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Recent works on hard spheres in the limit of infinite dimensions revealed that glass states, envisioned as
metabasins in configuration space, can break up in a multitude of separate basins at low enough temperature
or high enough pressure, leading to the emergence of new kinds of soft-modes and unusual properties. In this
paper we study by perturbative renormalization group techniques the critical properties of this transition, which
has been discovered in disordered mean-field models in the 1980s. We find that the upper-critical dimension du,
above which mean-field results hold, is strictly larger than six and apparently nonuniversal, i.e., system dependent.
Below du, we do not find any perturbative attractive fixed point (except for a tiny region of the one-step replica
symmetry breaking parameter), thus showing that the transition in three dimensions either is governed by a
nonperturbative fixed point unrelated to the Gaussian mean-field one or becomes first order or does not exist. We
also discuss possible relationships with the behavior of spin glasses in a field.

DOI: 10.1103/PhysRevB.91.100202 PACS number(s): 64.70.kj, 75.10.Nr

The properties of glasses at low temperatures are the
subject of extensive experimental, numerical, and analytical
investigations. In order to understand them, one has to study
the properties of the amorphous solids in which liquids
freeze at the glass transition. Hence, a crucial preliminary
step is arguably understanding glass-formation. One of the
most prominent theoretical approaches to do that is the
random first-order transition (RFOT) theory introduced by
Kirkpatrick, Thirumalai, and Wolynes [1–4]. It has its roots
in the mean-field theory of disordered models, but as it has
become clear in recent years, it goes well beyond that. RFOT
theory applies to all systems characterized by a certain kind of
(free-)energy landscape, such that below a given temperature
Td an exponential number (in the system size) of metastable
states emerge. By lowering the temperature, their thermo-
dynamics become ruled by the competition between two
kinds of contributions: one (free-energetic) that favors states
with lower internal free energy because their corresponding
Boltzmann weight is larger, and the other (entropic) that
favors states having high internal free energy because they
are more numerous. At the so-called Kauzmann temperature,
TK , the entropic contribution vanishes and the system freezes
in one low-lying glass state. RFOT theory advocates that this is
precisely what happens for super-cooled liquids approaching
the glass transition, where Td corresponds to the so-called
mode coupling crossover and TK to the ideal glass transition.
A major result of the past 30 years was to show that this is
indeed the case within mean-field theory [5]. Actually, the
range of systems displaying such an energy landscape—at
the mean-field level—is remarkably broad: it encompasses
physical systems such as super-cooled liquids, colloids, pro-
teins [6,7], and models central in other fields like random
K satisfiability [8]. Whether this remains true beyond the
mean-field approximation is still a matter of debate, although
there are by now remarkable numerical and experimental
evidences [6,9].

For a long time the properties of low-temperature glasses
remained a separate research subject from the much more
studied problem of glass transition with the notable exception
of Ref. [10]. Recently, however, there has been an increasing
research effort aimed at understanding amorphous solids’

unusual features and their relationship with the glass transition
[11]. This was to great extent motivated by the study of
jamming [12,13]. In this context, a new twist of RFOT theory
is the suggestion that glass states, envisioned as metabasins
in configuration space, can break up in a multitude of
separate basins at low enough temperature or high enough
pressure, leading to the emergence of new kinds of soft
modes and unusual properties [14]. This transition, called
Gardner transition [15,16], was actually found a long time
ago for several mean-field models characterized by a RFOT.
In these systems at a temperature, TK , there is a glass phase
transition at which, technically, a one-step replica symmetry
breaking (1RSB) phase emerges and at a lower temperature,
TG, there is a Gardner transition toward a full replica symmetry
breaking (FRSB) phase; see, for example, the case of the Ising
p-spin-disordered models [17,18]. As pointed out in Refs.
[19,20] (see also Ref. [21]) this transition from a valley in
configuration space to a multitude of separated basins takes
place also for nonequilibrium glass states. In consequence, it is
not limited to the (unreachable) equilibrium regime below TK

but is also relevant for common nonequilibrium protocols such
as quenches or crunches during which the system gets trapped
in a metastable state. For a very long time the study of the
Gardner transition remained bounded to abstract mean-field
models. From the point of view of the physics of glasses, it was
just a pure intellectual curiosity. Recent works on the solution
of glassy hard spheres in infinite dimensions highlighted its
relevance for amorphous materials [14,22–24]. In fact, the
FRSB phase appearing below TG is marginally stable and its
soft-modes are deeply related to the unusual features displayed
by jammed packings [13,25–31]. Remarkably, the FRSB
mean-field theory predicts values for the critical exponents
of the jamming transition that are in perfect agreement with
the ones observed in numerical simulations in two and three
dimensions. Moreover, the Gardner transition is not limited
to glasses and jammed packings but it likely emerges in the
low-temperature regimes of many other disordered systems.
In consequence, understanding how critical finite-dimensional
fluctuations affect the Gardner transition found within mean-
field theory is no more an abstract and academic question. It
has become a open and very relevant issue. The aim of this

