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We consider the low-temperature thermal transport properties of the two-dimensional (2D) proximity-induced
superconducting state formed at the interface between a three-dimensional strong topological insulator (TI) and
a d-wave superconductor (dSC). This system is a playground for studying massless Dirac fermions, because
they enter both as quasiparticles of the dSC and as surface states of the TI. For TI surface states with a single
Dirac point, the four nodes in the interface-state quasiparticle excitation spectrum coalesce into a single node
as the chemical potential μ is tuned from above the impurity scattering rate (|μ| � �0) to below (|μ| � �0).
We calculate, via Kubo formula, the universal-limit (T → 0) thermal conductivity κ0 as a function of μ as it
is tuned through this transition. In the large- and small-|μ| limits, we obtain disorder-independent, closed-form
expressions for κ0/T . The large-|μ| expression is exactly half the value expected for a d-wave superconductor, a
demonstration of the sense in which the TI surface topological metal is half of an ordinary 2D electron gas. Our
numerical results for intermediate |μ| illustrate the nature of the transition between these limits, which is shown
to depend on disorder in a well-defined manner.

DOI: 10.1103/PhysRevB.91.094519 PACS number(s): 74.25.fc, 73.20.−r, 74.20.Rp, 74.45.+c

I. INTRODUCTION

Topological insulators [1–3] (TIs) represent a novel state of
quantum matter that comes about due to the combined effects
of spin-orbit interactions and time-reversal symmetry [4–8].
Although characterized by a bulk band gap, they are adiabat-
ically distinct from ordinary insulators and support protected
gapless surface states. In the case of a strong three-dimensional
(3D) TI, these surface states form a novel two-dimensional
(2D) topological metal with a spin-polarized massless Dirac
energy spectrum. The theoretical prediction and subsequent
experimental discovery of TI states in 2D materials [9,10]
(HgTe/CdTe quantum wells), 3D materials [11,12] (BixSb1−x),
and the cleaner, simpler, second-generation 3D materials
[13–15] (Bi2Se3, Bi2Te3, and Sb2Te3) has led to great interest
in this area, exploring both the fundamental physics as well
as the potential for applications to fault-tolerant topological
quantum computation [16,17].

The proximity of either magnetic materials or supercon-
ductors to the TI surface can induce an energy gap in the
topological metal, resulting in even more exotic interface states
[1]. Early on, Fu and Kane [16] considered the proximity
effect at the interface between a TI and a conventional s-wave
superconductor, analyzing the proximity-induced supercon-
ducting interface state and finding that it should support
Majorana bound states [18–23] at vortices. Subsequent work
has expanded this analysis in many directions and has
included the case of TIs proximity coupled to unconventional
superconductors of different pairing symmetries [24–29]. Such
TI-interface-state superconductivity has been demonstrated,
experimentally, both for the s-wave case [30,31] and for the
case of TIs coupled to high-Tc cuprate d-wave superconductors
[32].

This last case, that of the proximity-induced superconduct-
ing state at the interface of a strong 3D topological insulator
(TI) and a d-wave superconductor (dSC), is our focus here. For
simplicity, we consider a TI with a surface state characterized
by a single Dirac point at the origin of k space, as is seen

in the Bi2Se3 family of materials [13,14]. We are particularly
interested in the low-energy quasiparticle excitations of this
interface state; a system in which massless Dirac fermions
enter in two different ways: as both the surface states of the
TI and the quasiparticles of the dSC. For the former, the TI
surface states, the massless Dirac fermions are isotropic, a
consequence of band structure, and not pinned to the Fermi
surface, such that one can tune through the Dirac point by
varying the chemical potential. They are described by a Dirac
equation where the gamma matrices live in 2×2 spin space.
For the latter, the dSC quasiparticle states, the massless Dirac
fermions are anisotropic, their energy spectrum squeezed in
k space, and they are pinned to the Fermi surface at four
nodal points. They are described by a Dirac equation where
the gamma matrices live in 2×2 particle-hole (Nambu) space.
The TI-dSC interface state that we consider mixes both spin
and particle-hole space and will have quasiparticle excitations
of its own, with features inherited from both of the above.

A useful probe for studying massless Dirac quasiparticles
in d-wave superconductors has been low-temperature thermal
transport [33–42], measurements of which can be extrapolated
to the particularly simple and interesting regime where
temperature T is small compared to the impurity scattering rate
�0. This is known as the universal limit because thermal con-
ductivity due to massless Dirac quasiparticles has been shown
to be insensitive to disorder in this very-low-temperature
regime [43–49]. In this paper, we examine the nature of the
low-energy quasiparticle excitations of the TI-dSC interface
state by calculating the universal-limit thermal conductivity,
κ0/T , as a function of chemical potential μ. Although the
Hamiltonian for this interface state couples particle to hole and
spin up to spin down, its quasiparticles carry a well-defined
heat. Thus, thermal transport tracks quasiparticle transport
and is therefore well suited to probing the excitations of this
system. For |μ| � �0, it probes the single isotropic Dirac
node inherited from the TI surface. For |μ| � �0, it probes the
four anisotropic Dirac nodes resulting from proximity-induced
d-wave superconductivity. We study both of these regimes
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and the transition between them as four nodes coalesce into
one.

We begin in Sec. II by writing down the 4×4 Hamiltonian
for the proximity-induced interface state, which mixes the
spin-space Dirac equation of the TI surface with the particle-
hole-space Dirac equation of the dSC, and then solve for the
quasiparticle excitation spectrum. In Sec. III, we calculate the
matrix spectral function, derive the thermal current operator,
and then use both of these to calculate the universal-limit
thermal conductivity tensor via diagrammatic Kubo formula.
Closed-form analytical expressions for κ0/T are obtained
in both the large-|μ| and small-|μ| limits, both of which
are discussed in Sec. IV. Numerical results charting the
disorder-dependent transition between these two limits are
presented in Sec. V. Conclusions are discussed in Sec. VI.

