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General microscopic model of magnetoelastic coupling from first principles

X. Z. Lu,1 Xifan Wu,2 and H. J. Xiang1,3,*

1Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics,
and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China

2Department of Physics, Temple Materials Institute, and Institute for Computational Molecular Science, Temple University, Philadelphia,
Pennsylvania 19122, USA

3Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, People’s Republic of China
(Received 13 October 2014; revised manuscript received 10 March 2015; published 30 March 2015)

Magnetoelastic coupling, i.e., the change of crystal lattice induced by a spin order, is not only scientifically
interesting, but also technically important. In this work, we propose a general microscopic model from first-
principles calculations to describe the magnetoelastic coupling and provide a way to construct the microscopic
model from density functional theory calculations. Based on this model, we reveal that there exists a previously
unexpected contribution to the electric polarization induced by the spin order in multiferroics due to the combined
effects of magnetoelastic coupling and piezoelectric effect. Interestingly and surprisingly, we find that this lattice-
deformation contribution to the polarization is even larger than that from the pure electronic and ion-displacement
contributions in BiFeO3. This model of magnetoelastic coupling can be generally applied to investigate the other
magnetoelastic phenomena.
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Magnetoelasticity refers to the phenomenon where a change
of magnetic state can induce a change in crystal volume/shape,
and vice versa. The study of this phenomenon can be traced
back to the 1960s [1,2]. Magnetoelastic materials play an
increasingly important role in applications such as actuation,
sensing, and energy harvesting [3]. The large scientific interest
in magnetoelastic coupling is connected to its fundamental
importance in many research areas. For example, in some
negative thermal expansion (NTE) magnetic materials [4–8],
the system shows an abrupt increase in crystal volume on
cooling in the vicinity of the magnetic transition from the
paramagnetic (PM) state to the ordered magnetic state. In
some frustrated spin systems, such as spinel ACr2O4 (A =
Mg, Zn) [9–12], magnetoelastic coupling causes a change of
the crystal lattice from cubic to tetragonal when they undergo
an antiferromagnetic (AFM) phase transition. Furthermore, in
the phenomenon of magnetostriction [3], the strain dependence
of the magnetic anisotropy and/or exchange interactions can
lead to a lattice change in a certain direction when a magnetic
field is applied. First-principles density function theory (DFT)
calculations [13–15] have been performed to understand mag-
netoelasticity (in particular, magnetostriction). While direct
DFT calculations agree well with the macroscopic lattice
response associated with various magnetic configurations, a
theoretical model that elucidates the microscopic origin is
desired.

For dielectric materials, the response properties can be sys-
tematically treated by electric-magnetic enthalpy as functions
of ionic displacement, strain, and applied electric and magnetic
fields [16,17]. In this Rapid Communication, we further de-
velop a first-principles-based model describing magnetoelastic
coupling. In this model, the relationship between the change
of crystal lattice and spin order is simplified to two linear
equations from which the atomic displacements and strains
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induced by the spin order can be obtained simultaneously,
thus quantitatively describing the lattice changes. This model
is general so that it can be adopted to understand the
other magnetoelastic-related phenomena [including symmet-
ric exchange, antisymmetric Dzyaloshinskii-Moriya (DM)
interaction, and single-ion anisotropy (SIA)-related cases].
According to our model, we reveal that there is a contribution
(i.e., lattice deformation) to the spin-order-induced electric
polarization in multiferroics: The spin order induces a lattice
strain, which subsequently gives rise to an additional electric
polarization through the piezoelectric effect [16,18]. By
combining our model with DFT calculations, we demonstrate
that the lattice-deformation contribution is larger than the pure
electronic and ionic contributions in BiFeO3.

In general, the total energy of a localized magnetic
system can be written as E(um,ηj ,Si) = EPM(um,ηj ) +
Espin(um,ηj ,Si), where um is the atomic displacement from
a reference structure, ηj (j = 1, . . . ,6) is the homogeneous
strain in Voigt notation, and Si refers to the spin vector. Here,
EPM is the energy of the paramagnetic (PM) state which can
be expanded as [16,17]

EPM = E0 + Amum + Ajηj + 1
2Bmnumun + 1

2Bjkηjηk

+Bmjumηj + terms of third and higher orders. (1)

