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Trimerized ground state of the spin-1 Heisenberg antiferromagnet on the kagome lattice
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We study the phase diagram of the spin-1 quantum bilinear-biquadratic antiferromagnet on the kagome lattice
using exact diagonalization and the density matrix renormalization group algorithm. The SU(3)-symmetric point
of this model Hamiltonian is a spontaneously trimerized state whose qualitative nature persists even at the
Heisenberg point, a finding that contrasts previous proposals. We report the ground state energy per site of the
Heisenberg model to be −1.410(2) and establish the presence of a spin gap.
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Introduction. The discovery of experimental realizations
of kagome antiferromagnets [1,2] and indications that they
have exotic ground states has spurred immense activity in the
past few years. The nature of the ground state is unresolved
for even the simplest realistic model, the nearest neighbor
spin-1/2 kagome Heisenberg antiferromagnet (KHAF) [3–
10]. However, recent advances in numerical algorithms have
enhanced our understanding of these systems [10–15].

In contrast to the spin S = 1/2 case, little has been
definitively established for the ground state of the S > 1/2
case. When S is large, as is the case for the S = 5/2 iron
jarosite KFe3(OH)6(SO4)2 [16], long-range magnetic order
of the

√
3 × √

3 type is expected [17,18]. However, for the
intermediate spin case, S = 1 [19–21] and S = 3/2 [22], the
theoretical situation is unclear. There exist several experimen-
tal motivations [23] for studying this problem. For example,
KV3Ge2O9 [24] and BaNi3(OH)2(VO4)2 [25] are candidates
for S = 1, and chromium jarosite has been reported to be a
S = 3/2 kagome antiferromagnet [26].

The focus of this Rapid Communication is the S = 1 case,
with emphasis on the KHAF. Previous numerical studies of
the S = 1 XXZ model with on-site anisotropy [27,28] have
shed light on the phase diagram, but the approach is limited
for the KHAF. Recent coupled cluster calculations [21] show
that the S = 1 KHAF has no long-range magnetic order, in
contrast to previous analytic results [20]. Thus, the definitive
characterization of the ground state remains an open question.

Based on exact diagonalization (ED) of the S = 1 KHAF,
Hida proposed that the ground state is a hexagonal singlet
solid (HSS) with a spin gap [19]. The HSS is a translationally
invariant state that is described by an Affleck-Kennedy-Lieb-
Tasaki (AKLT) [29] type wave function. As is schematically
depicted in Fig. 1(b), all the spin-1’s fractionalize into two
spin-1/2’s and then the spin-1/2’s on every hexagon form
a singlet state. However, a recent experiment [30] with
m-MPYNN · BF4, believed to be a S = 1 KHAF, has observed
magnetization plateaus different from those predicted by the
HSS phase [31], calling for a review of this picture.

In this Rapid Communication, we use ED and the density
matrix renormalization group (DMRG) algorithm [32] for
cylindrical geometries [33]. We show that even though the HSS
has a competitive energy (≈−1.36 per site) in comparison to
the DMRG results (≈−1.41 per site), the qualitative picture
obtained from the latter is that of a trimerized ground state,

schematically illustrated in Fig. 1(a). This state, referred to as
the simplex-solid [34] or simplex-valence bond crystal, is a
symmetry-broken state where the three spin-1’s living on each
up (or equivalently down) pointing triangle form collective
singlets or “trimers.”

We find no long-range spin-spin correlations and a finite
spin gap of ∼0.2–0.3 for the choice of lattice geometries
studied. In addition, the energy of a recently proposed ground
state candidate Z2 spin liquid, the resonating AKLT state
(RAL) [35], is found to be higher than both the HSS and
the trimerized state found in DMRG.

We have considered the phase diagram of the nearest
neighbor bilinear-biquadratic model,

H = Jbl

∑

〈ij〉
Si · Sj + Jbq

∑

〈ij〉
(Si · Sj )2, (1)

where 〈ij 〉 refer to nearest neighbor pairs, Jbl is the bilinear
Heisenberg coupling (set to Jbl = 1), and Jbq is the biquadratic
coupling. While a previous tensor network study showed the
ground state to be a simplex solid at the SU(3)-symmetric
point (Jbl = Jbq ) [36], here we provide evidence that this
trimerization survives on reducing the magnitude of Jbq all the
way to zero. A quantum phase transition to a ferroquadrupolar
spin nematic is observed only at Jbq ∼ −0.16.