II. PROXIMITY-INDUCED INTERFACE STATE

A. Hamiltonian

We consider the proximity-induced superconducting state
at the interface of a 3D strong topological insulator (TI) and
a d-wave superconductor (dSC). For a TI like those in the
Bi2Se3 family, characterized by surface states with a single
Dirac point at the � point of the Brillouin zone, the TI surface
state is described by the Hamiltonian [16]

H0 =
∑

k

ψ
†
k (v �σ · k − μ)ψk, (1)

where ψk = (ck↑,ck↓)T are electron annihilation operators, v

is the slope of the Dirac cone, μ is the chemical potential,
�σ = (σ1,σ2) are Pauli spin matrices, and we have adopted
units where � = 1. Proximity to a dSC induces d-wave
superconductivity and results in an interface-state Hamiltonian
[16,24,25] that is most compactly expressed in the following
4×4 Nambu notation:

H = 1

2

∑
k

�
†
kHk�k, (2)

Hk = (v�σ · k − μ)τ3 + �kτ1, (3)

�
†
k = [c†k↑,c

†
k↓,c−k↓, − c−k↑], (4)

where the τ are particle-hole Pauli matrices that mix the ψk

and ψ
†
−k blocks of �k , and the factor of 1

2 compensates for
particle-hole double counting. Here, the proximity-induced
superconducting order parameter �k is of dx2−y2 symmetry and
is taken to be real. [Note that, in addition to this spin-singlet
d-wave term, the form of the TI surface Hamiltonian allows
for an additional, subdominant spin-triplet (B2u)p-wave term
to also be induced via proximity to a dSC [26]. However, as
shown by Linder et al. [24,25], a spin-triplet p-wave pairing
amplitude in a TI only renormalizes the chemical potential
and never gaps the surface energy spectrum. Thus, while its
inclusion here would likely result in a quantitative correction
to the effect of the singlet term, it is not expected to change
the essential physics. Thus, for simplicity, we shall defer
consideration of the triplet term to future work.] Expanding
Eq. (3) by evaluating the outer products of the Pauli matrices

yields the 4×4 Hamiltonian

Hk =

⎡
⎢⎣

−μ vk− �k 0
vk+ −μ 0 �k

�k 0 μ −vk−
0 �k −vk+ μ

⎤
⎥⎦ , (5)

where k± ≡ kx ± iky .

B. Quasiparticle excitation spectrum

The quasiparticle excitation spectrum of the interface state
is obtained by solving for the (positive) eigenvalues of Hk . As
shown in Ref. [16] for the s-wave case, the resulting spectrum
is

Ek =
√

(±v|k| − μ)2 + �2
k. (6)

Although the precise functional form of �k is material
dependent, we can proceed, quite generally, as long as �k

satisfies two criteria: (1) It has dx2−y2 symmetry and therefore
changes sign along the lines ky = ±kx . (2) It vanishes faster
than linearly with k as k → 0. If these criteria are met, the
quasiparticle spectrum will have the following properties.

For large |μ|, there will be four nodal points in k space,
located at ±kx = ±ky = μ/

√
2v, where one of the two

branches in Eq. (6) goes to zero and quasiparticles can be
excited for zero energy cost. In the vicinity of each of these
nodes,

Ek ≈
√

v2k2
1 + v2

�k2
2, (7)

where v� is the slope of �k at the node and k1 and k2 define
a local coordinate system, centered at each node, with the k1

axis perpendicular to the local Fermi surface (pointing away
from the origin of k space) and the k2 axis parallel to the local
Fermi surface (pointing in the direction of increasing �k).
For energies small compared to μ, the surfaces of constant
energy are ellipses, elongated parallel to the local Fermi
surface for v > v� (as is typical in cuprate superconductors).
The presence of disorder smears out the nodes, exciting
quasiparticles of energy less than or on the order of the impurity
scattering rate �0. For T � �0, quasiparticle transport is
dominated by these disorder-induced quasiparticles which
reside within ellipses of semimajor axis �0/v� and semiminor
axis �0/v about each of the four nodes.

The nodes are distinct for |μ| � �0 but, as |μ| decreases,
the internode separation decreases, and for |μ| � �0 the nodes
coalesce at the origin of k space. As long as �k vanishes fast
enough with decreasing k, as per condition (2) above, this
transition reveals the underlying massless Dirac spectrum of
the TI surface state. Thus, for |μ| � �0,

Ek ≈ v|k|, (8)

and the system thereby trades the four anisotropic nodes at
nonzero k for a single isotropic node at the origin. Note that
this single node is, however, doubly degenerate, because it
derives from both branches in Eq. (6). For |μ| and T small
compared to �0, quasiparticle transport is dominated by the
disorder-induced quasiparticles that reside within the circle of
radius �0/v about this isotropic node.
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III. TRANSPORT CALCULATION

Following the approach employed in Refs. [49] and [50],
we now proceed to calculate the universal-limit quasiparticle
thermal conductivity for this system as a function of chemical
potential. Key inputs to this calculation are the spectral func-
tion and thermal current operator, which we will calculate first
and then utilize in our calculation of the thermal conductivity.