The first-order coefficients Am and Aj and the second-
order coefficients Bmn, Bjk, and Bmj represent force, stress,
force constant, frozen-ion elastic constant, and internal-
displacement tensor, respectively. By choosing a reference
structure that is in equilibrium in the PM state, we will have
Am = Aj = 0. It should be noted that an implied-sum notation
is adopted in this work. The spin-interaction energy Espin

usually contains three parts [12] (Espin = EH + EDM + ESIA):
the Heisenberg symmetric exchange interaction EH, antisym-
metric Dzyaloshinskii-Moriya (DM) interaction EDM, and
single-ion anisotropy (SIA) ESIA. The Heisenberg exchange
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interaction EH can be expanded as

EH = E0
H +

∑

i,i ′

∂Jii ′

∂um

Si · Si ′um +
∑

i,i ′

∂Jii ′

∂ηj

Si · Si ′ηj

+
∑

i,i ′

∂2Jii ′

∂um∂un

Si · Si ′umun +
∑

i,i ′

∂2Jii ′

∂ηj∂ηk

Si · Si ′ηjηk

+
∑

i,i ′

∂2Jii ′

∂um∂ηj

Si · Si ′umηj

+ terms of third and higher orders. (2)

Here, E0
H is the zero-order term with um = 0 and ηj = 0 [12],

Jii ′ is the symmetric exchange interaction parameter between
spins Si and Si ′ , and ∂Jii′

∂um
, ∂Jii′

∂ηj
, ∂2Jii′

∂um∂un
, ∂2Jii′

∂ηj ∂ηk
, and ∂2Jii′

∂um∂ηj
are

the derivatives of the exchange parameters. Similarly, we can
derive the expressions for EDM and ESIA.

To obtain the structural distortion and cell deformation
caused by the spin order, we can minimize the total energy
E(um,ηj ,Si) with respect to um and ηj . Since ∂2Jii′

∂um∂un
� Bmn,

∂2Jii′
∂ηj ∂ηk

� Bjk, and ∂2Jii′
∂um∂ηj

� Bmj, we finally obtain that

Bmnun + Bmjηj = −
∑

i,i ′

∂Jii ′

∂um

Si · Si ′ ,

(3)
Bmjum + Bjkηk = −

∑

i,i ′

∂Jii ′

∂ηj

Si · Si ′ .

By solving the above linear equations, we get the displace-
ments um and strains ηj . The spin-order-induced strain can be
used to obtain the new cell vectors anew: [anew

1 ,anew
2 ,anew

3 ] =
(I + ε)[aPM

1 ,aPM
2 ,aPM

3 ], where aPM are the cell vectors of the
PM state, I is a 3 × 3 unit matrix, and ε is the strain matrix
defined by ηj .

The magnetoelastic phenomena are associated with the
dependence of the crystal cell vectors on the spin configura-
tions. Using our above model, one can quantitatively compute
the lattice change, as well as reveal the microscopic origin
of the interesting phenomena in great detail. In particular,
one can tell which spin site, spin pair, and type of the spin
interaction are responsible for the magnetoelastic coupling.
This is different from previous studies [13,14] in which the
final macroscopic lattice response was obtained by changing
the overall magnetic configuration of the system in the DFT
calculations. In principle, we can use Eq. (3) to understand the
magnetoelastic phenomena such as spin-order-related NTE,
magnetic phase transition-induced lattice deformation, and
magnetostriction. In the following, we will show instead that
the magnetoelastic coupling will give rise to a contribution to
the electric polarization induced by the spin order, in which
case the dimension of Eq. (3) may be greatly reduced.

Previously, it was shown [19–25] that spin-order-induced
electric polarization contains a pure electronic contribution
and an ion-displacement-related contribution (see Fig. 1).
As we discussed above, spin order may induce not only
ion displacement, but also lattice deformation. If the system
in the PM state is piezoelectric (e.g., polar), we find that
the lattice deformation induced by spin order may give rise
to an additional electric polarization. Therefore, there is a
lattice-deformation contribution (see Fig. 1) to the electric

FIG. 1. (Color online) Schematic illustration of three contribu-
tions to the electric polarization induced by a spin order in multi-
ferroics. The pure electronic contribution [19,21,22] arises from the
electron density redistribution induced by the spin order. For the
ion-displacement part, it results from the ion displacements caused
by the induced forces associated with a spin order [20,24]. In this
work, we reveal the lattice-deformation contribution, which results
from the spin-order-induced stress (i.e., the magnetoelastic coupling).

