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We discuss different ways of generating entanglement in the original picture of circuit QED (XcQED) and
several restrictions that arise in the context of a large-scale quantum architecture. To alleviate some of the issues
posed by the presence of the nonlinearities inherent to these systems, we introduce a layout for circuit QED,
wherein an artificial atom is coupled to a quantized radiation field via its longitudinal degree of freedom (ZcQED).
This system is akin to ion traps used in atomic physics, but it relies on fixed coupling between the atom and
the resonator. We describe a scalable architecture for processing quantum information with superconducting
qubits, which is free from any type of residual interaction between the atomic and photonic degrees of freedom.
Tunable interactions can be realized based on sideband transitions, and the system can be operated out of the
Lamb-Dicke regime, allowing it to benefit from the possibility of achieving large coupling strengths between
atoms and resonators. We also discuss a readout scheme that does not require any extra circuits and allows a
qubit-specific measurement of the state of the quantum register inspired by the electron shelving technique. This
scheme is quantum nondemolition (QND)-like, and allows for single-shot determination of the qubit states.
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I. INTRODUCTION

The advent of quantum computation relies on the prospect
of scaling up the circuits that process information. Solid-
state-implemented qubits stand as good candidates to fulfill
scalability requirements. Following a proposal by Leggett [1],
the first experimental demonstration of macroscopic quantum
tunneling of a collective degree of freedom in a current-biased
Josephson junction [2] substantiated the possibility of observ-
ing macroscopic quantum coherent effects in these systems
and thus of building artificial atoms using the nonlinearity
provided by the Josephson effect. The first observation of
coherent oscillations in a single qubit [3] paved the way for
the elaboration of new types of artificial atoms that have a
stronger immunity to sources of decoherence [4–7], as well
as for generation of entanglement between two or three qubits
[8–10], and the demonstration of quantum algorithms [11–13]
and quantum error correction [14].

Besides the practical requirements imposed by the necessity
of integrating these circuits, the notion of scalability also
encompasses various constraints exposed in the seminal
work of DiVincenzo [15]: a scalable physical system with
well-characterized qubits, the ability to initialize the state
of the qubits, long decoherence times, a “universal” set of
quantum gates, and a qubit-specific measurement capability.
Decoherence, and more generally errors, remain a major
limiting constraint to the manipulation of information encoded
in solid-state devices. The field of quantum error correction
has striven to tackle this issue with prompt and increasing
success since the first code proposed by Shor [16]. The
emergence of topological quantum error-correcting codes such
as the toric code of Kitaev [17], and subsequently the surface
code [18–23], offers a promising solution to these problems.
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With an error threshold of around 1%, the surface code allows
us to envision realistic architectures for processing quantum
information to the detriment of a large overhead. Motivated
by this approach to quantum error correction, we will consider
in this work how to devise a scalable architecture that fulfills
the DiVincenzo criteria, and is based on a two-dimensional
(2D) array of qubits on a square lattice with tunable nearest-
neighbor interactions.

Besides elucidating intricate aspects of field-matter inter-
actions in the quantum regime, the field of atomic physics has
been pioneering the realization of different milestones demon-
strating how to harness quantum coherence and entanglement
for quantum information processing purposes. Cavity quantum
electrodynamics, on one hand, has investigated the interaction
of a two-level atom with the quantized electromagnetic
field of a high-quality-factor cavity at optical or microwave
frequencies via the atom’s transition dipole moment [24,25].
Experimental implementations include the generation of EPR
pairs [26], the demonstration of a quantum phase gate [27]
and the realization of a quantum memory [28]. Trapped
atomic ions, on the other hand, bring into play charged
atoms confined by electromagnetic fields. Trapping allows
atomic states to be sustained with relatively long lifetimes
by dint of isolation from the environment [29]. Experimental
demonstrations comprise the generation of entanglement
between up to 14 ions [30–32], the implementation of the
Deutsch-Jozsa algorithm [33], the realization of a Toffoli
gate [34], and quantum error correction [35,36]. Cirac and
Zoller first proposed a scalable system built on a chain of ions
in a linear trap [37]. Tunable interactions could be achieved by
means of sideband transitions associated with the quantized
center-of-mass motion of the ions in the trap [38,39]. Other
proposals broached the issue of integration by planarizing the
trap [40,41].

The field of circuit QED addresses methods to repro-
duce and deepen the understanding of coherent interactions
between light and matter with superconducting electrical
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TABLE I. Comparison between the two architectures presented in this work.

XcQED ZcQED

Static coupling Qubits transversely coupled to Qubits longitudinally coupled to
four distinct resonators four distinct pairs of resonators

Parity symmetry Yes No
Residual interactions Qubit-resonator: dispersive shift (second order), No residual interactions

qubit-qubit: residual σzσz interactions (fourth order)
Tunable coupling via sideband transitions via sideband transitions:

or two-qubit parametric conversion controlled-phase gate a la Cirac & Zoller
Readout via dispersive shift (dispersive readout) via a combination of two-mode sideband

transitions (electron shelving-like)
Purcell effect Yes No

circuits [42,43]. Artificial atoms made of Josephson junc-
tions provide coherent two-level systems, whereas quantum
harmonic oscillators can be made of either lumped element
resonators (single-mode) or coplanar waveguide resonators
(multimode). This type of layout offers great versatility for
engineering interactions between atomic and photonic degrees
of freedom at one’s discretion; one of its main advantages
is the possibility of reaching the strong coupling regime,
i.e., a configuration wherein the coupling strength g between
the artificial atom and the microwave photons exceeds the
resonator decay rate κ . The aim of the present work is to
explore another possibility offered by these systems, which is
to couple to these artificial atoms by means of different degrees
of freedom, either transverse or longitudinal.

In Sec. II, we will review some basic aspects of the usual
picture of circuit QED based on the transverse interaction with
the atom, which we will refer to as XcQED. This scheme is
an exact analog of cavity QED experiments with solid-state
devices. We will present two different ways to realize two-
qubit gates via a resonant microwave drive that will allow us to
overcome the parity selection rule, and we will discuss various
implications of the presence of residual interactions and
the justification of the rotating wave approximation (RWA);
the latter two constraints set a lower and an upper bound,
respectively, on the amplitude of each microwave drive applied
to manipulate the state of the quantum register. We will broach
the practical consequences of these restrictions on the control
of a large-scale system relying on these tunable resonant
interactions, and the emergence of correlated errors that must
be taken into account in the error model so as to ensure its
fault-tolerant operation.

Section III introduces a new paradigm for circuit QED,
wherein a qubit is coupled longitudinally to a quantum
harmonic oscillator, which we will call ZcQED. We will see
that this configuration bears a close resemblance to ion-trap
systems, even though the fixed qubit-resonator interaction
results in some significant differences such as the existence
of residual interactions, which are unlike the purely tunable
interactions for trapped ions. This approach is quite favorable
for developing a scalable architecture for quantum information
processing. Indeed, since the interaction term commutes with
the free Hamiltonian of the qubits, once one finds a way
to cancel out these parasitic terms at the level of one unit
cell coupling two neighboring qubits, this compensation will
remain valid inside a 2D array. We will devise a quantum

architecture wherein each pair of nearest-neighbors is lon-
gitudinally coupled to two resonators that are themselves
fixedly coupled via orthogonal degrees of freedom. This
configuration guarantees the exact cancellation of all residual
interactions between atomic and photonic degrees of freedom,
thus providing a quantum register with well-defined energy
levels.

We will introduce a means of generating entanglement
between each pair of nearest-neighbors via a mechanism of
conditional accumulation of global phase inspired by the
Cirac-Zoller gate [37], which involves two-mode states of
the two resonators mediating the interaction between them.
The encoding of the state of one of the two qubits into a
two-mode state and its manipulation via two-mode sideband
transitions prevent the risk of leakage out of the computational
subspace inherent to sideband transitions, without requiring a
reduction in the anharmonicity of the artificial atoms. Given
that the absence of dispersive shift precludes the determination
of the state of each qubit via dispersive readout, we will
present an alternative based on the electron shelving technique,
which bootstraps the two resonators between each pair of
nearest-neighboring qubits and takes advantage of the absence
of nonlinearity in the energy spectrum of the system. The
analogy with trapped ions is essential in the sense that it enables
us to benefit from the theoretical tools already developed in this
field. From a practical point of view, mediating the interaction
between qubits with microwave resonators made of electrical
circuits allows us to move them farther apart from each other:
such a configuration facilitates the introduction of control lines
and should reduce the risks of cross-talk. A summary of the
peculiarities of each scheme is presented in Table I.

The ideas expounded in this manuscript are very generic,
but we wish to exemplify their implementation with Josephson
qubits. The artificial atom we are considering to use is referred
to as a three-junction flux qubit [4,44], a variation of the
better known rf-SQUID, wherein the self-inductance of the
loop is replaced by two large Josephson junctions. The main
advantage of this device is that it can serve as a good effective
two-level system, which can be fairly represented by the Lie
group SU(2): therefore effective models based on a represen-
tation with Pauli matrices provide an appropriate description
of coupled systems, and the risk of leakage of information
out of the computational subspace due to excitation of higher
energy levels while performing single-qubit and two-qubit
operations by microwave irradiation can be safely ignored.
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FIG. 1. (Color online) (a) Schematic representation of a cavity
QED experiment: a real atom interacts via its electric dipole moment
with the electric field of the quantized radiation field of a 3D cavity.
(b) Possible implementation of a XcQED experiment with a flux
qubit: the artificial atom is transversely coupled to the resonator by
inductive coupling to the main loop of the qubit. In this configuration,
the qubit can be driven longitudinally (i.e., along σz) by modulating
the flux through the α-loop (split junction) with a microwave drive.

Another valuable asset is the possibility of separating the
longitudinal and transverse degrees of freedom (i.e., σz and
σx , respectively), both for control and coupling of these
circuits (see Appendix A). These systems exhibit a rather high
sensitivity to fluctuations in their environment. A way to reduce
the impact of these external sources of noise is to operate
them at the so-called optimal point, i.e., when the magnetic
frustration f = 1/2 [where f = �/�0, with � being the
magnetic flux piercing the qubit loop and �0 = h/(2e) being
the superconducting flux quantum]. Subsequently, we will
consider solely configurations wherein qubits are biased at the
optimal point: it will appear that maintaining this symmetry is
essential for exactly compensating for various kinds of residual
interactions, which is the crux of this work.

II. TRANSVERSE COUPLING BETWEEN QUBIT AND
RESONATOR (XcQED)

Cavity QED addresses systems in atomic physics wherein
a real atom is coupled to the quantized electromagnetic field of
a high-quality-factor 3D cavity via its electric dipole moment
[see Fig. 1(a)]: this type of experimental layout is equivalent
to a spin 1/2 that interacts transversely with a single bosonic
mode, and is referred to as XcQED. Circuit QED investigates
this type of interaction using solid-state devices. Wallraff
et al. demonstrated the coherent coupling of a superconducting
charge qubit transversely coupled to an on-chip microwave
resonator in the strong coupling regime [43]. A similar light-
matter interaction signature was observed between another
artificial atom (transmon) and a 3D cavity by Paik et al. [45].

A. Single-qubit case

1. Static Hamiltonian

The Jaynes-Cummings Hamiltonian [46] describes the
transverse interaction between a two-level atom and a quantum
harmonic oscillator, ignoring the nonsecular term in the
interaction:

HJC = ωr a†a + �

2
σz + g(a†σ− + aσ+), (1)

where a† and a are bosonic creation and annihilation operators,
respectively, and σ+ and σ− are atomic raising and lowering
operators, respectively. The Jaynes-Cummings Hamiltonian
has a continuous U(1) symmetry, as the number of excitations
is conserved ([HJC,N ] = 0 where N = (a†a + σ+σ−) is
the total number of excitations). In the dispersive regime
(g/|� − ωr | � 1), the static interaction between the atom and
the resonator can be fairly well diagonalized by the unitary
transformation

U = exp[γ (a†σ− − aσ+)], (2)

where γ = g/(� − ωr ). Expanding the Baker-Campbell-
Hausdorff (BCH) formula up to second order, it comes

H′
JC =

(
ωr + g2

� − ωr

σz

)
a†a + 1

2

(
� + g2

� − ωr

)
σz.

(3)

At this point, two remarks can be made: we observe a renormal-
ization of the resonant frequency of the atom as g2/2(� − ωr )
(Lamb shift), together with a residual interaction between
the atomic and photonic longitudinal degrees of freedom as
g2/(� − ωr ) (Stark shift). This latter component, the so-called
dispersive shift, has been extensively used in XcQED to read
out the states of qubits using homodyne detection (dispersive
readout [47]). A less desirable consequence of this same term
is that it makes the qubit relaxation time dependent on the
photon lifetime in the resonator (Purcell effect [48,49]), as
a consequence of the mixing between the atom and photon
states.