A. Spectral function

To obtain the spectral function, we begin by calculating the
Matsubara Green’s function. Working in our four-component
Nambu basis, the 4×4 bare Green’s function is obtained by
inverting the Hamiltonian

G0(k,iω) = [iω1 − Hk]−1, (9)

where Hk is the 4×4 Hamiltonian from Eq. (5). The dressed
Green’s function is then found via Dyson’s equation

G(k,iω)−1 = G0(k,iω)−1 − 
(iω), (10)

such that

G(k,iω) = [iω1 − 
(iω) − Hk]−1, (11)

where 
 is the Matsubara self-energy matrix. The retarded
Green’s function is then obtained by continuing iω → ω + iδ:

GR(k,ω) = [ω1 − 
R(ω) − Hk]−1, (12)

where 
R(ω) = 
(iω → ω + iδ) is the retarded self-energy
matrix. We define the matrix spectral function A(k,ω) via

G(k,iω) =
∫ ∞

∞
dω′ A(k,ω′)

iω − ω′ , (13)

such that

A(k,ω) = i

2π
[GR(k,ω) − GA(k,ω)], (14)

where GA = GR† is the advanced Green’s function. Since
our calculation will only require A(k,ω → 0), we need only
calculate

GR(k,0) =

⎡
⎢⎣

i�0 + μ −vk− −�k 0
−vk+ i�0 + μ 0 −�k

−�k 0 i�0 − μ vk−
0 −�k vk+ i�0 − μ

⎤
⎥⎦

−1

,

(15)

where k± ≡ kx ± iky . Here we have taken a simple form for
the zero-frequency self-energy matrix, 
R(ω → 0) = −i�01,
where �0 is a scalar constant, the impurity scattering rate. In
general, the full 4×4 self-energy matrix can be calculated for
a particular disorder model, but this simple model captures the
essential physics and establishes an energy scale for disorder.
Performing the inversion in Eq. (15) yields the zero-frequency,
matrix spectral function

A(k,0) = (A01σ + A1σ1 + A2σ2)1τ

Aden
, (16)

where 1σ is the intrablock (spin) 2×2 identity matrix,
1τ is the interblock (particle-hole) 2×2 identity matrix,

and

A0 = �0
(
�2

0 + μ2 + v2k2 + �2
k

)
,

A1 = 2�0μvkx,

A2 = 2�0μvky,

Aden = π
[
�2

0 + (vk − μ)2 + �2
k

][
�2

0 + (−vk − μ)2 + �2
k

]
.

(17)

B. Thermal current operator

To derive an expression for the thermal current density
operator in this system, we generalize the approach developed
for the s-wave superconductor case by Ambegaokar and
Griffin [51] and adapted for the d-wave superconductor case
in Ref. [49]. We begin by expressing the Hamiltonian in terms
of the coordinate-space field operators, ψ↑(x) and ψ↓(x), such
that

H = H0 + H1,

H0 =
∫

d2x(ψ†
↑,ψ

†
↓)(−iv�σ · ∇ − μ)

(
ψ↑
ψ↓

)
, (18)

H1 = 1

2

∫
d2x

∫
d2yψ†

xαψ
†
yβV (x − y)ψyβψxα,

where α and β are spin indices over which summation is
implied, V (x − y) is the effective potential that gives rise to
the proximity-induced superconductivity, and we have adopted
a compact notation whereby ψα ≡ ψxα ≡ ψα(x) and ψyβ ≡
ψβ(y). Performing the matrix multiplications, H0 takes the
form

H0 =
∫

d2x[−iv(ψ†
↑∂−ψ↓ + ψ

†
↓∂+ψ↑) − μψ†

αψα]

=
∫

d2x[iv(∂−ψ
†
↑ψ↓ + ∂+ψ

†
↓ψ↑) − μψ†

αψα], (19)

where ∂± ≡ ∂
∂x

± i ∂
∂y

and the second equality is the result of
integration by parts. Equations of motion for the field operators
are obtained by noting that

iψ̇α = [ψα,H ], iψ̇†
α = [ψ†

α,H ], (20)

and applying fermion anticommutation relations. Doing so,
we find that

ψ̇↑ = −v∂−ψ↓ + iϕxψ↑,

ψ̇↓ = −v∂+ψ↑ + iϕxψ↓,

ψ̇
†
↑ = −v∂+ψ

†
↓ − iψ

†
↑ϕx,

ψ̇
†
↓ = −v∂−ψ

†
↑ − iψ

†
↓ϕx, (21)

where we have defined

ϕx ≡ ϕ(x) ≡ μ −
∫

d2rV (r − x)ψ†
rγ ψrγ . (22)

The thermal current density operator, jκ (x), is obtained via
continuity with the thermal density operator, h(x):

ḣ(x) = −∇ · jκ (x). (23)

Since we have written our Hamiltonian such that all energies
are measured with respect to the chemical potential, h(x) is
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equal to the Hamiltonian density operator and therefore is
defined via

H =
∫

d2xh(x) (24)

and expressed as

h(x) = − iv

2
(ψ†

↑∂−ψ↓ − ∂−ψ
†
↑ψ↓ + ψ

†
↓∂+ψ↑ − ∂+ψ

†
↓ψ↑)

−μψ†
αψα + 1

2

∫
d2yψ†

αψ
†
yβV (y − x)ψyβψα, (25)

where we have taken H0 to be the average of the first and second
lines of Eq. (19). Taking the time derivative and breaking the
result into two pieces, we write

ḣ(x) = FA + FB, (26)

where

FA ≡ − iv

2
(ψ̇†

↑∂−ψ↓ − ∂−ψ̇
†
↑ψ↓ + ψ̇

†
↓∂+ψ↑ − ∂+ψ̇

†
↓ψ↑

+ψ
†
↑∂−ψ̇↓ − ∂−ψ

†
↑ψ̇↓ + ψ

†
↓∂+ψ̇↑ − ∂+ψ

†
↓ψ̇↑)

−μψ̇†
αψα − μψ†

αψ̇α, (27)

FB ≡ 1

2

∫
d2yV (y − x)(ψ̇†

αψ
†
yβψyβψα + ψ†

αψ̇
†
yβψyβψα

+ψ†
αψ

†
yβψ̇yβψα + ψ†

αψ
†
yβψyβψ̇α). (28)

The first piece FA can be reorganized by using the equations of
motion (20) to sub in for the dotted field operators, regrouping
terms, and then applying the equations of motion again. Doing
so, we find that

FA = iv

2
[∂−(ψ̇†

↑ψ↓) + ∂+(ψ̇†
↓ψ↑)

− ∂−(ψ†
↑ψ̇↓) − ∂+(ψ†

↓ψ̇↑)]

−
∫

d2yV (y−x)(ψ̇†
αψ

†
yβψyβψα + ψ†

αψ
†
yβψyβψ̇α).