1098-0121/2015/91(10)/100202(5) 100202-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.100202


RAPID COMMUNICATIONS

PIERFRANCESCO URBANI AND GIULIO BIROLI PHYSICAL REVIEW B 91, 100202(R) (2015)

work is addressing it using perturbative renormalization group
techniques.

Before starting our analysis there are two important points
worth clarifying. The first question that comes to mind when
one applies mean-field results to estimate critical exponents
in three-dimensional systems concerns the role of finite-
dimensional fluctuations. In this respect, it is important to
stress that the exponents of the jamming transition found
within mean-field theory are related to the soft-modes of the
FRSB phase [13,25–31]. In consequence, they are related to
the properties of the low-temperature, high-pressure phases.
They are not exponents related to a phase transition. There are
therefore two separate issues: one is how the Gardner transition
and its critical properties change from infinite dimension
down to three, and the other is how the soft modes of
the symmetry broken phase change from infinite dimension
down to three. An instructive example is provided by the
ferromagnetic Heisenberg model: its critical properties at the
ferromagnetic phase transition change below four dimensions
with respect to the mean-field ones; however, the properties
of the soft-Goldstone modes remain the same, as shown by
analyzing the corresponding nonlinear σ model [32]. What
we do in this work is to address the first issue; i.e., we focus on
the critical properties of the Gardner transition. We shall just
touch upon the second one in the conclusion.

The other point we want to address is the relationship
between the FRSB physics found for hard spheres in infinite
dimensions and the one of spin-glasses in a field. In both
cases one finds a FRSB phase without any residual symmetry
present. Thus, reasoning only in terms of phases and type of
symmetry breaking one would conclude that spin-glasses in
a field and low-temperature, high-pressure glasses are in the
same universality class both for the transition, Gardner versus
spin-glass, and the properties of the FRSB phase. This would
be also what one would conclude from the works by Moore
and collaborators [33–35], in which the glass transition was
argued to be related to the spin-glass transition in a field (see
also Ref. [36]). As we shall show, however, the situation is
more intricate and needs further analysis.

The starting point of our derivation is the effective replica
field theory, which describes the critical fluctuations at the
Gardner transition. At TG there is a phase transition from a
1RSB to a FRSB phase. Hence, the action of the theory can be
formulated in terms of a fluctuating space-dependent overlap
field Qab(r) = φab(r) + Q, where Q is the 1RSB value of
the solution of the saddle-point equations. The replica indices
a,b run from 1 to m, and an analytic continuation for m to
real values is always assumed. In our calculation m is the
1RSB breaking point and must be considered fixed to the
value reached at TG [18,37]. There are no extra n/m → 0
replicas since we focus on systems without quenched disorder
[38]. Other values of m, different from m(TG), can be used
to select nonequilibrium metastable states within mean-field
theory [39]. Whether our analysis for generic values of m

can be applied to metastable states will be discussed in the
conclusion. In order to construct the most general action for
φab(r) we recall that there is no other symmetry that has
to be taken into account besides replica permutation. As a
consequence, one has to consider all quadratic and cubic terms
allowed by replica symmetry. By analyzing the quadratic terms

of the expansion of the action one recognizes that the replica
field theory has a mass matrix that can be easily diagonalized
[40]. Three distinct eigenvalues are found: the replicon, the
longitudinal, and the anomalous one. The mean-field analysis
shows that the Gardner transition corresponds to the vanishing
of the replicon eigenvalue, whereas the others remain massive
[16]. This means that only the replicon modes are critical and
the others can be safely integrated out. Thus, in order to obtain
the action of the critical modes we only take into account the
contribution from the critical replicon modes to the fluctuating
overlap field. This is a standard procedure and it has been
already followed in the case of the Edwards-Anderson (EA)
model in a field [41]. As expected, the results of the fixed
points of the renormalization group equations are the same if
the noncritical modes are also taken into account [42]. The
action that one obtains reads [33,41,42]

L =
∫

dx

(
1

2

m∑
a,b=1

{[∇φab(x)]2 + r[φab(x)]2}

−
{

1

6
g1Trφ3(x) + 1

12
g2

∑
a,b

[φab(x)]3

})
. (1)