Taking into account the nonsecular term in the atom-
resonator interaction, we obtain the original Rabi Hamilto-
nian [50]:

HRabi = ωr a†a + �

2
σz + g σx(a† + a). (4)

The Rabi Hamiltonian has a discrete Z2 symmetry (parity
symmetry: [HRabi,	] = 0 where 	 = −σz e i π a†a is the parity
operator), and it is both integrable and exactly solvable
as proven by Braak [51]. Zueco et al. showed how to
simultaneously diagonalize the secular and nonsecular terms
in the static interaction, starting from the dispersive unitary
transformation introduced earlier in the context of the Jaynes-
Cummings Hamiltonian [52]. They introduced the following
unitary transformation:

U = exp[γ (a†σ− − aσ+) − γ̄ (a†σ+ − aσ−)], (5)

where γ = g/(� − ωr ) and γ̄ = g/(� + ωr ). Expanding
again the BCH formula up to second order, it is found that

H′
Rabi = ωr a†a + �

2
σz

+ g2

2

(
1

� − ωr

+ 1

� + ωr

)
σz(a

† + a)2. (6)

Analogously to the case of the Jaynes-Cummings Hamiltonian,
the resonant frequency of the atom is renormalized by the in-
teraction with the resonator. The dispersive shift now includes
two contributions: the Stark shift coming from the secular
term [g2/(� − ωr )], and the Bloch-Siegert shift originating
from the nonsecular term [g2/(� + ωr )].
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2. Sideband transitions

The generation of entanglement through sideband transi-
tions was originally introduced in the context of quantum
computation with trapped ions [37], and then later extended
to the case of XcQED [53]: however, the implementation of
sideband transitions in each system is substantially different, as
will be shown hereafter. Considering that sideband transitions
couple states of same parity, these processes are forbidden
when a qubit under a one-photon transverse drive is biased
at its symmetry point, as σx is an odd parity operator
(that is, {	,σx} = 0, where {.,.} denotes an anticommutator).
This selection rule can be overcome either by biasing the
qubit slightly away from its symmetry point (making the
system more sensitive to low-frequency noise thus enhancing
dephasing), or by using a two-photon drive (which requires
greater amount of microwave power, therefore posing cross-
talk issues) [54–56]. Another alternative is to drive the qubit
longitudinally [see Fig. 1(b)]: as σz is an even parity operator

([	,σz] = 0, where [.,.] denotes a commutator), this allows the
circumvention of the aforementioned selection rule without
affecting the decoherence rate of the atom or the control
fidelity of its neighbors. The Hamiltonian of the qubit under a
longitudinal microwave drive is given by

H(t) = HRabi + �(t) cos(ωt + φ)σz, (7)

where �, ω, and φ are the amplitude, the frequency, and the
phase of the microwave drive, respectively.

Applying the aforementioned unitary transformation,
which diagonalizes the Rabi Hamiltonian, and switching to
the rotating frame of the qubit and the resonator with the
following time-dependent unitary transformation:

U = exp

[
−i

(�′t + φq)

2
σz − i(ωrt + φr )a†a

]
, (8)

we obtain the effective Hamiltonian within the RWA:

HRWA
red = g(γ + γ̄ )σz a†a − �(t)

2
2γ [e i ((φr−φq )−ςφ) a†σ− + e−i((φr−φq )−ςφ)aσ+] if ω = |ωr − �′|/�,

(9)
HRWA

blue = g(γ + γ̄ )σz a†a − �(t)

2
2γ̄ [e i((φr+φq )−φ)a†σ+ + e−i((φr+φq )−φ)aσ−] if ω = (ωr + �′)/�,

where �′ = (� + g(γ + γ̄ )/2) is the qubit resonant frequency
(including the Lamb shift), φq and φr are the reference phases
of the rotating frame of the qubit and the resonator, respec-
tively, and ς = sign(ωr − �′). We confirm the relevance of the
above analytic expressions for the matrix elements associated
with sideband transitions by comparing them with the result
obtained by a numerical diagonalization [see Fig. 2]. Some
deviation from the above treatment based on a perturbative
expansion can be seen when the dispersive approximation
breaks down. The matrix elements corresponding to red
sideband transitions do not depend on the sign of the detuning
between the qubit and the resonator as one would expect for
a process which conserves the number of excitations [see
Fig. 2(c)], whereas, in the case of blue sideband transitions,
they are given by a monotically decreasing function of the qubit
resonant frequency � in the dispersive regime [see Fig. 2(d)].
Beaudoin et al. discussed a similar layout in a more thorough
way, as they took into account the anharmonicity of the device
(transmon) [57]. Strand et al. demonstrated this idea based on
a flux-driven transmon [58].

One disadvantage of this approach is that it renders two-
qubit operations based on sideband transitions sensitive to the
photon lifetime in the resonator, as it relies on real excitations
of the bosonic mode. Two other related issues arise from
the dispersive shift. First, considering the typical values of
the qubit-resonator coupling strength (g/h ∼ few 100 MHz)
and detuning (|δ|/h = |� − ωr |/h ∼ few GHz) in current
XcQED experiments, the dispersive shift is of the order
of few tens of MHz, which is not negligible. Considering
the achievable speed for this type of microwave-induced
interaction, this means that the ON/OFF ratio can be rather
low, where the ON/OFF ratio is defined as the quotient of
the tunable two-qubit interaction over the residual interaction
(viz., the dispersive shift). Second, since sideband transitions

bring about real excitations in the resonator, the dispersive shift
causes some spurious phase accumulation for the other qubits
coupled to it, depending on their state during the idle time
between the various sideband transitions. These two effects
unavoidably entangle the resonator with the qubits coupled
to it, thus generating some leakage of information out of the
computational subspace. Consequently, given the somewhat
large residual interactions between the atomic and photonic
degrees of freedom in XcQED, entanglement generation via
sideband transitions suffers from rather severe constraints:
an approach that does not involve any real excitation of
the resonator would allow us to circumvent the aforesaid
issues.

3. Qubit relaxation

We denote by γq the relaxation rate of the qubit due
to intrinsic decay processes of the bare qubit state. The
eigenstates of the coupled qubit-resonator system |n,ψ〉 are
related to the bare states |n,ψ〉 via

|n,ψ〉 = U |n,ψ〉, (10)

where |n〉 corresponds to a Fock state of the resonator, |ψ〉
is an arbitrary qubit state, and U is the unitary transformation
which diagonalizes the Rabi Hamiltonian [see Eq. (5)]. After
expanding the BCH formula up to first order, we arrive at an
expression for the lowering operator σ− in the eigenbasis:

U†σ− U = σ− + (γ aσz + γ̄ a†σz). (11)

This analysis reveals that the combination of single-qubit
relaxation and transverse interactions between atomic and
photonic degrees of freedom introduces correlated photon-flip
and qubit phase-flip errors. This process is allowed by the
parity selection rule. The error rate corresponding to these
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FIG. 2. (Color online) Matrix elements for sideband transitions (red sideband [(a) and (c)] and blue sideband [(b) and (d)]) for a single
qubit transversely coupled to a resonator (XcQED - Rabi Hamiltonian) vs the coupling g for different values of �(ωr/h = 10 GHz and �/h

ranges from 1 to 8 GHz in steps of 1 GHz) in (a) and (b), and vs the gap � for different values of g(ωr/h = 10 GHz and g/h ranges from 100
to 500 MHz in steps of 50 MHz) in (c) and (d): results obtained by numerical diagonalization of the Rabi Hamiltonian (dots) are compared
with perturbative expansion (lines). For numerical diagonalizations, the resonator Hilbert space is truncated to n = 80 Fock states.

correlated errors is given by the following:

�γq = γq|〈0,∓|σ−|1,±〉|2
= γq|〈0, ∓ |U†σ− U |1,±〉|2. (12)

where |±〉 = (|0〉 ± |1〉)/√2. Given the expression of the qubit
lowering operator in its rotated form, we find that the rate
corresponding to these correlated errors reads as follows:

�γq = γq γ 2. (13)

In the context of entanglement generation between two
qubits based on sideband transitions, this type of correlated
error must be properly taken into account in the proce-
dure for quantum error correction. The dispersive regime is
quite favorable in the sense that it allows us to neglect the
adverse effects of correlated errors, which arise at higher-order
in the expansion of the BCH formula (see Ref. [59]).

B. Two-qubit case

Blais et al. thoroughly examined various possibilities for
inducing two-qubit interactions in the context of XcQED [53].
Sillanpää et al. demonstrated the coherent transfer of quantum
states between two phase qubits coupled via a λ/2 coplanar
waveguide resonator by sequentially bringing the qubits and
the resonator into resonance with dc pulses [60]. Majer
et al. simultaneously realized a similar experiment with two
transmons: the two-qubit interaction was turned on by tuning

both qubits into resonance with an off-resonant microwave
pulse (ac-Stark effect) [61]. DiCarlo et al. implemented a
controlled-phase gate [11] by adiabatically bringing the system
close to an avoided crossing with a state outside of the
computational subspace, similar to the proposal of Strauch
et al. [62]. Later, DiCarlo et al. extended this mechanism of
conditional phase accumulation based on level repulsion to
nonadiabatic control [9]. The latter protocols are well suited
for artificial atoms with a relatively weak anharmonicity, and
do not apply to flux qubits.

Chow et al. extended the idea of cross-resonance introduced
by Rigetti and Devoret [63] to circuit QED systems [64].
Chow et al. demonstrated a microwave-induced controlled-
phase gate that relied on an avoided crossing with a state
outside of the computational subspace [65]. Even though it is
significantly slower than its dc pulsed counterparts, this type
of two-qubit gate may be more feasibly scaled up. Poletto et al.
demonstrated the entanglement of two superconducting qubits
in a 3D cavity via a two-photon driving of the |00〉 ↔ |11〉
transition, which is enabled by the anharmonicity of these
artificial atoms [66].

Few possible XcQED based architectures have been
suggested. Helmer et al. described a layout wherein physical
qubits are arranged on a 2D square lattice and all qubits sitting
either on the same line or in the same column are coupled
via the same cavity [67]. Galiautdinov et al. introduced
an architecture that not only included physical qubits and
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resonators to mediate the interaction between them but also
quantum memories (RezQu) [68,69]. Earlier, Mariantoni et al.
reported the operation of a building block of such a system [70].

1. Static Hamiltonian

Let us now consider the case of two qubits transversely
coupled to a resonator. Neglecting the nonsecular terms in
the static interaction between the qubits and the resonator, the
Hamiltonian describing this system reads

HJC = ωr a†a +
∑
i=1,2

�i

2
σ z

i +
∑
i=1,2

gi(a
†σ−

i + aσ+
i ). (14)

This Jaynes-Cummings Hamiltonian can be diagonalized
using a unitary transformation similar to the one introduced
for the single qubit case:

U = exp

[∑
i=1,2

γi(a
†σ−

i − aσ+
i )

]
, (15)

where γi = gi/(�i − ωr ). By expansion of the BCH formula
up to second order, the Hamiltonian for two qubits is given by

H′
JC =

(
ωr +

∑
i=1,2

gi γi σ
z
i

)
a†a +

∑
i=1,2

(�i + gi γi)

2
σ z

i

+ 1

2
(g1 γ2 + g2 γ1)(σ+

1 σ−
2 + σ−

1 σ+
2 )

+ Jres σ z
1 σ z

2 (2 a†a + 1), (16)

where Jres is the residual σzσz interaction between both qubits,
which arises at fourth order in the expansion of the BCH
formula (see Sec. II B 3). In this new basis, the Hamiltonian
contains an effective isotropic XY interaction between both
qubits mediated at second order by the resonator, the so-called
flip-flop interaction [53]. The absence of the nonsecular term
in the static two-qubit interaction is a consequence of dropping
the nonsecular terms in the initial qubit-resonator interaction.