polarization due to the combined effect of spin-order-induced
stress and piezoelectricity [16,18] in a magnetic material
which belongs to one of the piezoelectric crystal classes in
the PM state. In terms of um and ηj , the polarization [26]
can be computed as Pα = Zαmum + eαjηj , where Zαm and
eαj are the Born effective charge and frozen-ion piezoelectric
tensor, respectively. Here, both the ion-displacement and
lattice-deformation contributions are included in Pα . Setting
−∑

i,i ′
∂Jii′
∂um

Si · Si ′ = 0 in Eq. (3), one can obtain the polariza-
tion contribution due to the stress induced by spin order. One
can also evaluate this polarization contribution through the
piezoelectric constant (dαj ) by using Pα = ∑

j σjdαj , where

σj = −∑
i,i ′

∂Jii′
∂ηj

Si · Si ′ is the total stress due to the spin order.
And dαj can be written as dαj = Sjkeαk , in which eαk is the
relaxed-ion piezoelectric tensor and Sjk is the relaxed-ion
elastic compliance tensor. Previously, Wojdel and Íñiguez
[17] investigated the linear magnetoelectric (ME) coupling by
including the piezoelectricity and piezomagnetism in BiFeO3

and related materials. Their model can describe the overall
linear ME coupling for the spin ground state. In this work, our
model is generalized to include the spin-interaction energy
changes under different magnetic orderings and to describe
higher-order (e.g., quadratic) ME coupling. Moreover, the
current model can also identify the exchange paths resulting
in the particular magnetoelsatic coupling.

We will now discuss how to obtain the parameters in
Eq. (3) within the first-principles framework. Density func-
tional perturbation theory can be used to compute the force
constant (Bmn) and the internal-displacement tensor (Bmj).
The frozen-ion elastic constant (Bjk) can be easily obtained by
calculating the strain-stress relation within DFT. To compute
the first-order derivatives of the symmetric spin-exchange
parameter Jii ′ with respect to ηj , we propose a four-states
mapping approach: ∂Jii′

∂ηj
= 1

4 ( ∂EI
∂ηj

+ ∂EIV
∂ηj

− ∂EII
∂ηj

− ∂EIII
∂ηj

) =
− 1

4 (σ I
j + σ IV

j − σ II
j − σ III

j ) (see Fig. 2). Here, I−IV refer
to the four spin states with different spin orientations for sites
i and i’ (see Fig. 2 for an example), and E and σ denote the
total energy and stress, respectively. We note that the stress
can be computed without doing extra DFT calculations due
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FIG. 2. (Color online) Schematic illustration of the four spin
states in the four-states approach to calculate the derivative of
exchange parameter with respect to strain ∂Jii′

∂ηj
. In the four spin states,

only the spins at sites i and i’ change the orientation.

to the celebrated Hellmann-Feynman theorem. The first-order
derivatives of the symmetric spin-exchange parameter Jii ′ with
respect to um, can also be efficiently evaluated by using a
four-states mapping approach [12].

In the following, we will apply our general model of
magnetoelastic coupling to the classic room-temperature
multiferroic BiFeO3. BiFeO3 [27–29] crystallizes in a R3c

structure with a large polarization (∼100 μC/cm2) [30] when
the temperature is lower than the FE Curie temperature
TC = 1000 K. On cooling below TN = 650 K, a G-type AFM
order with a long period incommensurate modulation takes
place. Interestingly, some experiments [31–33] discovered
the ME coupling in BiFeO3. However, how magnetoelectric
coupling actually occurs on a microscopic level in multiferroic
BiFeO3 is not clear. We will investigate the microscopic
origin of the ME coupling in BiFeO3 from our model. Our
total-energy calculations are based on the DFT plus the
on-site repulsion (U) method [34] within the generalized
gradient approximation [35] (DFT + U ) on the basis of the
projector augmented wave method [36] encoded in the Vienna
ab initio simulation package (VASP) [37]. The plane-wave
cutoff energy is set to 500 eV in the DFT calculations,
unless noted otherwise. The on-site repulsion U and exchange
parameter J are set to 5 and 1 eV for Fe. For the calculation of
electric polarization, the Berry phase method [38] is used.