The field φab(p) is symmetric (φab = φba) and has the
following properties:

φaa(x) = 0
∑
b(�=a)

φab(x) =
∑
a(�=b)

φab(x) = 0, (2)

which characterize the replicon eigenspace. In the limit m → 0
this replica field theory describes the behavior of the EA
model in a field. To study the Gardner transition we instead
have to keep m finite. The perturbative renormalization group
equations for such a theory were obtained in Refs. [41,42] by
performing the ε expansion around d = 6, which corresponds
to the upper critical dimension of the theory (at least perturba-
tively; more on this later on). The equations that describe the
RG flow read [42]

dr

dl
=

(
2 − 1

3
η

)
r −

[
g2

1
m4 − 8m3 + 19m2 − 4m − 16

(m − 1)(m − 2)2

+ g1g2
2(3m2 − 15m + 16)

(m − 1)(m − 2)2

+ g2
2
m3 − 9m2 + 26m − 22

2(m − 1)(m − 2)2

]
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2
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A1g
3
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2
1g2 + A3g1g

2
2 + A4g

3
2

]
I3

dg2

dl
= 1

2
(ε − η)g2 − [

B1g
3
1 + B2g

2
1g2 + B3g1g

2
2 + B4g

3
2

]
I3

η = (
H1g

2
1 + H2g1g2 + H3g

2
2

) 1 + r

(1 + r)4
,

where I2 = (1 + r)−2, I3 = (1 + r)−3, ε = 6 − d, d is the
spatial dimension, and η the usual critical exponent related
to the anomalous dimension of the field. The expression of the
coefficients As, Bs, and H s can be found in the Supplemental
Material [43]. Starting from these equations we can write down
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an equation for λ = g2/g1 at criticality, i.e., for r = 0:

dλ

dl
= −g2

1[K1 + K2λ + K3λ
2 + K4λ

2 + K5λ
4]

K1 = B1 K5 = A4 K2 = B2 + A1 (3)

K4 = B4 + A3 K3 = B3 + A2 .

Equation (3) is dimension independent and thus it is partic-
ularly useful to discuss the RG fixed points (FP). The fixed
points equation for λ reads

K1 + K2λ + K3λ
2 + K4λ

2 + K5λ
4 = 0, (4)

where we consider g1 �= 0 since, as we verified, there are no
RG-FPs characterized by g1 = 0 except the Gaussian one for
which g1 = g2 = 0. We find that that for m < m∗ � 0.894, Eq.
(4) has two real solutions, λ1(m) and λ2(m). For m � m∗ other
two real solutions λ3(m) and λ4(m) appear. Note that for each
value of λ there are two RG-FPs related by the transformation
(g1,g2) → (−g1,−g2). In the following we consider separately
the d > 6 and d < 6 cases. For the former case we find that
λ4(m) leads always to purely imaginary FPs and, hence, can be
disregarded, whereas λ3(m) gives a real value for g1 and g2 for
m � m̃ � 0.905 (> m∗) only. Thus, depending whether m ∈
[0,m̃] or m ∈ [m̃,1] one finds four or six FPs (none of them
stable). They all belong to the border of the basin of attraction
of the Gaussian fixed point (G-FP); see Fig. 1. Increasing the
value of m the basin of attraction stretches along the diagonal
direction and becomes very large, or possibly infinite, for m

close to m̃. Its size shrinks to zero when d ↓ 6, as found in
Ref. [44] in the case m = 0. This is the prelude of what happens
crossing d = 6, where the G-FP becomes unstable. For d < 6
the only physical (i.e., real) FPs are given by λ3(m) and λ4(m)
for m ∈ [m∗,m̃] and by λ4(m) for m ∈ [m∗,1]. We never find
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FIG. 1. (Color online) Basins of attraction of the Gaussian fixed
point for d > 6 in the quadrant g1 > 0, g2 > 0. The (blue) dots denote
the non-Gaussian fixed points. The (red) continuous and (blue) dotted
lines correspond, respectively, to the basin of attraction for m = 0.1 ∈
[0,m̃] and m = 0.95 ∈ [m̃,1]. We denote with arrows the stability of
the FPs and the corresponding eigendirections (for some FPs these
are almost collinear and not well distinguishable). The square denotes
the stable Gaussian FP.
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FIG. 2. (Color online) The RG fixed points in the quadrant g1 >

0 and g2 > 0 for d < 6 and m ∈ [m∗,m̃]. We find an attractive fixed
point and a partially repulsive fixed point on the border of its basin of
attraction (continuous red line). For both fixed points, the eigenvectors
directions of the linearized RG flow are almost collinear. For m ∈
[m̃,1] only the unstable fixed point survives.

an attractive FPs except in the tiny regime m ∈ [m∗,m̃]. See
Fig. 2 for a summary of the d < 6 case.