In a similar manner to what has been shown previously for
the single-qubit case, one can account for the nonsecular term
in the qubit-resonator fixed interaction in the two-qubit case
as well. The Hamiltonian thus reads

HRabi = ωr a†a +
∑
i=1,2

�i

2
σ z

i +
∑
i=1,2

gi σ
x
i (a† + a). (17)

Following again Zueco et al. [52], the static interaction be-
tween both of the qubits and the resonator can be diagonalized
using the unitary transformation as follows:

U1= exp

{∑
i=1,2

[γi(a
†σ−

i − aσ+
i ) − γ̄i(a

†σ+
i − aσ−

i )]

}
. (18)

Based on the expansion of the BCH formula up to fourth
order and further diagonalization of the two-photon terms (see
Ref. [59] for details of the derivation), Eq. (17) becomes

H′
Rabi = ωr a†a +

∑
i=1,2

�′
i

2
σ z

i +
∑
i=1,2

gi(γi + γ̄i)σ
z
i a†a

+ J xx
12

2
σx

1 σx
2 + Jres σ z

1 σ z
2 (2 a†a + 1), (19)

where �′
i = (�i + gi(γi + γ̄i)/2) corresponds to each qubit

resonant frequency (including the Lamb shift), J xx
12 =

[g1(γ2 − γ̄2) + g2(γ1 − γ̄1)] is the transverse interaction me-
diated by the resonator, and Jres is the residual σzσz interaction
between both qubits (see Sec. II B 3). This time, the resonator-
mediated interaction between the qubits is of the Ising type,
i.e., it includes the nonsecular term (σ+

1 σ+
2 + σ−

1 σ−
2 ): the

presence of this latter term allows to recover matrix elements
for the parametric conversion process from state |↓↓〉 to state
|↑↑〉. This transverse interaction mediated by the resonator
can be diagonalized in the two-qubit subspace. The secular
term can be canceled by applying the unitary transformation:

U2 = exp[θ1(σ+
1 σ−

2 − σ−
1 σ+

2 )], (20)

where tan(2θ1) = J xx
12 /(�′

1 − �′
2). The nonsecular term can

be diagonalized with the following unitary transformation:

U3 = exp[θ2(σ+
1 σ+

2 − σ−
1 σ−

2 )], (21)

where tan(2θ2) = J xx
12 /(�′

1 + �′
2). Eventually, we obtain the

Hamiltonian

H′′
Rabi = ωr a†a + ς �ω−

4
(σ z

1 − σ z
2 ) + �ω+

4
(σ z

1 + σ z
2 )

+
∑
i=1,2

gi(γi + γ̄i)σ
z
i a†a

+ Jres σ z
1 σ z

2 (2 a†a + 1), (22)

where �ω± = √
(�′

1 ± �′
2)2 + (J xx

12 )2 are the sum and differ-
ence of the resonant frequencies of the qubits renormalized by
the transverse interaction, and ς = sign(�′

1 − �′
2).

2. Parametrically induced interactions

Bertet et al. discussed the possibility of realizing parametric
conversion between the states of two qubits coupled via a
resonator [71]. They considered a configuration wherein both
qubits are biased at their optimal points, and the resonator is
driven at the sum or difference of their frequencies (ω = ω±).
Their conclusion was that parametric conversion between
two-qubit states cannot be realized by driving the resonator:
similarly to what we described in the case of sideband
transitions, this selection rule arises from the fact that parity is
conserved in the process of parametric conversion between
two-qubit states while the charge qr and flux φr of the
resonator are odd parity operators. Bertet et al. remedied
this problem by introducing a nonlinearity into the subcircuit
mediating the interaction, which allowed them to circumvent
the selection rule by modulating the resonator frequency.
Niskanen et al. introduced an alternative approach using
a qubit as a coupler that was driven transversely at the
sum or difference of the frequencies [72]. σx also being
an odd parity operator, the coupler had to be biased away
from its symmetry point. However, in XcQED, even though
transversely driving the resonator or one of the qubits does
not allow to induce parametric conversion between two-qubit
states, an alternative is to longitudinally drive one of the qubits
so as to overcome the parity selection rule. Let us assume that
we apply a longitudinal microwave drive to the first qubit; the
time-dependent Hamiltonian is thus given by

H(t) = HRabi + �(t) cos(ωt + φ)σ z
1 , (23)
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FIG. 3. (Color online) Matrix elements of the parametrically induced iSWAP gate between two qubits coupled to a common resonator
(XcQED - Rabi Hamiltonian) vs the asymmetry ρ between their gap [�1 = �(1 + ρ), �2 = �(1 − ρ)], for different values of �(ωr/h =
20 GHz,g1/h = g2/h = 100 MHz, and �/h ranges from 1 to 10 GHz in steps of 1 GHz): results obtained from numerical diagonalization of
the Rabi Hamiltonian (dots) are compared with perturbative expansion (lines). For numerical diagonalizations, the resonator Hilbert space is
truncated to n = 50 Fock states.

where �, ω, and φ are the amplitude, the frequency, and the
phase of the microwave drive, respectively. After successively
applying the unitary transformations that diagonalize the
qubit-resonator interaction U1 and the interaction between

both qubits (U2 and U3), and switching to the rotating
frame of both qubits and the resonator, we eventually obtain
the following effective Hamiltonian after performing the
RWA:

HRWA
� =

∑
i=1,2

gi(γi + γ̄i)σ
z
i a†a + Jres σ z

1 σ z
2 (2 a†a + 1)

+ �(t)

2
[sin(2θ1) + cos(2θ1)(−γ1γ2 + γ̄1γ̄2)][e i((φ1−φ2)−ςφ)σ+

1 σ−
2 + e−i((φ1−φ2)−ςφ)σ−

1 σ+
2 ] if ω = ω−,

(24)
HRWA

� =
∑
i=1,2

gi(γi + γ̄i)σ
z
i a†a + Jres σ z

1 σ z
2 (2 a†a + 1)

+ �(t)

2
[sin(2θ2) + cos(2θ2)(γ1γ̄2 − γ̄1γ2)][e i((φ1+φ2)−φ)σ+

1 σ+
2 + e−i((φ1+φ2)−φ)σ−

1 σ−
2 ] if ω = ω+,

where ς = sign(�′
1 − �′

2). We performed numerical calcula-
tions to confirm the validity of the above analytic expressions,
and found a good agreement [see Fig. 3]. As expected, the
process of parametric conversion between states |↓↑〉 and |↑↓〉
is favored when the ratio of the fixed transverse interaction
mediated by the resonator J xx

12 to the detuning between the
qubits �ω− is large [see Figs. 3(a) and 3(b) in the limit where
ρ tends to 0]. Interestingly, the matrix elements associated
with two-qubit parametric conversion are suppressed when the
average detuning of the qubits with the resonator is reduced

(i.e., |ωr − �|), for moderate values of the detuning between
qubits.

It is also worth noting that both types of parametric
conversion between two-qubit states are strongly enhanced in
the case where one of the two qubits is weakly detuned from
the resonator and the microwave drive is applied to the other
qubit [see Figs. 3(b) and 3(d) in the limit where ρ tends to 1]: an
intuitive explanation is that in this configuration, the eigenstate
corresponding to the weakly detuned qubit bears a large
component of the resonator state in the bare basis, somehow
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bringing this parametric conversion process effectively closer
to a sideband transition. Ultimately, a compromise must be
found between the detuning between qubits, and the detuning
of each qubit from the resonator. If ω = ω− and φ = ς (φ1 −
φ2), we obtain the unitary evolution e i θ

2 (σ+
1 σ−

2 +σ−
1 σ+

2 ), which
can be used to define an iSWAP (θ = π ) or

√
iSWAP gate

(θ = π/2).
Two-qubit parametric conversion has the disadvantage of

requiring precise control over the phase φ of the applied
microwave drive compared to the reference phases associated
with the rotating frame of each qubit, which is a stringent
practical constraint. Another feature to take into account is the
presence of correlated errors in the two-qubit subspace: the
combination of qubit relaxation and the transverse interaction
mediated by the resonator introduces correlated bit-flip/phase-
flip errors (i.e., ZX and XZ). Albeit rather negligible in general
(as the mediated transverse interaction between both qubits
tends to be small in the dispersive regime), this source of
correlated errors may have to be taken into account in the limit
where the two qubits are weakly detuned from each other,
which is precisely the regime of interest for utilizing two-qubit
parametric conversion (see Ref. [59] for details).

3. Residual interactions

One concern while developing a scalable architecture
for quantum computation is the presence of residual σzσz

interactions between qubits in the fully diagonalized Hamilto-
nian: this type of interaction renders the resonant frequency of
a physical qubit contingent on the state of the neighboring
ones. We determine the value of this residual interaction
for two qubits coupled to the same resonator in the case of
the Jaynes-Cummings Hamiltonian by expanding the BCH
formula up to fourth order (see Ref. [59] for details of the
derivation):

Jres = 1

2
γ1 γ2(g1 γ2 + g2 γ1). (25)

For comparison purposes, we also determine the value of the
residual interaction in the case of the Rabi Hamiltonian by
expanding the BCH formula up to fourth order (see Ref. [59]
for details of the derivation):

Jres = 1

2
(γ1 + γ̄1)(γ2 + γ̄2)

×
{

[g1(γ2 − γ̄2) + g2(γ1 − γ̄1)] − g1 g2

ωr

}
. (26)

We confirm the validity of the result given by this pertur-
bative treatment with a numerical diagonalization [see Fig. 4]:
we find good agreement, except when the resonant frequency
of one of the qubits is close to the resonant frequency of the
resonator. Interestingly, this parasitic interaction is relatively
small in the dispersive regime as it occurs at the fourth order in
the BCH expansion, which allows us to generate entanglement
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FIG. 4. (Color online) Residual σzσz interaction between two qubits coupled to a common resonator (XcQED) for the Jaynes-Cummings
Hamiltonian [(a) and (b)] and the Rabi Hamiltonian [(c) and (d)] vs the asymmetry ρ between their gap [�1 = �(1 + ρ), �2 = �(1 − ρ)], for
different values of �(ωr/h = 20 GHz,g1/h = g2/h = 100 MHz): results obtained from numerical diagonalization (dots) are compared with
perturbative expansion (lines). In (a) and (c), �/h ranges from 1 to 10 GHz in steps of 1 GHz, whereas for (b) and (d), �/h ranges from 11
to 19 GHz in steps of 1 GHz. For numerical diagonalizations, the resonator Hilbert space is truncated to n = 40 Fock states.
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via two-qubit parametric conversion with a relatively large
ON/OFF ratio (see Sec. II B 2). The main difference between
the Jaynes-Cummings and Rabi models is qualitative in nature.
In the case of the Rabi Hamiltonian, the residual interaction Jres

can be exactly canceled if the detunings between the resonant
frequencies of the two qubits and the frequency of the resonator
have opposite signs, as can be seen in Fig. 4(d).

C. Implementation of a 2D nearest-neighbor
quantum architecture

We consider the possibility of devising a quantum register
wherein physical qubits are disposed on a 2D square lattice,
and each pair of nearest-neighbors are transversely coupled to
a common resonator: if all physical qubits are biased at their
symmetry point, the static Hamiltonian of the entire quantum
register remains parity-conserving. We presented two different
ways to generate entanglement between two qubits in this con-
figuration, which are relatively insensitive to cross-talk, thus
simplifying their operation compared with cross-resonance.
Driving qubits along their longitudinal degree of freedom
allows us to induce transitions between states of same parity,
while operating the physical qubits at their symmetry point.

The justification of the RWA for either the transverse
or the longitudinal drive of each physical qubit (i.e., for
single- and two-qubit gates, respectively) is an essential
issue which must be examined minutely. The RWA sets an
upper bound on the speed at which the state of the quantum
register can be manipulated. Parity conservation allows us to
significantly restrict the number of parametric conversion and
cross-resonance-like processes that must be taken into account
in this analysis. Furthermore, most of these higher-order
processes can be easily neglected, as their corresponding
matrix elements are small in the dispersive regime, according
to the order in which they occur in the expansion of the BCH
formula. We do not detail the conditions for the validity of the
RWA here, as we prefer to exemplify their derivation in the
case in which each artificial atom is longitudinally coupled to
the resonators surrounding it (ZcQED), which is a slightly
more intricate configuration, as all higher-order sideband
transitions are allowed, owing to the absence of a parity
selection rule (see Sec. III C 3).

Conversely, residual interactions lead to a constant accu-
mulation of spurious phase, which degrades the fidelity of
the targeted unitary evolution, and, in so doing, sets a lower
bound on the speed of single- and two-qubit gates in order
to maintain the related infidelity below a certain level in the
error budget set by the accuracy threshold. We derive analytic
expressions based on a perturbative expansion for each of
the relevant quantities (i.e., the dispersive shift in the case
of sideband transitions and residual σzσz interactions in the
case of two-qubit parametric conversion), which are applicable
for the dispersive regime. Besides enabling certain transitions
(namely blue sideband transitions, and the |00〉 ↔ |11〉 transi-
tion in the case of two-qubit parametric conversion), taking
the nonsecular term in the interaction between qubits and
resonators into account provides a more accurate quantitative
estimate of these residual interactions.