Our four-states approach for computing ∂Jii′
∂ηj

is compared
with the a conventional finite-difference method in which
the exchange interactions at different strains are computed
explicitly. To compute all ∂Jii′

∂ηj
(j = 1−6) for a given ex-

change interaction Jii ′ , the finite-difference method requires
48 DFT total-energy calculations, while only 4 total-energy
calculations are needed in the four-states approach. Thus, the
four-states approach is computationally more efficient and
convenient. To check the accuracy of the four-states approach,
we take BiFeO3 as an example. A 2 × 2 × 2 supercell of
a rhombohedra R3c structure is adopted to compute ∂JNN

∂ηj
,

TABLE I. First-order derivative of the nearest-neighbor (NN)
spin-exchange parameter with respect to the strain ηj ( ∂JNN

∂ηj
) computed

by using the four-states approach. The total stress (σj ) induced by the
G-type AFM order in BiFeO3 from the model and DFT calculations
is presented as well.

J 1 2 3 4 5 6

∂JNN
∂ηj

(eV) −0.086 −0.041 −0.084 0.022 0.075 −0.029

σj (kbar) Model −4.769 −4.769 −6.322 0 0 0
σj (kbar) DFT −4.420 −4.420 −5.475 0 0 0

where JNN is the nearest-neighbor (NN) Fe-Fe spin-exchange
interaction in BiFeO3. The plane-wave cutoff energy is
increased to 700 eV in order to obtain converged results for
the stress. The results are presented in Table I. Our subsequent
analysis shows that ∂JNN

∂η3
plays the most important role on the

magnetoelastic coupling in BiFeO3. Therefore, we also use
the finite-difference method to evaluate ∂JNN

∂η3
in which JNN

is calculated as a function of the strain (η3) ranging from 0
to 0.006. As shown in Fig. 3(a), the plot of JNN versus η3

is a straight line in the studied region, thus we can obtain
∂JNN
∂η3

= −0.088 eV, which is very close to that (−0.084 eV)
obtained from our four-states approach.

Our above calculations show that ∂JNN
∂η3

is negative, i.e.,
a positive strain along the z axis makes JNN smaller.
We will understand the dependence of JNN on η3 on the
basis of the superexchange theory. As shown in Fig. 3(b),
when η3 is positive, the Fe1-O-Fe2 angle (θ ) will become
closer to 180° and the Fe1-O and Fe2-O bond lengths will
be elongated. According to the Goodenough-Kanamori rule,
the superexchange interaction J is proportional to t2

U
[39,40],

FIG. 3. (Color online) (a) The NN symmetric spin-exchange
interaction JNN as a function of η3. The obtained ∂JNN

∂η3
from the

finite-difference method is in good agreement with that ( ∂JNN
∂η3

=
−0.084 eV) from the four-states approach. (b) Illustrations of the
changes of bond lengths (|l1|,|l2|) and angle (θ ) with strain (η3) in a
Fe1-O-Fe2 system related to JNN. Green arrows indicate the directions
of l1 and l2.
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where t and U are the effective orbital hopping and Hubbard
repulsion, respectively. A larger angle makes the hopping
stronger, while the longer bond length weakens the hopping.
Therefore, this qualitative analysis is not able to determine
how JNN will change. Quantitatively speaking, the effective
hopping between the 3d orbitals of Fe1 and Fe2 can be
approximately expressed as t = t

pdσ

1 t
pdσ

2 cos θ , where t
pdσ

i is
the hopping integral between the eg orbital of the ith Fe
ion and the 2p orbital of the intermediate O ion. Because
t

pdσ

i is proportional to 1
|li |4 [the distance vector li is defined

in Fig. 3(b)] [41], we find t ∼ cos θ
|l1|4|l2|4 . Expanding |li | and

cos θ as a function of η3, we obtain t ∼ l10·l20+αη3

|l10|5|l20|5 , where
li0 is the original distance vector with η3 = 0, and α =
2|lz10||lz20| − 5l10 · l20[ |lz10|2

|l10|2 + |lz20|2
|l20|2 ]. One can easily see [42] that

α < 0, thus t becomes smaller for a positive η3 and ∂JNN
∂η3

< 0,
consistent with the DFT result. Similarly, we can demonstrate
that ∂JNN

∂η1
< 0 and ∂JNN

∂η2
< 0.