(29)

Combining this with FB and applying the continuity equation
(23), we see that it is natural to write the thermal current density
operator as the sum of two terms,

jκ ≡ u1 + u2, (30)

where

∇ · u1 = − iv

2
[∂−(ψ̇†

↑ψ↓) + ∂+(ψ̇†
↓ψ↑)

− ∂−(ψ†
↑ψ̇↓) − ∂+(ψ†

↓ψ̇↑)], (31)

∇ · u2 = 1

2

∫
d2yV (y − x)[(ψ̇†

αψ
†
yβψyβψα + ψ†

αψ
†
yβψyβψ̇α)

− (ψ†
αψ̇

†
yβψyβψα + ψ†

αψ
†
yβψ̇yβψα)]. (32)

Expansion of the ∂± operators reveals that the right-hand-
side of Eq. (31) is easily expressed as a divergence. Doing so,

we extract

u1 = − iv

2
{[(ψ̇†

↑ψ↓ + ψ̇
†
↓ψ↑)x̂ − i(ψ̇†

↑ψ↓ − ψ̇
†
↓ψ↑)ŷ]

− [(ψ†
↑ψ̇↓ + ψ

†
↓ψ̇↑)x̂ − i(ψ†

↑ψ̇↓ − ψ
†
↓ψ̇↑)ŷ]}, (33)

which, in 4×4 Nambu notation, becomes

u1(x,t) = − iv

4
[�̇† �στ3� − �† �στ3�̇], (34)

where �†=�†(x,t) = [ψ†
↑,ψ

†
↓,ψ↓,− ψ↑] and �σ = σ1x̂ + σ2ŷ.

Fourier transforming in space and time yields

u1(q,�) = 1

2

∑
kω

�
†
k

(
ω + �

2

)
v�στ3�k+q, (35)

where we have used the shorthand �k ≡ �(k,ω) and �k+q ≡
�(k + q,ω + �).

To obtain u2, we take the spacetime Fourier transform of
Eq. (32). Doing so yields

iq · u2(q,�) = 1

2

∫
d2xd2ydtV (y − x)(e−iq·x − e−iq·y)

× (ψ̇†
xαψ

†
yβψyβψxα + ψ†

xαψ
†
yβψyβψ̇xα)

= X1 + X2 − Y1 − Y2, (36)

where we have labeled each of the four resulting terms: X1, X2,
Y1, and Y2. Inserting a Fourier representation for the potential
and each of the field operators, the X1 term takes the form

X1 = i

2

∑
k1,...,k5

∑
ω1,...,ω4

ω1Vk5c
†
k1α

c
†
k2β

ck3βck4αδ(k4−k1−k5−q)

× δ(k3 − k2 + k5)δ(ω1 + ω2 − ω3 − ω4 + �). (37)

Making a mean-field approximation, retaining only the terms
for which the average values are over (k ↑,−k ↓) pairs
(reduced approximation), and noting that 〈c†k↑c

†
−k↓〉 is an even

function of ω, this becomes

X1 = i
∑
kω

(ω − �)�∗
kc

†
k−q↑c

†
−k↓, (38)

where

�k ≡
∑
k′ω′

Vk−k′ 〈c†k′↑c
†
−k′↓〉 (39)

is the superconducting order parameter for the interface state.
Repeating this calculation for X2, Y1, and Y2, and taking �k

to be real, we find that

q · u2(q,�) =
∑
kω

(�k+q − �k)

× [ωc
†
k↑c

†
−(k+q)↓ + (ω + �)c−k↓ck+q↑]. (40)

In the q → 0 limit,

�k+q − �k = q · ∂�k

∂k
= q · v�k, (41)

where v�k is the slope of the order parameter (the gap velocity)
at k. Plugging into Eq. (40) and taking the � → 0 limit, we
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find that

u2(0,0) =
∑
kω

(
ω + �

2

)
v�k(c†k↑c

†
−(k+q)↓ + c−k↓ck+q↑),

(42)
which, in the 4×4 Nambu notation, becomes

u2(0,0) = 1

2

∑
kω

�
†
k

(
ω + �

2

)
�v�kτ1�k+q . (43)

Thus, in the q,� → 0 limit (which is the limit where we will
need it), the thermal current density operator is

jκ (0,0) = 1

2

∑
kω

�
†
k

(
ω + �

2

)
vM�k+q, (44)

where

�vM ≡ v�στ3 + �v�kτ1 (45)

is a vector in coordinate space and a matrix in our 4×4 Nambu
space. Here, the first term derives from the massless Dirac
spectrum of the TI surface and has inherited the interesting
spin structure thereof, while the second term derives from
the the d-wave order parameter of the proximity-induced
superconductivity.

C. Thermal conductivity

With the spectral function and thermal current density
operator in hand, we can proceed to calculate the thermal
conductivity in the zero-temperature, zero-frequency limit. For
d-wave superconductors, this limit is known as the universal
limit because thermal conductivity has been shown to be
insensitive to disorder in this regime [43–49]. We can calculate

the thermal conductivity tensor
↔
κ (T ) for the case at hand by

appealing to the fluctuation-dissipation theorem as expressed
in the Kubo formula [52]:

↔
κ (T )

T
= − lim

�→0

Im
↔
�

R

κ (�)

T 2�
. (46)

We obtain the retarded current-current correlation function via
analytic continuation from the Matsubara function

↔
�κ

R(�) = ↔
�κ (i� → � + iδ), (47)