The existence of matrix elements is not sufficient to assess
whether a given type of tunable interaction is useful or not.

Ultimately, the choice of the parameters is a trade-off between
the upper and lower bounds, as there must be an operating
range for the amplitude of the applied microwave drive,
which is compatible with both constraints. Following this
line of reasoning, two-qubit parametric conversion offers more
flexibility, as residual σzσz interactions occur at fourth order
in the expansion of the BCH formula, whereas the dispersive
shift occurs at second order; however, the justification of the
RWA is more intricate in the case of two-qubit parametric
conversion, as it requires the application of microwave drives
with larger amplitudes compared with sideband transitions in
order to obtain the same gate speed.

A rather favorable regime in that sense is to operate
the system in the limit of large qubit-resonator detuning,
and small qubit-qubit detuning, wherein the matrix elements
corresponding to two-qubit parametric conversion via the
|01〉 ↔ |10〉 transition are large [see the limit ρ → 0 in
Figs. 3(a) and 3(b)] and the residual σzσz interactions remain
small [see Fig. 4], though it renders the quantum register more
sensitive to cross-talk while performing single-qubit gates.
Moreover, the detuning between any given qubit in the lattice
and its four nearest-neighbors should be properly adjusted
so that entanglement generation via two-qubit parametric
conversion remains frequency-selective for a targeted pair
of qubits. Interestingly, a large detuning between each qubit
and the resonator enables larger matrix elements for this
process of two-qubit parametric conversion. This encourages
the utilization of very high-frequency resonators to mediate
the interactions between each pair of nearest-neighbors in
order to allow larger detunings between the two qubits. In
the limit where one of the two qubits is weakly detuned
from the resonator, the justification of the RWA for two-qubit
parametric conversion is intrinsically limited by the proximity
of sideband transitions in the frequency spectrum, albeit the
related matrix elements can be relatively large [see the limit
ρ → 1 in Figs. 3(b) and 3(d)]: this regime also enhances the
residual σzσz interactions, and the role of the Purcell effect.

Sideband transitions remain an attractive route for entan-
glement generation, as the justification of the RWA offers an
increased flexibility on the choice of the amplitude of the
applied microwave drive and the relative detuning between
each pair of physical qubits situated on a given vertex of
the lattice. Without the limitation set by the presence of
residual interactions, they would allow faster two-qubit gates
and reduced risk of cross-talk. In the next section, we will
present an approach which enables a significant improvement
of their performance by suppressing the dispersive shift, the
Purcell effect, and correlated errors in the two-qubit subspace
(i.e., ZX and XZ errors). This alternate approach releases the
restrictions inherent to the dispersive regime on the various
energy scales involved, thus allowing us to take advantage
of the large coupling strengths that can be achieved with
Josephson-junction-based qubits.

III. LONGITUDINAL COUPLING BETWEEN QUBIT
AND RESONATOR (ZcQED)

We wish to introduce an alternative layout for circuit QED,
wherein a qubit is coupled to a quantum harmonic oscillator
via its longitudinal degree of freedom (i.e., along σz); we
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σz

α-loop

Main loop

(a) (b)

FIG. 5. (Color online) (a) Schematic representation of a single
ion confined in a linear quadrupole RF trap: the oscillator corresponds
to the quantized center-of-mass motion of the ion in the trap (not
represented). (b) Possible implementation of a ZcQED experiment
with a flux qubit: the coupling to the longitudinal degree of freedom
of the artificial atom can be achieved by inductively coupling the
resonator to the α-loop of the qubit (see Appendix A 1).

call this layout ZcQED [see Fig. 5(b)]. Such an approach
has a few significant advantages over XcQED, such as the
nonoccurrence of dispersive shift (which allows to recover
scalable sideband transitions) and the absence of the Purcell
effect. The analogy with trapped ions will become clear
when considering the transverse microwave drive of the qubit.
Besides the possibility of realizing single-qubit operations,
we will also find every possible sideband transition with
the same nonlinear dependence of their respective effective
Rabi frequencies as a function of the Fock state of the
resonator [73,74]. However, the origins of sideband transitions
in these cases are essentially different: in ZcQED, a fixed
qubit-resonator interaction is required to find the matrix
elements for these tunable interactions, whereas in ion traps,
this mechanism is provided by the recoil momentum of the
atom under laser irradiation [75] [see Fig. 5(a)].

Wang et al. discussed the possibility of realizing tunable
interactions between two qubits which are longitudinally cou-
pled to the same resonator [76]: the residual σzσz interactions
in the static Hamiltonian are canceled by operating the qubits
at a bias point at which their longitudinal coupling with the
resonator is zero, and the interaction can be turned on by
simultaneously applying dc pulses that make the longitudinal
coupling between each qubit and the resonator nonzero.
Kerman examined a similar configuration in the limit where the
resonator can be treated classically [77], and drew an analogy
with trapped ions, which he used to devise tunable two-qubit
interactions based on spin-dependent forces [31,78–83]. In
this section, we will develop a different approach, based on
sideband transitions. For this purpose, we will strictly restrict
ourselves to the quantum limit (ωr  kBT , where kB is the
Boltzmann constant and T is the temperature) in order to avoid
thermal population of the resonator excited states.

A. Single-qubit case

1. Static Hamiltonian

The Hamiltonian of a qubit longitudinally coupled to a
quantum harmonic oscillator reads

H = ωr a†a + �

2
σz + g σz(a

† + a), (27)

p

q

α

p

q

−α

|0〉 |1〉

FIG. 6. (Color online) Schematic representation of the effect of
the coupling of a single qubit to the resonator in phase space within the
framework of ZcQED. The amplitude of the effective displacement
|α| due to the coupling does not depend upon the state of the qubit,
which explains why there are no dispersive or Lamb shifts.

where ωr is the harmonic oscillator resonant frequency, �

is the qubit resonant frequency, and g is the qubit-oscillator
coupling strength. Conversely, the Hamiltonian that accounts
for the interaction between the atom and the resonator is not
parity-conserving in ZcQED, as the coupling term does not
commute with the parity operator 	: this implies that no
transition is a priori forbidden by the parity selection rule,
which is a direct consequence of coupling the atom via its lon-
gitudinal degree of freedom. This Hamiltonian can be exactly
diagonalized via a Lang-Firsov unitary transformation [84]

U = exp[−θ σz(a
† − a)], (28)

where θ = g/ωr . The fully diagonalized Hamiltonian is
written as

H′ = ωr a†a + �

2
σz − g2

ωr

1. (29)

Remarkably, the parameters of the atomic and photonic
degrees of freedom are not modified by the diagonalization
of the coupling term (i.e., the absence of Lamb shift). All
we observe is a renormalization of the energy associated with
zero-point fluctuations, and the absence of dispersive shift as
indicated above. This result can be understood very intuitively
by considering a phase space representation of the oscillator
[see Fig. 6]: depending on whether the qubit is in its ground
or excited state, it exerts a displacement in phase space on the
resonator of the same amplitude |α| = g in opposite directions.
It is precisely this displacement α which is responsible for the
renormalization of the zero-point energy going as |α|2/ωr : as
the amplitude of the displacement does not depend on the qubit
state, there is thus no dispersive shift.

This may appear to be a disadvantage, as the resonant
frequency of the resonator being independent of the qubit state,
it precludes to perform dispersive readout of the qubit state.
However, from the point of view of quantum computation,
the absence of residual coupling between the qubit and the
resonator in this configuration allows us to use sideband
transitions to generate entanglement, as the qubit is not
affected by the number of excitations in the resonator. At
this point, one can easily foresee the benefit of this type of
interaction for the development of a scalable architecture for
quantum information processing based on superconducting
qubits: however, it remains to be guaranteed that residual σzσz

interactions between two qubits can be exactly canceled in
the case where two qubits are coupled to the same resonator.
Before clarifying this issue, let us see first what type of
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tunable interactions can be realized by driving the qubit with
a transverse microwave drive.

2. Transverse microwave drive of the qubit

Let us consider that one applies a transverse microwave
drive to the qubit: this can be achieved by driving the flux
through the main loop of the qubit [see Fig. 5(b)]. The
corresponding time-dependent Hamiltonian thus reads

H(t) = H + �(t) cos(ωt + φ)σx, (30)

whereH is given by Eq. (27), and �, ω, and φ are, respectively,
the amplitude, the frequency, and the phase of the microwave
drive. After applying the Lang-Firsov unitary transformation
mentioned above, we obtain the following time-dependent

Hamiltonian:

H′(t) = H′ + �(t) cos(ωt + φ) exp

[
−1

2

(
2 g

ωr

)2
]

×
[
σ+ exp

(
2 g

ωr

a†
)

exp

(
−2 g

ωr

a

)

+ σ− exp

(
−2 g

ωr

a†
)

exp

(
2 g

ωr

a

) ]
, (31)

where H′ is given by Eq. (29). We will denote the Debye-
Waller factor by D:

D = exp

[
−1

2

(
2 g

ωr

)2
]

. (32)

In order to switch to the rotating frame of the qubit and the resonator, we apply the following time-dependent unitary
transformation:

U = exp

[
−i

(�t + φq)

2
σz − i(ωrt + φr )a†a

]
, (33)

where φq and φr are the reference phases of the rotating frame of the qubit and the resonator, respectively.
We obtain the time-dependent Hamiltonian:

H′′(t) = �(t) cos(ωt + φ)D
{

e i(�t+φq )σ+ exp

[
2 g

ωr

e i(ωr t+φr )a†
]

exp

[
−2 g

ωr

e−i(ωr t+φr )a

]

+ e−i(�t+φq )σ− exp

[
−2 g

ωr

e i(ωr t+φr )a†
]

exp

[
2 g

ωr

e−i(ωr t+φr )a

] }
. (34)

Let us first examine how to implement single-qubit operations (i.e., ω = �/�). Within the RWA, the effective Hamiltonian is
found to be

HRWA
sq = �(t)

2
D

[ ∞∑
�=0

(−1)�

(�!)2

(
2 g

ωr

)2�

a†�a
�
(e i (φq−φ) σ+ + e−i (φq−φ) σ−)

]
. (35)

Setting the phases φq and φ equal to zero, one can show that the matrix elements corresponding to single-qubit operations
depending on the Fock state of the resonator are given by

〈n,↑|HRWA
sq |n,↓〉 = �

2
D Ln

[(
2 g

ωr

)2]
, (36)

where Ln(x) is a Laguerre polynomial of degree n. The photon state dependence of the latter matrix elements requires the system
to be operated in the quantum limit. Thermal population of the resonator excited states would inevitably entangle the qubit and
the resonator when one intends to perform single-qubit operations with a resonant microwave drive (ω = �/�). Another reason
why we need to suppress thermal excitations in the resonator is that all of the operations that we need to implement in this
proposal, whether two-qubit operations or readout, rely on sideband transitions. This is in stark contrast to the work of Kerman,
which is based on spin-dependent forces [77]. Generally speaking, the effect of thermal excitations is completely negligible in the
temperature range at which this type of system is operated (as an example, a resonator with a resonant frequency ωr/h = 2 GHz
at a temperature of T = 10 mK gives a Boltzmann factor e−β ωr = 7 × 10−5). Considering the typical energy scales involved
in superconducting qubits, an advantage of ZcQED over trapped ions is that the initialization of the quantum register does not
require sideband cooling [85].

Let us consider now how to realize red and blue sideband transitions of order k [i.e., ω = |� − k ωr | /� and ω = (� + k ωr )/�,
respectively]. Within the RWA, the corresponding effective Hamiltonians read

HRWA
red = �(t)

2
D

{ ∞∑
�=0

(−1)�+k

�! (� + k)!

(
2 g

ωr

)2�+k

[e i ((φq−k φr )−ςφ) σ+a†�a
�+k + e−i((φq−k φr )−ςφ) σ−a†�+k

a
�
]

}
,

(37)

HRWA
blue = �(t)

2
D

{ ∞∑
�=0

(−1)�

�! (� + k)!

(
2 g

ωr

)2�+k

[e i ((φq+k φr )−φ) σ+a†�+k
a

� + e−i ((φq+k φr )−φ) σ−a†�a
�+k

]

}
,
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where ς = sign(� − k ωr ). Setting all the phases equal to zero for the sake of simplicity, one can determine the matrix elements
associated with these various processes:

〈n + k,↓|HRWA
red |n,↑〉 = �

2
D

(
−2 g

ωr

)k
√

n!

