluids; but,
electronic systems in different configurations to be found
could also present enhanced thermoelectric properties as long
as they boast a high-compressibility factor. We thus wish to
stimulate experimental activities in this genuinely promising
new direction.
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