↔
�κ (i�) = −

∫ β

0
dτei�τ 〈Tτ jκ (τ )jκ (0)〉, (48)

where β = 1/kBT , Tτ is the τ -ordering operator, and the
brackets denote the thermodynamic average. For simplicity,
we proceed by calculating the bare-bubble Feynman diagram
shown in Fig. 1, noting that vertex corrections have been
shown to be small for the d-wave-superconductor case [49] and
deferring to future work their calculation for the case at hand.
Doing so, the Matsubara thermal current-current correlation
function takes the form

↔
�κ (i�) = 1

2

1

β

∑
iω

∑
k

(
iω + i�

2

)2

× Tr[G(k,iω)vMG(k,iω + i�)vM ], (49)

FIG. 1. Feynman diagram representing the bare bubble thermal

current-current correlation function
↔
�κ (i�). On each vertex sits a

thermal current density operator jκ . Each propagator line denotes
a Green’s function dressed with disorder self-energy, G(k,iω) and
G(k,iω + i�).

where the ω sum is over fermionic Matsubara frequencies, the
k sum is over the Brillouin zone, the trace is over Nambu space,
and the factor of 1

2 out front compensates for the particle-hole
double counting that is inherent in our 4×4 Nambu formalism.
Inserting a matrix spectral representation, as defined in Eqs.
(13) and (14), for each of the Green’s functions, this becomes

↔
�κ (i�) = 1

2

∑
k

∫
dω1dω2S(i�)

×Tr[A(k,ω1)vMA(k,ω2)vM ], (50)

where

S(i�) = 1

β

∑
iω

(
iω + i�

2

)2 1

iω − ω1

1

iω + i� − ω2
. (51)

Evaluating the Matsubara sum via contour integration (see
Refs. [51] and [49] for a discussion of the technical points)
and continuing i� → � + iδ, we obtain the retarded function

SR(�) = (ω1 + �/2)2nF (ω1) − (ω2 − �/2)2nF (ω2)

ω1 − ω2 + � + iδ
, (52)

where nF (ω) = 1/(eβω + 1) is the Fermi function. Since
the retarded and advanced Green’s functions are Hermitian
conjugates, the spectral function defined in Eq. (14) must be
Hermitian:

A† = −i
GR† − GA†

2π
= −i

GA − GR

2π
= i

GR − GA

2π
= A.

(53)

And since vM is also Hermitian, the trace in Eq. (50) must be
real:

Tr[A1vMA2vM ]∗ = Tr[(A1vMA2vM )T ]∗

= Tr[(A1vMA2vM )†] = Tr[v†MA
†
2v†MA

†
1]

= Tr[vMA2vMA1] = Tr[A1vMA2vM ].

(54)

Therefore,

Im
↔
�κ

R(�) = 1

2

∑
k

∫
dω1dω2ImSR(�)

× Tr[A(k,ω1)vMA(k,ω2)vM ], (55)

where

ImSR(�) = π

(
ω1 + �

2

)2

[nF (ω1 + �) − nF (ω1)]

× δ(ω1 + � − ω2). (56)
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Plugging into Eq. (46) and taking the � → 0 limit yields an
expression for the thermal conductivity tensor:

↔
κ (T )

T
= π

2

∫
dω

(
ω

T

)2(
− ∂nF

∂ω

)

×
∑

k

Tr[A(k,ω)vMA(k,ω)vM ]. (57)

In the zero-temperature limit, (ω/T )2(−∂nF /∂ω) is sharply
peaked at ω = 0. Thus, evaluating the integral∫ ∞

−∞
dω

(
ω

T

)2(
−∂nF

∂ω

)
= π2k2

B

3
, (58)

we find that the universal-limit thermal conductivity tensor
takes the form
↔
κ 0

T
≡

↔
κ (T )

T

∣∣∣∣
T →0

= π3k2
B

6

∑
k

Tr[A(k,0)vMA(k,0)vM ], (59)

where A(k,0) is the spectral function that we evaluated in
Eqs. (16) and (17).

Introducing the shorthand TrAvAv for the trace in the above
expression and plugging in for A(k,0) via Eq. (16) and for vM

via Eq. (45) yields

TrAvAv = 1

A2
den

Tr[(N1τ (v�στ3 + �v�k1σ τ1))2]

= 1

A2
den

Tr[v2(N �σ )21τ + �v�k�v�kN
21τ ], (60)

where N ≡ A01σ + A1σ1 + A2σ2 and we have made use of the
multiplicative properties of the particle-hole (τ ) Pauli matrices.
Noting that �σ = σ1x̂ + σ2ŷ, making use of the multiplicative
properties of the spin (σ ) Pauli matrices, evaluating the trace,
and plugging back into Eq. (59), we find that

↔
κ 0

T
= 4

π3k2
B

6

[
v2(x̂x̂ + ŷŷ)

∑
k

A2
0

A2
den

+ v2(x̂x̂ − ŷŷ)
∑

k

A2
1 − A2

2

A2
den

+ v2(x̂ŷ + ŷx̂)
∑

k

2A1A2

A2
den

+
∑

k

�v�k�v�k

A2
0 + A2

1 + A2
2

A2
den

]
. (61)

Since �k is of dx2−y2 symmetry, it must be an even function of
both kx and ky . Therefore, as defined in Eq. (17), A0 and Aden

are even functions of kx and ky while A1 is odd in kx but even
in ky and A2 is even in kx but odd in ky . As a result∑

k

2A1A2

A2
den

=
∫

dkx

2π

∫
dky

2π

2A1A2

A2
den

= 0. (62)

And since exchange of kx for ky sends �k to −�k , it leaves
Aden invariant but exchanges A1 for A2. Therefore,

∑
k

A2
1

A2
den

=
∑

k

A2
2

A2
den

. (63)

Thus, only the first and fourth terms in Eq. (61) survive. Noting

that x̂x̂ + ŷŷ is just the identity tensor
↔
1 , plugging in for

A0, A1, A2, and Aden from Eq. (17), and restoring � in the
prefactor, we obtain the following expression for the thermal
conductivity in the zero-temperature limit:

↔
κ 0

T
= k2

B

3�
2π3

[
v2

↔
1

∑
k

Pk +
∑

k

�v�k�v�k(Pk+Qk)

]
, (64)

where Pk ≡ A2
0/A

2
den and Qk ≡ (A2

1 + A2
2)/A2

den take the form

Pk = 1

4

[
�0/π

�2
0 + (vk − μ)2 + �2

k

+ �0/π

�2
0 + (−vk − μ)2+�2

k

]2

,

(65)

Qk = 1

4

[
�0/π

�2
0 + (vk − μ)2+�2

k

− �0/π

�2
0 + (−vk − μ)2 + �2

k

]2

.