(n + k)!
Lk

n

[(
2 g

ωr

)2]
,

(38)

〈n + k,↑|HRWA
blue |n,↓〉 = �

2
D

(
2 g

ωr

)k
√

n!

(n + k)!
Lk

n

[(
2 g

ωr

)2]
,

where Lk
n(x) is an associated Laguerre polynomial. We find

a set of sideband transitions which couple states of arbitrary
parity, since the static Hamiltonian is not parity-conserving.
Some differences compared with the situation encountered in
XcQED can be pointed out. First of all, the resonance con-
ditions for performing single-qubit operations and sideband
transitions do not depend on the photon state of the resonator in
ZcQED, due to the absence of dispersive shift. Moreover, their
respective matrix elements strongly depend on the resonator
state, as can be seen in the expressions given above. Naturally,
the matrix elements corresponding to sideband transitions
always depend on the photon state of the resonator, merely
because 〈n + 1|a†|n〉 = 〈n|a|n + 1〉 = √

n + 1: the enhanced
dependence versus n originates from the associated Laguerre
polynomials. Schematically, in XcQED, the nonlinearity is
entirely contained within the energy spectrum (the so-called
nonlinear Jaynes-Cummings ladder [86]), whereas in ZcQED,
it manifests itself in the tunable interactions. This result is
akin to what is found in trapped ion systems [73], further
referred to as the nonlinear Jaynes-Cummings model [74].
This nonlinearity is fully characterized by the Lamb-Dicke
parameter η, which in ion traps is defined by

η = (k cos θ )

√
�

2 m ωx

, (39)

where (k cos θ ) is the projection of the wave vector of the
laser field onto the motional axis, m is the mass of the ion,
and ωx is the trap frequency. Ion traps are usually operated
in the Lamb-Dicke regime (η � 1), which is less sensitive
to nonlinear effects. In ZcQED, the role of the Lamb-Dicke
parameter is played by the ratio (2 g/ωr ). The possibility of
achieving a rather large atom-photon coupling g guarantees
rather fast single-qubit and two-qubit operations at the expense
of enhanced sensitivity of the matrix elements related to the
sideband transitions as functions of the resonator state. This
nonlinear behavior has been used on purpose in ion traps
for determination of the motional state of the ion (see, for
example, Refs. [87,88]). From the point of view of quantum
computation, this nonlinearity places restrictions on the ma-
nipulation of quantum states, especially when it comes to the
generation of entanglement via sideband transitions: one of our
aims hereafter will be to conceive of interactions that allow us
to circumvent this issue in order to avoid the generation of
spurious entanglement between the qubits and the resonators
mediating the interactions, and by so doing, to avert the leakage
of information out of the computational subspace.

3. Qubit relaxation

We will denote by 1/γq the qubit lifetime, and by 1/κ the
photon lifetime of the resonator. The eigenstates of the coupled

qubit-resonator system |n,ψ〉 can be expressed as functions of
the bare states |n,ψ〉 as follows:

|n,ψ〉 = U |n,ψ〉 = exp[−θ σz(a
† − a)]|n,ψ〉, (40)

where |n〉 is a given Fock state of the resonator, |ψ〉 is an
arbitrary qubit state, and θ = g/ωr [see Eq. (28)]. The photon
state dependent qubit relaxation rate �

q,n
γq is given by

�q,n
γq

= γq|〈n,↓|σ−|n,↑〉|2

= γq|〈n,↓|U†σ− U |n,↑〉|2. (41)

After expansion of the BCH formula, it can be shown that

U†σ− U = σ− exp[−2 θ (a† − a)]. (42)

Eventually, the qubit relaxation rate reads

�q,n
γq

= γq D2

{
Ln

[(
2 g

ωr

)2
]}2

. (43)

Hence, the spontaneous emission rate of the atom can either
be enhanced or inhibited compared with what it would be if
the oscillator was in its ground state, depending on the state
of the latter and regardless of the detuning between them.
This result is consistent with the dependence found for the
matrix elements corresponding to single-qubit operations An

sq
as a function of n [see Eq. (36)]. This situation is significantly
different from what is encountered in the dispersive regime
of XcQED [89]. Moreover, the expression for the qubit
lowering operator σ− in its rotated form reveals the presence
of correlated errors which correspond to the simultaneous
relaxation of the qubit state and either the relaxation of a
Fock state |n〉 to |n − k〉, or the excitation of a Fock state |n〉 to
|n + k〉 if (� − k ωr ) > 0. Similarly to the case of single-qubit
errors, the error rates associated with these correlated errors
depend on the Fock state of the resonator, and they are given by

�q,n,−k
γq

= γq|〈n − k,↓|σ−|n,↑〉|2

= γq|〈n − k,↓|U†σ− U |n,↑〉|2

= γq D2

(
2 g

ωr

)2k (n − k)!

n!

{
Lk

n−k

[(
2 g

ωr

)2
]}2

,

(44)
�q,n,+k

γq
= γq|〈n + k,↓|σ−|n,↑〉|2

= γq|〈n + k,↓|U†σ− U |n,↑〉|2

= γq D2

(
2 g

ωr

)2k
n!

(n + k)!

{
Lk

n

[(
2 g

ωr

)2
]}2

.

Similarly to residual σzσz interactions, the occurrence of
these correlated errors is intrinsically related to the presence
of fixed interactions. This feature is specific to ZcQED. The
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influence of these correlated errors may not be negligible in
the limit where the Lamb-Dicke parameter η is not small,
especially when they arise at the lowest order: the case
corresponding to k = 1 is particularly relevant in the context
of entanglement generation via sideband transitions.

Besides the dispersive shift, an undesirable consequence
of the coupling between the transverse degrees of freedom
of both the qubit and the resonator in XcQED is that it
makes the qubit lifetime dependent on the photon lifetime
in the resonator (the so-called Purcell effect [48]). The Purcell
contribution to the qubit relaxation rate in XcQED is given
by �

q,0
κ = κ g2/(� − ωr )2 in the dispersive regime. Kleppner

discussed how the Purcell effect can be used to purposely
inhibit the spontaneous emission of an atom by placing it
inside a cavity with a proper detuning condition [90]. Enhanced
and inhibited spontaneous emissions have been observed
in different contexts, either in atomic systems (such as a
single electron in a Penning trap [91] or Rydberg atoms in
a cavity [92,93]) or in solid-state devices (such as quantum
dots [94] and superconducting qubits [49]). Various strategies
exist to counteract the Purcell effect, either by engineering
the electromagnetic environment (Purcell filter [95]) or by
encoding the information in a decoherence-free subspace
(Purcell protected qubit [96]). Hereafter, we will establish the
effect of a finite photon lifetime on the qubit relaxation rate
in ZcQED. The Purcell contribution �

q,n
κ to the spontaneous

emission rate of the artificial atom can be found based on
Fermi’s golden rule [90]:

�q,n
κ = κ|〈n,↓|a|n,↑〉|2

= κ|〈n,↓|U†a U |n,↑〉|2. (45)

Expanding the BCH formula, we obtain

U†a U = a − θ σz. (46)

The Purcell relaxation rate thus reads as follows:

�q,n
κ = κ|〈n,↓|a − θ σz|n,↑〉|2 = 0. (47)

Accordingly, the finite photon lifetime 1/κ has no bearing
on the qubit relaxation rate, irrespective of the state of the
resonator. This is a direct consequence of coupling the atom
via its longitudinal degree of freedom. Absence of the Purcell
effect stands as another valuable feature of ZcQED.

B. Two qubits coupled to a single resonator via the
same degree of freedom [ZppZ]

We will first consider the case of two qubits that are coupled
longitudinally to a bosonic mode via the same degree of
freedom, say, for example, two flux qubits coupled inductively
via their α-loop to a lumped element resonator. Such a system
is well described by the following Hamiltonian:

H = ωr a†a +
∑
i=1,2

[
�i

2
σ z

i + gi σ
z
i (a† + a)

]
. (48)

This Hamiltonian can also be exactly diagonalized via a Lang-
Firsov unitary transformation

U = exp

[
−

∑
i=1,2

θi σ
z
i (a† − a)

]
, (49)

p

q

α+

p

q

α−

p

q

−α−

p

q

−α+

|00〉 |01〉

|10〉 |11〉

FIG. 7. (Color online) Schematic representation of the effect of
the coupling to two qubits on the resonator in phase space [ZppZ
configuration]: the amplitude of the effective displacement |α| due to
the coupling depends on the state of the qubits (α+ = (g1 + g2) and
α− = (g1 − g2)), which explains the presence of the residual σzσz

interaction.

where θi = gi/ωr . After expanding the BCH formula up to the
second order, the fully diagonalized Hamiltonian is found to be

H′ = ωr a†a +
∑
i=1,2

�i

2
σ z

i − 2 g1 g2

ωr

σ z
1 σ z

2 − g2
1 + g2

2

ωr

1.

(50)

Again, the typical energy scales of the resonator and both
qubits are not renormalized by the coupling, and there is no
dispersive shift; however, one significant term besides the
renormalization of the zero-point energy is the presence of a
residual σzσz interaction term between both qubits. Similarly
to the single qubit case, this outcome can be explained by
considering a phase space representation of the oscillator
[see Fig. 7]. If the qubits are in states |00〉 or |11〉, they
displace the resonator state by ±α+, where α+ = (g1 + g2),
whereas if the qubits are in states |01〉 or |10〉, they displace
the resonator state by ±α−, where α− = (g1 − g2), causing
the zero-point energy to be renormalized as (g1 + g2)2/ωr

and (g1 − g2)2/ωr , respectively. Consequently, there is in
average a renormalization of the zero-point energy that
behaves as (g2

1 + g2
2)/ωr , and a qubit state-dependent part that

behaves as 2 g1 g2/ωr . This latter contribution is responsible
for the residual σzσz interaction that appears in the fully
diagonalized Hamiltonian. As opposed to what is encountered
in XcQED, where this type of residual interaction occurs at
the fourth order, in the case of ZcQED, it occurs at the second
order.

For typical parameters, if g1/h and g2/h are of the order
of a few hundreds of MHz and if ωr/h is of the order of a
few GHz, this means that these residual interactions between
atomic degrees of freedom can be of the order of few tens of
MHz. This results in rather low ON/OFF ratios, which render
this type of layout unsuitable for the manipulation of quantum
states. This result is fundamentally different from what is
encountered in the case of trapped ions. Indeed, in ZcQED,
sideband transitions are supported by the fixed interaction
between the artificial atom and the resonator, whereas in
ion traps they occur based on the recoil momentum of the
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atom caused by photon absorption. It is the presence of these
fixed interactions that is responsible for the residual σzσz

interactions, and makes the situation for solid-state devices
substantially different from that for atomic systems. Another
noticeable difference from XcQED is the fact that this residual
interaction does not depend on the detuning between the
qubit and the resonator, as both systems do not exchange
photons.

We looked for a way to overcome this limitation in order
to have well-characterized qubits, a necessary requirement
for the development of a scalable architecture. We thus
examined two alternatives, wherein a pair of physical qubits
are coupled either via one resonator through orthogonal
degrees of freedom, or via two resonators fixedly coupled
through the same degree of freedom, which we denote
as ZpqZ and Zp(pp)pZ, respectively. The former does not
provide a “universal” set of quantum gates, while the latter
is not free of residual σzσz interactions (see Ref. [59] for
details).

C. Two qubits coupled through two resonators via alternating
degrees of freedom [Zp(qq)pZ]

The architecture that we are considering is described
in Fig. 8(a): for every pair of nearest-neighboring qubits,
each qubit is coupled to a distinct resonator via a given
degree of freedom, and both resonators are coupled through
an orthogonal degree of freedom. Based on our idea for
developing an architecture for flux qubits, this means that
each flux qubit would be coupled inductively to a res-
onator, and that each pair of resonators would be coupled
capacitively.

p0

c↑

p↑

c→ p→

c↓

p↓

c←p←

Physical qubits p
Capacitance
−(a† − a)(b† − b)
Resonator α
σz

p(a
† + a)

Resonator β
σz

p(b
† + b)

(a) (b)

FIG. 8. (Color online) (a) Schematic representation of an ar-
ray of qubits on a 2D square lattice where coupling is medi-
ated by two resonators fixedly coupled [Zp(qq)pZ configuration].
(b) Schematic representation of an enlarged unit cell among the
2D array: each physical qubit (say p0 at the center) is surrounded
by eight resonators, thereby complicating the justification of the
rotating wave approximation for single-qubit operations and sideband
transitions.