The Heisenberg point. We consider Jbq = 0, the Heisenberg
point, and assess the quality of the HSS wave function with
respect to ED calculations. Following Hida [19], we associate
two spin-1/2 degrees of freedom (labeled by α and β) with
every spin-1, and define

|+1〉 ≡ ψ1/2,1/2√
2

, |0〉 ≡ ψ1/2,−1/2, |−1〉 ≡ ψ−1/2,−1/2√
2

,

(2)

where ψα,β ≡ 1√
2
(ψα ⊗ ψβ + ψβ ⊗ ψα). ψα(β) is the wave

function of a single spin-1/2. Then the HSS wave function
is defined to be

�HSS =
⊗

i

ψαi ,βi

∏

i

(
δα,γi

+ δβ,γi

)∏

p

wγip ,γjp ,γkp ,γlp ,γmp ,γnp ,

(3)

where ip,jp,kp,lp,mp,np refer to the sites on the elementary
hexagon (given the label p) and γip through γnp

are the spin-1/2
state labels (±1/2) for those sites. wγip ,γjp ,γkp ,γlp ,γmp ,γnp is the
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FIG. 1. (Color online) (a) shows a schematic of the simplex solid on the kagome lattice. The bond thicknesses represent the relative
magnitude of the bond energy. (b) shows a schematic of the hexagon singlet solid (HSS). Each spin-1 (depicted in blue) fractionalizes into
two spin-1/2 (shown by red circles). The spin-1/2’s on the hexagons form a singlet, shown by the black lines connecting them. (c) shows the
cylindrical geometry used in the DMRG calculation. Periodic boundary conditions in the width direction have not been shown.

coefficient of the lowest-energy singlet state of a S = 1/2
nearest neighbor Heisenberg model on a hexagon.

Table I shows the energy of the HSS, the RAL [35],
and ground state wave functions from ED for various finite
clusters with periodic boundary conditions; the geometries
and nomenclature are the same as in Ref. [19]. We estimate
the HSS energy in the thermodynamic limit to be −1.36 per
site [37]. This is comparable to the energy from ED (roughly
−1.4), and much lower than the RAL energy, suggesting that
the HSS is a competitive candidate for the ground state.

However, a clear picture of the ground state emerges only
for larger systems, which were studied with DMRG. Cylinders
with periodic boundaries in the width (W ) direction and open
boundaries in the length (L) direction, as shown in Fig. 1(c),
were chosen for the simulations. In order to have complete
hexagons, even widths were considered.

The number of renormalized states (denoted by m) kept
in the DMRG simulations were typically 2000, 3000, and
4000 for widths 4, 6, and 8, respectively. On cylinders with
widths 4 and 6, and odd lengths (these have equal numbers
of up and down pointing triangles), a pattern of alternating
strong and weak trimers propagates from both the left and
right edges. These competing patterns superpose in the center
of the finite sample, leading to uniform bond energies; the bond
energy is defined as 〈Si · Sj 〉 for nearest neighbor sites i,j . On
the even-length cylinders, which have more down triangles
than up, the leftmost row of boundary sites forms dimers,
effectively decoupling them from the bulk of the system. Thus,

TABLE I. Energy per site for the hexagon singlet state (HSS),
resonating AKLT state (RAL), and exact diagonalization (ED) wave
functions on kagome clusters of different sizes with periodic boundary
conditions.

Wave
Lattice

function 12 15 18a 18b ∞
HSS −1.38781 −1.36024 −1.36108 −1.36995 ≈−1.36
RAL [35] −1.38 −1.2696
ED −1.46841 −1.44958 −1.45110 −1.43926 ≈−1.4

the even-length cylinders have bulk properties similar to the
odd-length cylinders.

For width 8 cylinders, the tendency to form dimers along the
width direction is suppressed and a robust trimerization pattern
is observed throughout the bulk. For the odd lengths, DMRG
tends to break the symmetry between the up and down pointing
triangles, which we take to be evidence that the system prefers
to trimerize. This is a “finite m” effect, as an exact calculation
should yield a perfect superposition of both trimer states.