We now discuss the main consequences of the perturbative
RG results found above. The situation is very different from
the one corresponding to standard field theories, e.g., the φ4

field theory, because the basin of attraction of the G-FP shrinks
to zero approaching d = 6 and we do not find any attractive
FP below (we neglect for the moment the case m ∈ [m∗,m̃]).
Since the bare values of the coupling constants g1 and g2 are
not arbitrarily small for a realistic system, the corresponding
RG flow is bound to escape from the G-FP strictly before
d = 6 [45]. This has two consequences: first, the upper critical
dimension of the theory, du, above which mean-field results
hold is strictly larger than six and, second, it is not universal
since it depends on where the initial condition lies with respect
to the basin of attraction of the G-FP. For d < du, the system
flows to strong coupling, i.e., to a regime that we cannot access
perturbatively. Different physical situations can correspond to
this behavior. The transition can be destroyed or can become
first order for d < du [46,47]. Another appealing possibility is
that it remains critical but the critical behavior is dominated by
a nonperturbative fixed point. For the spin-glass transition in
a field or without time-reversal symmetry, which corresponds
to the case m = 0, the latter scenario is supported both by
numerical simulations [48–53] and real space RG analyses
[54] at least in high enough dimensions (the behavior in
three dimension is still controversial). Note that although our
results are overall very similar to the ones of spin-glasses in
a field [41,44], the detailed behavior of the RG flow in the
perturbative regime is different [55]. This, together with the
fact for spin-glasses that the critical fluctuating field has a
number of components m(m − 3)/2 with m → 0 while in the
case of the Gardner transition the number of replicas m is fixed
and positive, suggests that the universality classes should be
distinct. On the other hand, if the theories at different m have
different critical behaviors, then the critical properties of the
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Gardner transition are system-dependent, i.e., not universal
at all (a quite weird physical situation), since the value of
the breaking point m at the transition is system-dependent.
Nonperturbative RG treatments and numerical simulations are
needed to clarify these issues.

The regime m ∈ [m∗,m̃] that we neglected before is very pe-
culiar since one does find an attractive FP below six dimensions
but with a basin of attraction that shrinks to zero when d ↑ 6.
This leads to a rather baroque RG phenomenology. Since the
interval [m∗,m̃] is not only very tiny but also very close to one,
it corresponds to systems (if any) extremely fine tuned. For
this reason, we shall not address it further in this work.

One of the main motivations to study the fate of the
Gardner transition in finite dimensions is the recent discovery
of the FRSB phase of hard spheres in high dimensions and its
relevance for the properties of amorphous solids. As already
discussed, within mean-field computations or in the limit of
infinite dimensions, one can tune the value of m to select
certain metastable states, e.g., corresponding to packings with
a given volume fraction. The problem in applying our results
to this case is that the procedure of selecting metastable states
tuning m is not well defined beyond mean-field theory. The
1RSB solution that is used in the mean-field computations is
known to be unstable because of nonperturative effects [56],
which simply correspond to the fact that the corresponding
states are metastable in any finite dimension. One way out of
this problem is constraining the particles to only move around
the positions they have in a given packing, as in the model

introduced in Ref. [34]. It is interesting to notice that this
procedure explicitly introduces quenched disorder. Although
we did not attempt to study this case by RG, we conjecture
that a relationship with spin glasses in a field could emerge
since the disorder select a given metabasin transforming the
Gardner transition we analyzed into a transition from a RS
phase (describing the metabasin at high temperature and
low pressure) to a FRSB phase (describing the multivalley
structure inside the metabasin), similar to what happens
for the EA model in a field. Results supporting this view
were presented in Refs. [34,35]. This is certainly an issue
worth investigating more both analytically and numerically.
Establishing a direct relationship between the behavior of
spin-glasses in a field and low-temperature, high-pressure
glasses would be extremely important and useful, as argued in
Refs. [34,35]. Our perturbative RG results cannot lead to any
conclusive result on this. What they make clear, however, is that
the Gardner transition in three dimensions either does not exist
or it has a different nature from the mean-field one; namely,
it can become nonperturbative in the RG sense or first order.
Numerical simulations and nonperturbative RG treatments are
crucially needed in order to find out which one among these
three possibilities is realized.
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