1. Static Hamiltonian

The Hamiltonian describing this type of unit cell coupling
two neighboring qubits reads as follows:

H = ω1 a†a + ω2 b†b +
∑
i=1,2

�i

2
σ z

i + g1 σ z
1 (a† + a)

+ g2 σ z
2 (b† + b) − gc(a† − a)(b† − b), (51)

where g1 and g2 are the coupling between qubit 1 and
resonator α and qubit 2 and resonator β, respectively, and
gc is the coupling between resonator α and resonator β.
This Hamiltonian can be exactly diagonalized following the
method shown in Appendix B, which eventually gives the fully
diagonal Hamiltonian

H′ = ω+ a†a + ω− b†b +
∑
i=1,2

�i

2
σ z

i −
(

g2
1

ω1
+ g2

2

ω2

)
1,

(52)

where ω± are the resonant frequencies of two fixedly coupled
resonators [see Eq. (B9)]. This system is thus free of any type of
residual coupling, whether between atomic degrees of freedom
(residual σzσz interactions), between atomic and photonic
degrees of freedom (dispersive shift), or between photonic
degrees of freedom (self-Kerr or cross-Kerr nonlinearities).
Such a type of unit cell provides well-defined qubits allowing
reliable single-qubit operations, and well-defined bosonic
modes allowing reliable two-qubit operations via sideband
transitions. As the coupling term between a given qubit and any
of the four nearest-neighbor resonators commutes with the free
Hamiltonian of the qubit and the coupling terms with the three
other nearest-neighbor resonators, the good features exhibited
in this configuration at the level of one unit cell will remain
valid within a 2D array. This is another noteworthy advantage
of coupling qubits via their longitudinal degree of freedom,
which ensures the modularity of this coupling scheme. This
is in stark contrast with the situation encountered in XcQED
wherein the coupling terms do not commute with the free
Hamiltonian of the physical qubits.

Below, we will determine how sideband transitions between
each qubit and the two resonators can be operated and used to
generate entanglement and perform readout. The main asset of
ZcQED over trapped ions remains the possibility of achieving
rather strong couplings between the atomic and photonic
degrees of freedom, thereby enhancing the matrix elements
associated with sideband transitions and accelerating the speed
of various possible operations. However, working out of the
Lamb-Dicke regime brings some additional difficulties related
to the nonlinearity of the Jaynes-Cummings model. In the
following, we will show how to overcome these limitations.

2. Transverse microwave drive of one qubit

Assuming that a transverse microwave drive is applied to
the first qubit, the time-dependent Hamiltonian is given by

H(t) = H + �(t) cos(ωt) σx
1 , (53)

where H is given by Eq. (51), and � and ω are, respectively,
the amplitude and the frequency of the microwave drive. After
successively applying the same set of unitary transformations
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used to diagonalize the static Hamiltonian (see Appendix B), the time-dependent Hamiltonian reads

H′(t) = H′ + �(t) cos(ωt) exp
[−2

(
θ2

7 + θ2
8

)]
[σ+

1 exp(2 θ7 a†) exp(−2 θ7 a) exp(2 θ8 b†) exp(−2 θ8 b)

+ σ−
1 exp(−2 θ7 a†) exp(2 θ7 a) exp(−2 θ8 b†) exp(2 θ8 b)], (54)

where H′ is given by Eq. (52), θ7 is the Lamb-Dicke parameter between qubit 1 and its nearest-neighbor resonator, and θ8 is
the Lamb-Dicke parameter between qubit 1 and its next-nearest-neighbor resonator (see Appendix B). Similarly to the case of
a single qubit coupled to a single resonator, these two parameters are essential, as they allow us to quantify the nonlinearity
of the Jaynes-Cummings model. The above time-dependent Hamiltonian is exempt from the cross-resonance term encountered
in the ZpqZ case, which hindered scalable single-qubit manipulations (see Ref. [59] for a description of the ZpqZ case):
this configuration, wherein each pair of neighboring physical qubits is coupled by means of two resonators via orthogonal
degrees of freedom, allows us to circumvent this issue. We will not elaborate here on the calculation of the resulting effective
Hamiltonian after switching to the rotating frame of the qubits and the resonators, as the justification of the RWA deserves
further consideration. This point will be minutely examined in the next section. Here, we simply give expressions for the
matrix elements associated with single-qubit manipulation and sideband transitions at any order with either the nearest-neighbor
(NN) resonator [i.e., ω = |�1 − kα ω+|/� and ω = (�1 + kα ω+)/� for red and blue sideband transitions, respectively] and the
next-nearest-neighbor (NNN) resonator [i.e., ω = |�1 − kβ ω−|/� and ω = (�1 + kβ ω−)/� for red and blue sideband transitions,
respectively], assuming that the conditions of applicability of the RWA are fulfilled:

〈↓1(nα + kα)nβψ2|HRWA
NN,red|↑1nαnβψ2〉 = (−1)kα 〈↑1(nα + kα)nβψ2|HRWA

NN,blue|↓1nαnβψ2〉

= �

2
exp

[−2
(
θ2

7 + θ2
8

)]
(−2 θ7)kα

√
nα!

(nα + kα)!
Lkα

nα

(
4 θ2

7

)
Lnβ

(
4 θ2

8

)
, (55)

〈↓1nα(nβ + kβ)ψ2|HRWA
NNN,red|↑1nαnβψ2〉 = (−1)kβ 〈↑1nα(nβ + kβ)ψ2|HRWA

NNN,blue|↓1nαnβψ2〉

= �

2
exp

[−2
(
θ2

7 + θ2
8

)]
(−2 θ8)kβ

√
nβ!

(nβ + kβ)!
Lnα

(
4 θ2

7

)
L

kβ

nβ

(
4 θ2

8

)
, (56)

where |ψ2〉 is an arbitrary state of qubit 2, Ln(x) is a Laguerre
polynomial of degree n, and Lk

n(x) is an associated Laguerre
polynomial.

In Fig. 9, we plot the matrix elements for single-photon
sideband transitions between qubit 1 and either its nearest-
neighbor or next-nearest-neighbor resonator [see Eqs. (55)
and (56), with kα = 1 and kβ = 1 respectively]: these values
are particularly interesting, as this type of sideband transition
is needed in the mechanism (that we will describe later) to
implement a controlled-phase gate. As might be expected,
sideband transitions with the next-nearest-neighbor resonator
are strongly dependent on the value of the fixed coupling gc

between both resonators, as can be seen in Fig 9(b).

3. The holistic picture: discussion on the validity
of the rotating wave approximation

An important aspect of coupling physical qubits via their
longitudinal degree of freedom is that once the residual
interactions are compensated for at the level of a pair of
neighboring qubits isolated from the rest of the register,
this compensation will remain true within a 2D array.
However, in the case where a transverse microwave drive is
applied to one of the qubits—either to realize single-qubit
operations or sideband transitions—the justification of the
RWA can be hindered by the presence of the Bloch-Siegert
oscillations. For an isolated qubit, this contribution to the
time-dependent Hamiltonian is easily averaged out as long
as the Rabi frequency � is small when compared with the
resonant frequency �. Inside a 2D array like the one we
are considering, however, this term may induce spurious
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FIG. 9. (Color online) (a) Matrix elements for single-photon
sideband transitions between qubit 1 and its nearest-neighbor
(NN) resonator vs the coupling strength g1, for different values
of the coupling gc between both resonators: their values for
red sideband (i.e., |〈↓11α0βψ2|σ x

1 |↑10α0βψ2〉|) and blue sideband
(i.e., |〈↑11α0βψ2|σ x

1 |↓10α0βψ2〉|) are identical. (b) The same is
shown for sideband transitions between qubit 1 and its next-
nearest-neighbor (NNN) resonator (either red or blue sideband, i.e.,
|〈↓10α1βψ2|σ x

1 |↑10α0βψ2〉| and |〈↑10α1βψ2|σ x
1 |↓10α0βψ2〉|, respec-

tively). In both cases, results obtained from numerical diagonalization
(dots) are compared with the exact analytic formula (lines) (ω1/h =
4 GHz, ω2/h = 6 GHz, and gc/h ranges from 0.2 to 1 GHz in steps
of 0.2 GHz). The values of �1, �2, and g2 are irrelevant, and |ψ2〉
is an arbitrary state of qubit 2. For numerical diagonalizations, the
resonator Hilbert space is truncated to n = 20 Fock states.
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entanglement between each physical qubit and its surrounding
resonators via unwanted higher-order sideband transitions [see
Fig. 8(b)]. Similar issues hamper the speed of quantum gates
in the case of trapped ions: the ac-Stark shifts caused by the
presence of energy levels other than the one used to encode the
information require us to find a trade-off between the speed
at which the quantum register can be manipulated and the tar-
geted accuracy [97]; otherwise, such shifts can be compensated
for [98]. In what follows, we will assume that the resonators are
all in their ground states: this allows us to consider a restricted
number of higher order parametric processes (only those that
involve the creation of photons simultaneously in one or more
resonators while de-exciting the qubit), and ignore effects

related to the nonlinearity of the Jaynes-Cummings model (i.e.,
the photon state dependence of the effective Rabi frequency).

The time-dependent Hamiltonian of the physical qubit p0

driven by a transverse microwave drive is written as follows:

H(t) = H + �(t) cos(ωt + φ)σx
p0

, (57)

where �, ω, and φ are the amplitude, the frequency, and the
phase of the microwave drive, respectively.

We apply the same set of unitary transformations to
diagonalize the fixed interactions related to the eight resonators
and the four qubits surrounding the qubit p0 following the
method described in Appendix B, so that the previous time-
dependent Hamiltonian becomes

H′(t) = H′ + �(t) cos(ωt + φ) exp

⎡
⎣−2

∑
i∈{↑,→,↓,←}

(
θ2

7i + θ2
8i

)⎤⎦

×
⎡
⎣σ+

p0

∏
j∈{↑,→,↓,←}

exp(2 θ7j a
†
j ) exp(−2 θ7j aj ) exp(2 θ8j b

†
j ) exp(−2 θ8j bj )

+ σ−
p0

∏
j∈{↑,→,↓,←}

exp(−2 θ7j a
†
j ) exp(2 θ7j aj ) exp(−2 θ8j b

†
j ) exp(2 θ8j bj )

⎤
⎦ . (58)

In order to switch to the rotating frame of the physical qubit p0 and the eight neighboring resonators, we apply the following
time-dependent unitary transformation:

U = exp

[
−i

(
�p0 t + φp0

)
2

σ z
p0

] ∏
i∈{↑,→,↓,←}

exp[−i(ω+
i t + φ+

i )a†
i ai − i(ω−

i t + φ−
i )b†i bi]. (59)

The resulting time-dependent Hamiltonian thus reads

H′′(t) = �(t) cos(ωt + φ) exp

⎡
⎣−2

∑
i∈{↑,→,↓,←}

(
θ2

7i + θ2
8i

)⎤⎦

×
⎧⎨
⎩e i (�p0 t+φp0 ) σ+

p0

∏
j∈{↑,→,↓,←}

exp[2 θ7j e i(ω+
j t+φ+

j ) a
†
j ] exp[−2 θ7j e−i(ω+

j t+φ+
j ) aj ]

× exp[2 θ8j ei(ω−
j t+φ−

j ) b
†
j ] exp[−2 θ8j e−i(ω−

j t+φ−
j ) bj ]

+ e−i(�p0 t+φp0 ) σ−
p0

∏
j∈{↑,→,↓,←}

exp[−2 θ7j ei(ω+
j t+φ+

j ) a
†
j ] exp[2 θ7j e−i(ω+

j t+φ+
j ) aj ]

× exp[−2 θ8j ei(ω−
j t+φ−

j ) b
†
j ] exp[2 θ8j e−i(ω−

j t+φ−
j ) bj ]

⎫⎬
⎭ . (60)

The Debye-Waller factor D is now defined as

D = exp

⎡
⎣−2

∑
i∈{↑,→,↓,←}

(
θ2

7i + θ2
8i

)⎤⎦ . (61)

Let us consider the case of single-qubit operations. Thus, we
set ω = �p0/�, and all phases equal to zero for the sake of
simplicity. First-order sideband transitions with one α or one

β resonator (left) are averaged out provided that the following
conditions of applicability of the RWA (right) are well justified:(

σ+
p0

ai + σ−
p0

a
†
i

) ⇒D θ7i �� ∣∣2 �p0 − ω+
i

∣∣(
σ+

p0
bi + σ−

p0
b
†
i

) ⇒D θ8i �� ∣∣2 �p0 − ω−
i

∣∣ .
(62)

Similarly, second-order sideband transitions with two α,
two β, or with one α and one β resonators (left) are averaged
out provided that the conditions of applicability of the RWA
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(right) are well justified:(
σ+

p0
aiaj + σ−

p0
a
†
i a

†
j

) ⇒ 2Dθ7i θ7j� � ∣∣2�p0 − (ω+
i + ω+

j )
∣∣

(
σ+

p0
bibj + σ−

p0
b
†
i b

†
j

) ⇒ 2Dθ8i θ8j� � ∣∣2�p0 − (ω−
i + ω−

j )
∣∣

(
σ+

p0
aibj + σ−

p0
a
†
i b

†
j

) ⇒ 2Dθ7i θ8j� � ∣∣2�p0 − (ω+
i + ω−

j )
∣∣.