To estimate the energy per bond in the thermodynamic limit,
we used two procedures. First, we considered the total energy
E(L,W ) of the cylindrical sample and fit it to the functional
form

E(L,W )/Nb(L,W ) = eb + a1/L + a2/L
2, (4)

where Nb(L,W ) is the number of bonds and eb,a1,a2 are
fit parameters. In the second method, we average the bond
energies on a central feature, such as the bowtie or “star”
consisting of three up and three down triangles. We refer
to this estimate as the “bulk” energy. Figure 2(a) shows the
length dependence of the energy and its extrapolation to
infinite length for different cylinder widths. Both analyses
yield similar estimates; For the width 4, 6, and 8 cylinders the
values of the energy per bond are −0.7117(1), −0.7067(1),
and −0.7058(4), respectively. Assuming small variations for
energy estimates beyond W > 8, the energy per bond in
the thermodynamic limit is −0.705(1), which in terms of
the energy per site (E0) is −1.410(2). This is comparable
to (and slightly lower than) the coupled cluster result of
E0 = −1.4031 [21,38].

Next, we verified the presence of a spin gap in the
thermodynamic limit by calculating the energy difference
between the singlet and triplet states for both even- and
odd-length cylinders. Our results are shown in Fig. 2(b). The
magnetization of the first excited state is distributed over
the entire sample, establishing that the excitation is a bulk
one. The large variation in the energy gap for the width 4 and
the other larger cylinders is a finite size effect; this qualitative
difference is also seen in ground state energy estimates. The
trends in the spin gap for width 6 and 8 cylinders indicate that
its value is in the range 0.2–0.3.
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FIG. 2. (Color online) (a) The total ground state energy per bond for cylinders of odd lengths and different widths is extrapolated to infinite
length by fitting to the functional form, Eq. (4). The bulk energy (see text) is also shown. (b) shows the spin gap for various cylinder widths
and lengths. The estimated gap in the infinite length limit is finite.

To build further confidence in these results, we study the
bilinear-biquadratic (BLBQ) model (1) and use Jbq as a knob
to connect the Heisenberg point to the SU(3) point. Analyzing
other Hamiltonians should lead to similar conclusions. For
example, an extended Heisenberg model studied by Cai
et al. [39] also has a trimerized ground state.

The bilinear-biquadratic (BLBQ) model. For insights into
the BLBQ model, we performed ED calculations on a 21-
site sample with periodic boundary conditions. Multiple low-
energy excited state energies, resolved by spatial momenta,
have been plotted in Fig. 3. On tuning Jbq from 1 towards 0, we
find no energy crossings in the first few states in the low-energy
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FIG. 3. (Color online) The low-energy spectrum of the BLBQ
model on the 21-site kagome lattice, resolved by lattice momenta,
as a function of Jbq , is shown. On tuning Jbq from 1 towards 0,
the low-energy features appear adiabatically connected, suggesting
the persistence of the trimerized phase to the Heisenberg point.
Qualitative changes in the energy spectrum seen at a negative value of
Jbq indicate a quantum phase transition to a ferroquadrupolar phase.

manifold. In the range −0.2 < Jbq < −0.1, a marked decrease
in energy spacings (or increased crowding of energy levels)
and the appearance of a small finite size gap are indicative of
a quantum phase transition.

Next, we look for signatures of possible phase transitions as
a function of Jbq by monitoring the wave function fidelity [40],
defined as F ≡ 〈ψ(p)|ψref〉, where |ψ(p)〉 is a wave function
dependent on parameters p and |ψref〉 is a reference wave
function. Figure 4 shows fidelities of the 12- and 21-site
clusters as a function of Jbq/Jbl , by fixing the reference wave
function to be the ground state wave function of the SU(3)

FIG. 4. (Color online) The fidelity of ground state wave functions
from ED of 12- and 21-site clusters is shown as a function of Jbq for
two reference wave functions. The reference wave function is chosen
to be the ground state of (a) the SU(3)-symmetric model, known
to favor a trimerized (simplex solid) phase, and (b) the Heisenberg
model, whose qualitative nature remains to be established and is the
subject of this study. An abrupt change in fidelity is found to occur in
both cases in the range −0.2 < Jbq < −0.13.
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FIG. 5. (Color online) The main panel shows the trimerization
order parameter for the 8 × 8 and 14 × 8 kagome lattice as a function
of Jbq . The dashed line gives an extrapolated estimate of the J ∗

bq at
which the trimerization vanishes. Inset: Derivative of the total energy
per bond with respect to Jbq shows an abrupt change around the same
value of J ∗

bq ≈ −0.16.

model [Fig. 4(a)] and the Heisenberg model [Fig. 4(b)]. In
either case, the fidelity decreases on going away from the
chosen reference point and with increasing lattice size; the
latter is expected because overlaps involve the multiplication
of an increasing number of factors less than 1. We consider an
overlap of 0.45 between the Heisenberg and SU(3)-symmetric
point wave functions for the 21-site lattice to be large and view
the sharp fall in fidelity in the range −0.2 < Jbq < −0.13
to be the only sign of a phase transition. We thus infer
that the Heisenberg point corresponds to a trimerized ground
state.