(66)

Note that this result depends on integrals of the squares of sums
and differences of Lorentzians centered about the zeros of the
two branches of the quasiparticle excitation spectrum, Eq. (6),

of width given by the impurity scattering rate. For μ � �0,
↔
κ 0

is dominated by impurity-induced quasiparticles in the vicinity
of the zeros of the (+) branch. For μ � −�0, the (−) branch
dominates. For |μ| � �0, both branches contribute.

IV. ANALYTICAL RESULTS

In both the large-|μ| and small-|μ| limits (|μ| � �0 and
|μ| � �0) the quasiparticle excitation spectrum simplifies, as
described in Sec. II B, and can be linearized about nodal points
in k space. As a result, in these limits, we can obtain simple,
closed-form expressions for the zero-temperature thermal
conductivity. This is shown in the following sections.

A. Large-|μ| limit

For μ � �0, the Lorentzians in Eqs. (65) and (66) are
sharply peaked about four nodal points, located at ±kx =
±ky = μ/

√
2v, and are well separated from each other. We

can therefore replace the k sum in Eq. (64) by the sum of four
integrals over local scaled coordinates, p1 and p2, defined
about the nodal points

∑
k

→
4∑

j=1

∫
d2k

(2π )2
→

4∑
j=1

∫
d2p

(2π )2vv�

, (67)

where the integrals can be extended to infinity because the inte-
grands are so sharply peaked about each node. Here, p1 ≡ vk1

and p2 ≡ v�k2, and at each node, k̂1 and k̂2 point, respectively,
perpendicular to and parallel to the local Fermi surface, with
k̂2 in the direction of increasing �k . In terms of these scaled
coordinates, �k ≈ p2 and vk = μ + p1, so vk − μ = p1 and
−vk − μ = −(2μ + p1) ≈ −2μ. Therefore, since μ � �0,
the second Lorentzian can be neglected with respect to the
first in both Eqs. (65) and (66), and we find that

Pk = Qk = 1

4

(
�0/π

�2
0 + p2

)2

, (68)
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where p ≡
√

p2
1 + p2

2. Evaluating the integral

∫
d2p

(2π )2

(
�0/π

�2
0 + p2

)2

= 1

4π3
, (69)

and noting that the sum over nodes of the outer product of �v�k

with itself at each node is

4∑
j=1

�v(j )
� �v(j )

� = 2v2
�

↔
1 , (70)

we find that ∑
k

Pk = 4
1

vv�

1

4

1

4π3
= 1

4π3vv�

, (71)

∑
k

�v�k�v�k(Pk+Qk) = 2v2
�

↔
1

1

vv�

2
1

4

1

4π3
= v2

�

↔
1

4π3vv�

. (72)

Therefore, the thermal conductivity tensor reduces to a scalar,
↔
κ 0 = κ0

↔
1 , with the simple form

κ0

T
= 1

2

k2
B

3�

(
v

v�

+ v�

v

)
. (73)

The same result is obtained for μ � −�0, where it is the first
Lorentzian in Eqs. (65) and (66) that can be neglected with
respect to the second. Note that this expression is independent
of disorder and is only a function of the velocity anisotropy,
v/v�, which depends on both μ and material parameters. Note
also that this is exactly half the value obtained (per layer) for
the case of an ordinary d-wave superconductor [49]. This is
because, unlike the d-wave superconductor case where the
electron dispersion is spin degenerate, here the TI surface
state is nondegenerate and only one of the two branches of
the quasiparticle excitation spectrum [Eq. (6)] contributes to
the thermal conductivity. For μ � �0, the (+) branch (first
Lorentzian) contributes. For μ � −�0, the (−) branch (second
Lorentzian) contributes. This factor of two is a clear and
measurable demonstration of the sense in which the TI surface
topological metal is “half” of an ordinary 2D electron gas [16].

B. Small-|μ| limit

For |μ| � �0, the four anisotropic nodes of the prior section
have coalesced into a single isotropic node at the origin of k

space. The first and second Lorentzians in Eqs. (65) and (66)
are approximately equal and peaked at the origin. The k sum
in Eq. (64) can be replaced by a single integral about scaled
coordinates, p1 = vkx and p2 = vky , and extended to infinity:

∑
k

→
∫

d2k

(2π )2
→

∫
d2p

(2π )2v2
. (74)

In these scaled coordinates, vk = p = (p2
1 + p2

2)1/2, and since
|μ| � �0, vk − μ ≈ p and −vk − μ ≈ −p. As long as �k

vanishes fast enough with decreasing k, as per condition (2) of
Sec. II B, �2

k and �v�k�v�k can be neglected in Eqs. (64)–(66)
compared to larger terms. As a result, the two Lorentzians add

in Pk and cancel out in Qk:

Pk =
(

�0/π

�2
0 + p2

)2

, Qk ≈ 0. (75)

Once again making use of the integral in Eq. (69), we find that

∑
k

Pk = 1

v2

∫
d2p

(2π )2

(
�0/π

�2
0 + p2

)2

= 1

4π3v2
, (76)

∑
k

�v�k�v�k(Pk + Qk) ≈ 0, (77)

Therefore, the thermal conductivity tensor again reduces to a
scalar, now with an even simpler form:

κ0

T
= k2

B

3�

1

2
. (78)

Here, both branches of the quasiparticle spectrum have
contributed to the thermal conductivity, and one obtains
precisely the result one would expect for a single isotropic
massless Dirac node. This expression is clearly independent
of disorder and is just the standard d-wave-superconductor
result [49] for an anisotropy ratio of one divided by a
factor of four since there is only one node here rather than
four.