From our model, we can compute the total stress resulting
from the ordering of the G-type AFM order by using σAFM =
−∑

<ii ′>NN

∂Jii′
∂ηj

Si · Si ′ , where only the NN Fe-Fe pairs are
considered. This stress can be compared to the direct DFT
value from a DFT calculation on BiFeO3 in the G-AFM spin
state with the equilibrium structure of the PM state (simulated
by two orthogonal spins in the 10-atom rhombohedra cell).
Table I indicates a good agreement between the model and the
direct DFT calculation. This also suggests that ∂JNN

∂ηj
is sufficient

for describing the magnetoelastic coupling in BiFeO3.
We now turn to examine how the magnetoelastic

coupling influences the electric polarization in BiFeO3.
By solving Eq. (3), we find that the strain is η =
(−8.26,−8.26,−35.58, 0, 0, 0) in the order of 10−4 as a
result of the G-AFM ordering. Mediated by the coupling
between polarization and strain, the lattice change will induce
a polarization. As can be seen in Table II, our model predicts a
lattice-deformation contribution to the polarization of P =
1.32 μC/cm2, which is even larger than the sum of the
pure electronic and ion-displacement contributions. This is an
unprecedented result in that a previously unknown contribution
to electric polarization induced by spin order is found to be
even larger than the widely known contributions. Table II
shows that the result obtained from our model is also in
agreement with the direct DFT calculations. Summing up
all three spin-order-induced contributions with the same sign,
the total polarization calculated for the G-type AFM order in
BFO reaches ∼2 μC/cm2. The spin-induced polarization in
BFO is also comparable with that of HoMnO3 [24,43]. We
find that the direction of the polarization caused by the spin

TABLE II. The different contributions to the electric polarization
(in units of μC/cm2) induced by the G-AFM order in BiFeO3 from
the model and DFT calculations. Plattice, Pe, and Pion refer to the lattice
deformation, pure electronic and ion-displacement contributions,
respectively.

Polarization Plattice Pe Pion

Model 1.32 0.53 0.56
DFT 1.22 0.40 0.54

order is opposite to the inherent electric polarization due to
the R3c structure distortion. This is consistent with a recent
experimental observation [31]. In that experiment [31], the
ion-displacement contribution deduced from the displacement
of the Fe ions was determined to be 0.4 μC/cm2, which is
also close to the value (0.56 μC/cm2) obtained from our
model.

Some experiments [32,33] suggested that an external
magnetic field may change the electric polarization of BiFeO3.
Qualitatively, we can understand the ME coupling in BiFeO3

from our model. Considering only the NN spin-exchange
interaction and Zeeman term, the total energy can be written
as E = ∑

<i,i ′>NN
JNNSi · Si ′ − μBg

∑
i Si · H, where μB , g,

and H are Bohr magneton, Landé factor, and magnetic field,
respectively. By minimizing the total energy, the angle θ

between the two spins S1 and S2 in the 10-atom cell in a
magnetic field is θ = 2arc cos( 5μBH

12JNN
) (the effective JNN =

35.76 meV in our study). As can be seen from Eq. (3), the spin-
order-induced polarization P ∝< Si · Si ′ >∝ cos θ . It can be
easily shown that �P = P (H ) − P (0) ∝ H 2. Therefore, we
obtain a quadratic dependence of this spin-order-induced
polarization on the magnetic field, i.e., the quadratic ME
coupling (see Fig. 4). At a magnetic field of 20 T, we find
that �P = 9 × 10−4 μC/cm2, which is in agreement with
the result from one experiment [32], but there is a large
discrepancy between our result and another experimental result
[33]. Note that our above analysis is based on a simplified
spin Hamiltonian without DM interactions and single-ion
anisotropy. Further experimental and theoretical studies are
called for to resolve this discrepancy.

In summary, we propose a microscopic model that describes
magnetoelastic coupling. All of the parameters in this model
can be computed from first principles. In particular, we propose
an efficient four-states approach for computing the derivate
of the spin-interaction parameter with respect to the strain.
On the basis of this model, we reveal that there exists a
previously unexpected contribution to the electric polarization
induced by the spin order in multiferroics due to the combined
effect of magnetoelastic coupling and piezoelectric effect.
Interestingly, we find that this lattice-deformation contribution
to the polarization is even larger than that from the pure

FIG. 4. (Color online) Polarization (P) vs magnetic field (H)
calculated from our simple theoretical model. �P is defined as
�P = P (H ) − P (0). Experimental results (Expt. 1 [32] and Expt. 2
[33]) are also shown for comparison.
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electronic and ionic contributions in BiFeO3. The spin-order-
induced polarization is opposite to the proper polarization
due to the R3c distortion, in agreement with the negative
ME effect observed experimentally [31]. Furthermore, how an
external magnetic field modulates the electronic polarization in
BiFeO3 is discussed qualitatively by using the general model.
Our microscopic model of magnetoelastic coupling will be
useful to investigate the linear and higher-order ME effects
and the origin of magnetoelastic phenomena.
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