(63)

We assume that higher-order sideband transitions will be
averaged out because the prefactor, which is a product of θ7i

and θ8j , becomes increasingly small, and the conditions on the
detuning become less stringent. If the previous conditions are
well justified, and if all the resonators are in their ground states,
the matrix elements associated with single-qubit operations are
given by

〈0,↑|HRWA
sq |0,↓〉 = �

2
D, (64)

where D is the Debye-Waller factor comprising the effect of
the eight surrounding resonators [see Eq. (61)]. The notation
|0〉 in the above expression implies that all resonators are in
their ground states. The justification of the RWA is made more
difficult by the presence of the Bloch-Siegert oscillations:
this problem can be a serious limitation on the fidelity of
single-qubit and two-qubit operations if the parameters are
not properly adjusted. Ensuring the validity of the RWA also
has a practical implication. It is preferable to use single-
mode resonators (lumped element resonators) to mediate the
interactions between qubits, as the presence of higher-modes
in multimode resonators (1D cavities) would require more
conditions to be met in order to neglect unwanted sidebands.

4. Implementation of a controlled phase gate

In their seminal work, Cirac and Zoller showed how
sideband transitions could be used to realize a CNOT gate
in the context of quantum computation with trapped ions [37].
Their proposal requires an extra atomic degree of freedom,
which in our case may not be a suitable option as it would
complicate the justification of the RWA. Schematically, the
idea sustaining this type of approach is to transfer the state
of the target qubit into a photon state via a red sideband
transition (half-period), apply a second red sideband transition
(one period) that is associated with the third level of the control
qubit and the resonator and that couples only to the state
which is initially |↓1↑2〉 (thus selectively inducing a global
phase accumulation π ), and transfer the photon state back into
the target qubit state via another red sideband transition (half-
period). This pulse sequence generates a controlled-phase gate,
which allows us to define a CNOT gate if it is supplemented by
two Hadamard gates applied to the target qubit. This idea was
first implemented by Monroe et al. between two states related
to the same trapped ion [38]; one encoded in its hyperfine
states and the other encoded in its quantized harmonic motion.

Ideally, one may want to realize a similar process of con-
ditional phase accumulation without resorting to an auxiliary
level of the ion. The difficulty in this type of approach is the
dependence of the matrix elements for sideband transitions
on the photon state of the resonator, even in the Lamb-Dicke
regime. Monroe et al. suggested the operation of such a system

outside of the Lamb-Dicke regime, and to adjust the Rabi
frequencies of the internal state of the ion depending on the
state of the harmonic oscillator by choosing the Lamb-Dicke
parameter η in such a way that after a laser pulse, the state
of the ion returns to its initial state if |n〉 = |0〉 or flipped if
|n〉 = |1〉, thus defining a CNOT gate [99]. However, this idea
cannot be applied in our case, i.e., a 2D array of physical
qubits: the proper conditions on the Lamb-Dicke parameter
η cannot be fulfilled simultaneously for each physical qubit
and its four nearest-neighbor resonators. An alternate solution
inspired by NMR is to use a composite pulse sequence which
preserves the computational subspace [39,100]. This method
is valid in the Lamb-Dicke regime, and it is consequently not
suitable for our purpose, as we wish to keep the benefit of
being able to operate our system with a large atom-photon
interaction strength g (i.e., arbitrary η = 2 g/ωr ).

In order to overcome the aforementioned limitation, one
possibility in our layout is to use the fact that we have two
resonators in between each pair of nearest-neighboring qubits
in the array: the idea is to use an already existing extra
degree of freedom among the resonators, instead of introducing
an extra atomic degree of freedom by playing with the
anharmonicity of our artificial atoms. Basically, our goal is to
encode one of the qubit states {|↓〉 , |↑〉} into a two-mode state
{|00〉 , |01〉}, which can be manipulated via a beam-splitter
(a†b + ab†). The underlying motivation for this choice is the
SU(2) Lie algebraic structure of the beam-splitter operation,
which intrinsically prevents any leakage of information out
of the computational subspace, a well-known property of
quantum optics. This encoding allows us to overcome the
nonlinearity of the Jaynes-Cummings model without reducing
the anharmonicity of the flux qubits, thus preventing the
risk of leakage while performing single-qubit operations and
simplifying the justification of the RWA, as was originally
intended.

Let us consider an arbitrary initial state |ψ〉, assuming that
both neighboring resonators are in their ground states:

|ψ〉 = α |↓10α0β↓2〉 + β |↓10α0β↑2〉
+ γ |↑10α0β↓2〉 + δ|↑10α0β↑2〉. (65)

Then, we map the state of qubit 2 onto the resonators state by
applying a red sideband transition between resonator β and
qubit 2 for a half-period (b†σ−

2 + bσ+
2 ). The ground state of

qubit 2 is thus encoded as |0α0β〉, whereas its excited state
is encoded as |0α1β〉. The state resulting from this operation
reads

|ψ〉 = α|↓10α0β↓2〉 + i β|↓10α1β↓2〉
+ γ |↑10α0β↓2〉 + i δ|↑10α1β↓2〉. (66)

Subsequently, we must apply the sideband transition
(σ+

1 a†b + σ−
1 ab†) for one period. This transition is exclusively

coupled to the state |↓10α1β↓2〉, which allows a selective
accumulation of global phase π for this state only. Hence
the ensuing state is

|ψ〉 = α|↓10α0β↓2〉 − i β|↓10α1β↓2〉
+ γ |↑10α0β↓2〉 + i δ|↑10α1β↓2〉. (67)
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FIG. 10. (Color online) Matrix element for the sideband transi-
tion (σ+

1 a†b + σ−
1 ab†) used in the conditional-phase accumulation

mechanism (ω1/h = 4 GHz, ω2/h = 6 GHz, and gc/h ranges from
0.2 to 1 GHz in steps of 0.2 GHz, the values of �1, �2, and g2 are
irrelevant). Results obtained from numerical diagonalization (dots)
are compared with the exact analytic formula (lines). For numerical
diagonalizations, the resonator Hilbert space is truncated to n = 20
Fock states.

Eventually, we map the resonators state back onto the state of
qubit 2 by applying a red sideband transition between resonator
β and qubit 2 for a half-period (b†σ−

2 + bσ+
2 ). The final state

we obtain is given by

|ψ〉 = α|↓10α0β↓2〉 + β|↓10α0β↑2〉
+ γ |↑10α0β↓2〉 − δ|↑10α0β↑2〉. (68)

The above pulse sequence effectively realizes a controlled-
phase gate on the two-qubit state, which, complemented by
the usual microwave-induced single-qubit gates, allows us
to define a “universal” set of quantum gates. The sideband
transition (σ+

1 a†b + σ−
1 ab†) can be induced by driving qubit

1 at the frequency |�1 + ω+ − ω−| /h. The matrix element
associated with this transition reads

〈↑11α0β↓2|HRWA|↓10α1β↓2〉 = −�

2
D (4 θ7 θ8), (69)

where θ7 and θ8 are the aforementioned Lamb-Dicke param-
eters (see Appendix B), and the Debye-Waller factor D is
given by exp[−2(θ2

7 + θ2
8 )]. For the sake of completeness,

we compare the value of these matrix elements based on
this analytic expression with the result given by a numerical
diagonalization [see Fig. 10]. We find a good agreement, as
is expected considering that the simplicity of the interactions
involved in this coupling scheme allows an exact theoretical
treatment. The coupling strengths between the qubit and the
nearest-neighbor resonator, and between both resonators (i.e.,
respectively g1 and gc) have a comparable influence on the
strength of this tunable interaction. Accordingly, it is quite
favorable to operate this system in the limit of large gc, whereas
the single-mode sideband transitions involved in the first and
the last step of this two-qubit gate are quite insensitive to it [see
Figs. 9(a) and 9(b)]. Similar to the Cirac and Zoller scheme,
implementing a controlled-phase gate in this way does not
require the adjustment of the phase of the microwave signals
involved in the mechanism of conditional accumulation of

global phase relative to the reference phases of the rotating
frame of each qubit.

As mentioned earlier, this scheme requires us to operate
the system in the low temperature limit, in order to suppress
the thermal population of the resonators. Thermal excitation
of higher photon states of the resonators, combined with the
photon state dependence of the effective Rabi frequency of
sideband transitions, would generate spurious entanglement
between qubits and resonators.

5. Readout

Evidently, the absence of dispersive shift impedes the
determination of the qubit state via dispersive measurement.
Actually, the dispersive shift solely represents the contribution
to the resonator dynamics inherited from the static Hamilto-
nian, but there could be a useful term in the time-dependent
part. We verify that this is not the case (see Ref. [59]
for details). Here, we draw inspiration from the analogy
with ion traps to circumvent the aforesaid issue. The idea
of electron shelving introduced by Dehmelt is a process
of quantum amplification based on an asymmetric double
resonance [101]. The resonance fluorescence associated with
the strong transition allows us to detect the quantum state
associated with the weak one. Ion-trap systems greatly benefit
from this method for detection of quantum states on account
of its high efficiency. Its implementation at an early stage
allowed the first observation of quantum jumps [102–104].
More recently, Myerson et al. demonstrated single-shot qubit
readout with a fidelity as high as 99.99% [105], thus meeting
the constraints imposed by quantum error correction.

Englert et al. proposed an extension of this idea in the
context of XcQED [106]. They considered a three-level
system in which the information was encoded in the ground
state and the first excited state, coupled transversely to a
quantum harmonic oscillator. It was required that the resonator
frequency ωr be equal to the energy difference between the
first and second excited states of the atom ωeu. By resonantly
driving the transition between the first and second excited
states (|e〉 ↔ |u〉) of the artificial atom at the frequency ωd =
ωr = ωeu, one could generate a conditional displacement of the
field in the resonator, which was proportional to the population
of the atom in its first excited state |e〉. Measuring the number
of photons in the resonator gave direct access to the state of the
qubit, which was encoded in the ground and the first excited
states.

Our first approach consists of transposing the proposal of
Englert et al. [106] to ZcQED: let us assume that we operate
a three-level atom longitudinally coupled to a resonator. A
flux qubit with a reduced anharmonicity and operated at
its symmetry point is a three-level ladder system (�). This
selection rule offers an extra atomic degree of freedom without
excessively complicating the justification of the RWA for
single-qubit operations and sideband transitions. The idea is to
simultaneously apply a set of red and blue sideband transitions
associated with the transition from the first excited state to the
second excited state of the atom and either a nearest-neighbor
or a next-nearest-neighbor resonator, as depicted in Fig. 11,
assuming that the resonator is initially in its ground state. The
photon state of the resonator remains unchanged if the qubit is
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FIG. 11. (Color online) Energy level diagram representing the
effect of combined red and blue sideband transitions associated with
the transition from the first excited state to the second excited state
in the case of a three-level atom, for an arbitrary initial state of the
qubit.

initially in its ground state, whereas if it is in its excited state,
it will evolve with time by climbing the Jaynes-Cummings
ladder.

This scheme is more flexible in ZcQED because it does
not require strict conditions on the atom and resonator energy
scales, as in the proposal of Englert et al. The absence of
dispersive shift offered by the longitudinal coupling to the
atomic degrees of freedom guarantees that these sideband
transitions remain resonant, independent of the photon state
of the resonator, thus allowing to climb the Jaynes-Cummings
ladder. In the case of XcQED, since the matrix elements
associated with these sideband transitions are independent of
the photon state of the resonator, the number of photons rises in
proportion to the amount of time over which the readout pulse
is applied [106]. In ZcQED, however, the nonlinearity of the
Jaynes-Cummings model does not allow for a straightforward
relationship between the length of the readout pulse and the
number of photons in the resonator. This type of effect will be
illustrated subsequently.