The inferences from ED are verified on larger samples
using DMRG, by considering a variety of metrics. First, as
shown in the inset of Fig. 5, the energy as a function of Jbq

has a discontinuity in its derivative at a value Jbq ≈ −0.16.
This value coincides with the location of the minimum
of the singlet-singlet gap, obtained by taking the energy
difference of the lowest Sz = 0 states in the DMRG method
(not shown in the plot). However, the most direct evidence
is that of a nonzero trimerization order parameter, defined
to be

Trimerization ≡ |〈Si · Sj 〉� − 〈Si · Sj 〉∇|, (5)

where 〈Si · Sj 〉�(∇) is the average spin-spin bond correlator on
an up (down) pointing triangle. The trimerization is (relatively)
uniform throughout the sample on the width 8 cylinders and
these data are used to determine the critical J ∗

bq at which
the phase transition occurs. When Jbq is close to J ∗

bq , the
trimerization is small and inhomogeneous and the presence of
the open boundaries becomes important. This is why we used
only the values of trimerization for Jbq � 0 and extrapolated
them to Jbq < 0 in Fig. 5.

Below Jbq � −0.16, a ferroquadrupolar spin nematic is
present, a generic occurrence in many S = 1 antiferromagnets
with negative biquadratic couplings [41]. This state has 〈Si〉 =

0 but still breaks the spin rotational symmetry. This is verified
by the observation that 〈S+

i S−
i 〉 �= 〈(Sz

i )2〉 and that 〈(Sz
i )2〉

abruptly changes from 0.66(=2/3) to ≈0.4 at the critical
point.

Conclusion. We have performed ED and DMRG calcula-
tions on the spin-1 kagome antiferromagnet with bilinear and
biquadratic terms. We find evidence for trimerization at the
Heisenberg point, which is not consistent with the hexagonal
singlet state (HSS) picture [19], nor with the

√
3 × √

3
order predicted by 1/S methods [20]. We also estimated the
location of the phase transition from the trimerized state to the
spin-nematic phase to be J ∗

bq ∼ −0.16.
Recently, Li et al. [35] proposed a spin liquid ground

state for the S = 1 KHAF, the resonating AKLT state (RAL),
obtained by creating a uniform superposition of all possible
“AKLT loops.” On an 18-site lattice, the RAL energy is
marginally lower than that of the HSS, but in the infinite lattice
limit it is significantly higher [35]. A plausible reason is that
the RAL is dominated by long loops that are still relatively
short on an 18-site lattice. Presumably, if the longest loops are
penalized (i.e., a loop tension is added in the wave function),
the RAL energy could improve significantly. Whether such a
modification preserves the spin liquid properties or alternately
drives it to a confining phase, such as the trimerized phase,
is not known. Since the trimerization strength is small, it
will be interesting to see if additional interactions at the
Heisenberg point stabilize the RAL, HSS, or other exotic
states.

Finally, we comment on the possible experimental conse-
quences of our finding. Since trimerization does not change
the magnetic unit cell structure of the kagome lattice, we
still expect to see the 1/3 magnetization plateau for the
S = 1 KHAF, based on the Oshikawa-Yamanaka-Affleck
criterion [42]. However, prominent magnetization plateaus
seen in the experiment with m-MPYNN · BF4, which also has
a slight

√
3 × √

3 distortion [30], correspond to 1/2 and 3/4.
This is indicative of an enlarged magnetic unit cell with 12
atoms. Thus, we intend to understand the effective low-energy
Hamiltonian better to resolve this issue.

Note added. Recently, we became aware of two related
works. Liu et al. [43] independently concluded that the
ground state of the S = 1 KHAF is a simplex solid, using
complementary tensor network methods. Picot et al. [44]
studied the S = 1 KHAF in a magnetic field; their zero field
results support the trimerization picture.
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