V. NUMERICAL RESULTS

We would now like to look beyond the large-|μ| and
small-|μ| limits and consider the transition between them
by numerically evaluating Eqs. (64)–(66) as a function of μ.
This is easily done, but unlike the large- and small-|μ|-limit
calculations which were model independent (aside from the
two conditions in Sec. II B), this calculation requires a
model for �k , the proximity-induced superconducting order
parameter of the TI-dSC interface state, and its results will
necessarily depend (in the details) on that choice of model.
Since we are primarily interested in understanding the essential
physics of this transition, without delving too deeply into the
material-dependent details, we proceed by considering the
following simple and rather standard expression for the order
parameter of a generic d-wave superconductor:

�k = �0

2
(cos kxa − cos kya), (79)

which yields a gap velocity at k of the form

�v�k ≡ ∂�k

∂k
= �0a

2
(− sin kxax̂ + sin kyaŷ). (80)

Here, we have introduced two new model parameters, the
gap maximum �0 and the lattice constant a. Expressing
all lengths in units of a and all energies in units of v/a,
we define dimensionless parameters μ̃ ≡ μa/v, �̃0 ≡ �0a/v,
and �̃0 ≡ �0a/v, as well as a dimensionless wave vector
with components z1 ≡ kxa and z2 ≡ kya. Doing so, plugging
Eqs. (79) and (80) into Eqs. (64)–(66), and noting that all terms
not proportional to the identity tensor integrate to zero, we find
that the universal-limit thermal conductivity tensor reduces to
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μ [units of v/a]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

κ
0/

T
[u

ni
ts

of
k

2 B
/3

h̄
]

0

2

4

6

8

10

12

14

16

18

Full Calculation
Large-|μ| Expression
Small-|μ| Expression

FIG. 2. Calculated universal-limit thermal conductivity, κ0/T ,
as a function of chemical potential μ. Solid curve denotes numer-
ical solution of Eqs. (81)–(83) for parameter values �0 = 0.1v/a

and �0 = 0.01v/a. The solution matches our large-|μ| expression
(dashed) for |μ| � �0, then reaches a maximum at an intermediate
value of |μ| before decreasing toward the value of our small-|μ|
expression (dotted) for |μ| � �0.

a scalar and takes the convenient form

κ0

T
= k2

B

3�

∫
d2z

8π

[
(L(z) + L(−z))2

+ �̃2
0

2
sin2 z1(L(z)2 + L(−z)2)

]
, (81)

where

L(z) ≡ �̃0

�̃2
0 + (z − μ̃)2 + �̃(z)2

, (82)

and

�̃(z) ≡ �̃0

2
(cos z1 − cos z2). (83)

The k-space integral is easily computed to obtain κ0/T as a
function of μ. Results for �0 = 0.1v/a and �0 = 0.01v/a

are plotted in Fig. 2 alongside the large- and small-|μ| limits.
[For the large-|μ| plot, we have used the model introduced in
Eqs. (79) and (80) to obtain the nodal anisotropy ratio as a
function of μ, v/v� = [(�̃0/

√
2) sin(μ̃/

√
2)]−1, and used that

as input to Eq. (73).] Our numerical result matches the large-μ
expression for |μ| � �0, peaking with decreasing |μ|, before
plunging down toward the small-|μ| value for |μ| � �0.

This behavior is best understood by considering the evo-
lution of the k-space structure of the integrand of Eq. (81) as
a function of μ, as shown for a series of μ values in Figs. 3
and 4. The upper panel of Fig. 3 illustrates the structure of the
large-μ limit. Here, for μ̃ = π/

√
2, the integrand is peaked

within �̃0 of four well-separated anisotropic nodal points.
Equal-intensity contours are (nearly) elliptical, squeezed in
the direction parallel to the local Fermi surface. In the middle
panel, μ is reduced by a factor of two, which draws the nodes

FIG. 3. (Color online) Evolution of the k-space structure of the
κ0/T integrand. (a) [μ = π√

2
v

a
]: Large-|μ| limit. Four, well-separated,

elliptical peaks within �0 of the nodal points. (b) [μ = 1
2

π√
2

v

a
]: Nodal

peaks closer to the origin, more anisotropic, and curving around the
Fermi circle. (c) [μ = 1

20
π√

2
v

a
]: Nodal peaks have merged into an

annular peak of width �0.
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FIG. 4. (Color online) Further evolution of the k-space structure
of the κ0/T integrand, zoomed in by a factor of 20. (a) [μ = 1

20
π√

2
v

a
]:

Closeup view of the same annular peak shown in Fig. 3(c). (b) [μ =
1

200
π√

2
v

a
]: Width and radius of the annular peak are now nearly equal.

(c) [μ = 0] Small-|μ| limit. Annular peak is blurred into single,
isotropic peak within �0 of the origin.

closer to the origin. The peaks are still well separated, but less
so than before, since the radius of the Fermi circle has de-
creased and the nodal anisotropy ratio has increased. Thus, the
peaks have begun to curve around the Fermi circle, toward each
other, and the independent-node approximation used to derive
the large-|μ| expression of Eq. (73) has begun to break down.
In the lower panel, μ is reduced by an additional factor of ten.
Now the independent-node approximation has completely bro-
ken down, and the four anisotropic peaks have curved into each
other, forming an annulus of width �̃0 about the Fermi circle.
With decreasing μ, the radius of this annular peak decreases,
resulting in the decrease of κ0/T seen in Fig. 2. We reproduce
this image, zoomed in about the annulus, in the upper panel
of Fig. 4. In the middle panel of that figure, μ is reduced by
another factor of ten such that it is nearly equal to �0. Now the
width and radius of the annular peak are nearly equal. As μ

decreases further, the system is tuned toward the Dirac point
inherited from the TI surface state and the isotropic node at the
origin is revealed. For |μ| � �0, the annular peak blurs into a
single isotropic peak at the origin, of width �̃0. This is shown
in the lower panel where μ = 0. The integral over this single
isotropic peak recovers the small-|μ| value of Eq. (78). As μ

becomes negative, the process reverses, dominated now by the
(−) branch of the quasiparticle excitation spectrum instead of
the (+) branch. All else is the same, so κ0/T is even in μ.

Results for five different values of the impurity scattering
rate �0 are shown in Fig. 5. Note that, in both the large-|μ| and
small-|μ| limits, κ0/T is disorder independent. The transition
between these limits does, however, depend on disorder,
with the peaks of the κ0/T vs μ curves smoothed out for
greater disorder. This effect can be understood in terms of our
integrand analysis (above). As |μ| decreases from its largest

μ [units of v/a]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

κ
0/

T
[u

ni
ts

of
k

2 B
/3

h̄
]

0

5

10

15

20

25

30
Γ

0
 = 0.003 v/a

Γ
0
 = 0.01 v/a

Γ
0
 = 0.017 v/a

Γ
0
 = 0.024 v/a

Γ
0
 = 0.031 v/a

FIG. 5. (Color online) Disorder dependence of calculated
universal-limit thermal conductivity, κ0/T , as a function of chemical
potential μ. We plot numerical solutions of Eqs. (81)–(83) for
�0 = 0.1v/a and five values of the impurity scattering rate �0.
Results are disorder independent in both the large-|μ| and small-|μ|
limits. The transition between limits depends on disorder, with the
peaks more prominent for smaller �0, smoothing out with increasing
disorder.
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values, increasing anisotropy ratio yields increasing κ0/T via
our large-|μ| expression, Eq. (73). But for greater disorder,
the independent-node approximation that defines the large-|μ|
limit breaks down sooner, as the four anisotropic peaks broaden
with growing disorder and merge together earlier, limiting the
enhancement of κ0/T with increasing anisotropy ratio. The
resulting annular peak is of greater width for greater disorder
and therefore blurs into a single peak sooner, ushering in the
small-|μ| limit as its radius becomes smaller than its width.

VI. CONCLUSIONS

In this paper, we have calculated the universal-limit thermal
conductivity κ0 as a function of chemical potential μ due to
quasiparticle excitations of the proximity-induced supercon-
ducting state at the 2D interface of a topological insulator and
a d-wave superconductor. In both the large-|μ| and small-|μ|
limits, we have obtained simple closed-form expressions for
κ0/T , combined here from Eqs. (73) and (78):

κ0

T
= k2

B

3�

{ 1
2

(
v
v�

+ v�

v

)
for |μ| � �0

1
2 for |μ| � �0,

(84)

where v is the slope of the isotropic Dirac cone inherited
from the TI surface state, v/v� is the μ-dependent anisotropy
ratio of the four anisotropic Dirac cones of the proximity-
induced d-wave superconducting state, and �0 is the impurity
scattering rate, the energy scale characterizing disorder in
the system. Note that the large-|μ| expression is exactly half
the value obtained [49] (per layer) for an ordinary d-wave
superconductor: κdSC

0 /T = (k2
B/3�)(vF /v� + v�/vF ). This is

an overt demonstration of the sense in which the underlying
topological metal is “half” of an ordinary metal [16] and comes
about because, for large |μ|, only one of the two branches
(positive or negative) of the isotropic Dirac cone contributes
at a time. For |μ| � �0, both branches contribute, but the four
nodes have coalesced into one isotropic node at the origin of k

space. Thus, the small-|μ| expression is equal to the standard
dSC value (with anisotropy ratio equal to one), divided by
four (since there is only one node instead of the usual four):
(1 + 1)/4 = 1/2. While κ0/T is disorder independent in both
of these limits, the transition between them, as a function of
μ, depends on disorder. And furthermore, it depends in the

details on the functional form of the proximity-induced order
parameter �k . Adopting a simple model for �k [Eq. (79)], we
calculated κ0/T across the full range of μ for different levels of
disorder, as shown in Fig. 5. As μ decreases from its maximum
value, the four nodal peaks of the integrand in Eq. (81) become
more anisotropic, resulting in an increase in κ0/T , as per
our large-|μ| expression. But they also move closer together,
eventually merging into an annular peak about the Fermi
circle. Along the way, the independent-node approximation
that defined the large-|μ| limit breaks down, and κ0/T reaches
its maximum value, decreasing as μ decreases further and
the Fermi circle shrinks. Finally, as μ gets smaller than �0,
the annular peak blurs into an isotropic nodal peak at the
origin, and κ0/T reaches its minimum at the value given by
our small-|μ| expression. As shown in Fig. 5, the peaks in
the κ0/T vs μ curve are more pronounced for smaller �0,
smoothing out with increasing disorder.

Note that we have assumed herein that the bulk band gap
of the topological insulator extends well above and below
the Dirac point of the surface state, such that μ could be
varied over a wide range of energies without accessing the bulk
valence or conduction bands. In real materials, the available
energy windows may be more restricted. We have also assumed
that the chemical potential can be accurately controlled, via
gating, doping, or other means, and that proper contact can be
made to the TI-dSC interface. Both may present experimental
challenges.

Our focus in this work has been on the evolution with
changing chemical potential of the massless Dirac quasipar-
ticle excitations of the TI-dSC interface state. The results
shed light on the essential features of low-temperature thermal
transport due to these quasiparticles. Further theoretical devel-
opment, including incorporation of a subdominant spin-triplet
order parameter, a more realistic disorder model, and vertex
corrections to our diagrammatic calculation, are left for future
work.
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