This readout scheme applies to artificial atoms with a weak
anharmonicity (namely phase qubits, transmons and Xmons).
We will not detail this approach any further, as we wish to
avoid the introduction of a third level to the atom, as already
mentioned earlier; our aim was to show how XcQED and
ZcQED compare to each other in this specific example. We
consider another method that does not require the presence
of a third level, and can be operated with one resonator
by combining single- and two-photon sideband transitions;
though this approach is not suitable for our purposes owing
to its poor readout efficiency, it illustrates the difficulty of
applying electron shelving techniques to our layout without
adding an extra degree of freedom (see Ref. [59] for details).

The final readout scheme we consider relies on the
combination of two single-qubit and two-resonator sideband
transitions: either (σ−a†b† + σ+ab) and (σ−ab† + σ+a†b), or
(σ−a†b† + σ+ab) and (σ−a†b + σ+ab†). The first combination
fills the nearest-neighbor resonator, whereas the second one
fills the next-nearest-neighbor resonator, as depicted in Fig. 12.
It is this latter option that we will retain, as it is less sensitive to
the nonlinearity of the Jaynes-Cummings model for the reason
given below. The main merit of this scheme is that the matrix
elements associated with these two sidebands have the same

|↓ 0α0β〉

|↑ 0α0β〉

|↓ 1α0β〉

|↑ 1α0β〉

|↓ 0α1β〉

|↑ 0α1β〉

|↓ 1α1β〉

|↑ 1α1β〉

|↓ 0α2β〉

|↑ 0α2β〉

|↓ 1α2β〉

|↑ 1α2β〉

|↓ 0α3β〉

|↑ 0α3β〉

|↓ 1α3β〉

|↑ 1α3β〉
σ−a†b† + σ+ab

)

σ−a†b + σ+ab†
)

FIG. 12. (Color online) Energy level diagram representing the ef-
fect of combined single-qubit and two-resonator sideband transitions
in the case of a two-level atom, for an arbitrary initial state of the
qubit.

associated Laguerre polynomial dependence. Consequently,
these two processes cooperate well, thus ensuring that the
next-nearest-neighbor resonator will be filled with a significant
number of photons and potentially allowing a single-shot
readout.

In order to illustrate the role of the nonlinearity of the
Jaynes-Cummings model on the readout efficiency, we per-
form some numerical simulations to compare both approaches.
The interaction Hamiltonian is treated within the RWA, and
the amplitudes of the microwave drive for both sideband
transitions are taken to be equal. In the case where we fill
the nearest-neighbor resonator, the matrix elements for the
sideband transitions (σ−a†b† + σ+ab) and (σ−ab† + σ+a†b)
are given by

〈↓(nα + 1)1β |HRWA|↑nα0β〉
= −〈↓nα1β |HRWA|↑(nα + 1)0β〉

= −�

2
exp

[−2
(
θ2

7 + θ2
8

)] 4 θ7 θ8√
nα + 1

L1
nα

(
4 θ2

7

)
, (70)

whereas in the case where we fill the next-nearest-neighbor
resonator, the matrix elements for the sideband transitions
(σ−a†b† + σ+ab) and (σ−a†b + σ+ab†) read

〈↓1α(nβ + 1)|HRWA|↑0αnβ〉
= −〈↓1αnβ |HRWA|↑0α(nβ + 1)〉

= −�

2
exp

[−2
(
θ2

7 + θ2
8

)] 4 θ7 θ8√
nβ + 1

L1
nβ

(
4 θ2

8

)
, (71)

where L1
n(x) stands for the associated Laguerre polynomial of

degree n.
The associated Laguerre polynomial L1

n dependence of
these matrix elements as a function of the Lamb-Dicke parame-
ter is responsible for their cancellation for some particular Fock
state; this cancellation occurs for higher Fock states when we
fill the next-nearest-neighbor resonator, rather than when we
fill the nearest-neighbor resonator [see Figs. 13(a) and 13(c)],
simply because the Lamb-Dicke parameter for the mediated
interaction θ8 is smaller than the one for the direct interaction
θ7. Consequently, when climbing the Jaynes-Cummings ladder
with the bichromatic microwave drive applied for readout, the
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FIG. 13. The dependence of the matrix elements associated with the sideband transitions involved in the readout process vs the Fock state
of (a) the nearest-neighbor resonator, and (c) the next-nearest-neighbor resonator. The intracavity mean photon number vs the length of the
bichromatic microwave pulse applied for readout in the case where we fill (b) the nearest-neighbor resonator, and (d) the next-nearest-neighbor
resonator. The considered parameters of the device are ω1/h = 4 GHz, ω2/h = 6 GHz, g1/h = 1 GHz, and gc/h = 1 GHz, while the value
of g2 is irrelevant.

mean photon number in the readout resonator saturates for
larger values when we fill the next-nearest-neighbor resonator
than it does when we fill the nearest-neighbor resonator [see
Figs. 13(b) and 13(d)], thus offering a higher readout efficiency
for the same amplitude of the applied microwave drive. For the
sake of completeness, we also determine the time-evolution of
the photon number distribution in the readout resonator in both
configurations (see animations in Ref. [59]).

The question arises of how to detect these photons af-
terward. The circuit should be designed in such a way that
half of the resonators are coupled to transmission lines that
convey photons to microwave amplifiers—let us say that the α

resonators are uncoupled and the β resonators are coupled, for
example [see Fig. 8(a)]. If the coupling is fixed, then all of the
β resonators will have a low quality factor which would tend
to reduce the fidelity of the controlled-phase gate we described
previously, as it relies on a two-mode sideband transition. To
avoid this issue, it may be preferable to use a tunable coupler
based on variable inductance, as demonstrated by Yin et al.
[107], for example. It could be argued that in principle, this type
of device is sufficient for implementing tunable interactions
between qubits with a very high ON/OFF ratio [108]. The
choice of a circuit QED based architecture is motivated by two
advantages: the ease of controlling the distance between qubits,
which allows us to suppress cross-talk, and the possibility of

integrating the circuits used to mediate the interactions and to
read out the state of the qubits in the same layout.

Another positive aspect that must be mentioned about this
readout scheme is its quantum nondemolition-like (QND-like)
nature. Strictly speaking, this readout process is not QND, as
the applied sideband transitions do not commute with the free
Hamiltonian of the qubit. Nevertheless, the qubit excitation
remains encoded in a superposition of states involving the qubit
and the witness resonator. If we consider the case where we use
the next-nearest-neighbor resonator for readout, then the initial
excitation of the qubit will be retained as a superposition of the
states |↑0α〉 and |↓1α〉, where |0α〉 and |1α〉 are the Fock states
of the nearest-neighbor resonator, as depicted in Fig. 12. This
means that after applying the readout pulse, the initial state of
the qubit can be restored by applying a red sideband transition
(σ−a† + σ+a), thus guaranteeing the QND-like nature of the
readout.

This scheme also has the merit that the determination of
the number of photons in the readout resonator does not
significantly adversely affect the coherence properties of the
qubit to be read out or of the witness qubit (say qubits 1
and 2, respectively with the present notation). As already
detailed, one advantage inherent to ZcQED is that the qubit
relaxation rate is unaffected by the photon lifetime of the
resonator, regardless of the state of the latter (see Sec. III A 3).
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This implies that when the coupling between the readout
resonator and the transmission line is turned on, the state of
the witness qubit will not be altered by its lowered quality
factor. Nonetheless, the qubit relaxation rate is affected by
the readout procedure via the photon state dependence of the
matrix elements 〈↓1,nα,nβ,ψ2|σx

1 |↑1,nα,nβ,ψ2〉. For a given
photon state |nα,nβ〉 of the two resonators, the relaxation rate
of qubit 1 reads as follows:

�
{nα,nβ }
γq1

= γq1 exp
[−4

(
θ2

7 + θ2
8

)] [
Lnα

(
4 θ2

7

)
Lnβ

(
4 θ2

8

)]2
,

(72)

where 1/γq1 is the lifetime of qubit 1 due to intrinsic decay
processes of the bare qubit state, and Ln(x) is a Laguerre
polynomial of degree n.

The issue of correlated errors corresponding to the simul-
taneous relaxation of the qubit state and either relaxation or
excitation of the two-mode states, which we already discussed
in the case of a single bosonic mode (see Sec. III A 3), may
have a more severe backaction. Ironically, these effects may
be more pronounced for the witness qubit as we are filling
the next-nearest-neighbor resonator. A way to circumvent this
issue is to momentarily map the state of the witness qubit
onto a two-mode state, {|00〉 , |01〉}, of one of the three other
pairs of resonators surrounding it via red sideband transitions
during the readout. This implies that the state of the other
qubit attached to this second pair of resonators should not
be manipulated during that time. We also verify that the
absence of the Purcell effect, which we previously highlighted
in the case of one resonator (see Sec. III A 3), persists in this
configuration: the effect of the photon lifetime of each bare
resonator is converted into two independent single-photon
errors, and it does not introduce correlated errors (see Ref. [59]
for details).

Furthermore, in the case of dispersive readout used in
XcQED, the presence of the dispersive shift renders the qubit
dephasing sensitive to the quantum fluctuations associated
with the photons populating the resonator when the readout
pulse is applied (measurement-induced dephasing [109,110]).
The layout we are considering being free of dispersive shift,
this type of readout does not exert any backaction on the
dephasing rate of the qubits surrounding the resonator used for
the readout. Moreover, it fulfills the fifth DiVincenzo criterion,
as it provides a qubit-specific measurement capability. The
number of photons in the readout resonator is unequivocally
related to the state of the qubit to be read out, and is not affected
by the states of its neighbors, which is another advantage
of coupling physical qubits via their longitudinal degree of
freedom.

Here again, it is more suitable to work in the quantum limit:
thermal excitations of the resonators would complicate the
readout process, as it would involve a larger number of states
in a rather nontrivial way. This also means that the resonators
must be properly reset after each readout, so as to guarantee the
fidelity of subsequent measurements and two-qubit operations.

6. Initialization

At last, we will briefly describe a simple way to reset
the state of the qubits using red sideband transitions. As the
effective Rabi frequency of the sideband transitions depends

upon the photon state of the resonator, we must ensure that
the one we use for qubit initialization is in its ground state in
order to guarantee the fidelity of the quantum state transfer
and the efficiency of the qubit initialization accordingly. For
this reason, it is again essential to operate the system in the
limit of low temperature. We thus consider using one of
the resonators used for readout (say, a β resonator to
keep the same notation as in Sec. III C 5). Furthermore, we
assume that this resonator has been properly reset if it has been
used for readout beforehand, by keeping the coupling with the
transmission line on for long enough. The qubit is initially
in an unknown state |ψ〉 = c↓|↓0β〉 + c↑|↑0β〉; if we apply a
red sideband transition (σ−b† + σ+b) over a half-period, the
residual excitation of the qubit is transferred to the resonator
and the system becomes |ψ ′〉 = c↓|↓0β〉 + c↑ |↓1β〉. After
that, it remains to reset the state of the resonator.

IV. CONCLUSIONS

We reviewed several aspects of circuit QED in the custom-
ary configuration wherein an artificial atom is transversely
coupled to a quantum harmonic oscillator (XcQED). We
discussed how to capitalize on the possibility of in situ control
of the longitudinal degree of freedom of superconducting
qubits to circumvent the parity selection rule, either to realize
sideband transitions in the manner of trapped ions, or to
realize parametric conversion between two qubits. However,
in this layout, sideband transitions are adversely affected by
the rather large dispersive shifts and the photon lifetime in
the resonator. Two-qubit parametric conversion has the merit
of generating entanglement between physical qubits without
creating real excitations in the resonator, and is a possible
alternative to cross-resonance, which has the advantage of
being more immune to cross-talk [64].

We introduced a new paradigm for circuit QED systems,
where an artificial atom is coupled via its longitudinal degree
of freedom to a quantum harmonic oscillator (ZcQED). This
layout avoids the presence of nonlinearities (such as Kerr
nonlinearity) and residual interactions between the qubit and
the resonator (dispersive shift). Based on this idea, we de-
scribed few different possibilities for mediating the interaction
between two qubits. Our aim was to find a configuration
wherein we would have concomitantly well-characterized
qubits and a “universal” set of quantum gates. We found that
the latter two requirements can be fulfilled if the interaction
is mediated through two resonators fixedly coupled, each
resonator being coupled separately to one of the two qubits and
the other resonator via orthogonal degrees of freedom. This
layout retains the advantage of having well-defined energy
levels for qubits and resonators, as observed in the case of
a single qubit longitudinally coupled to a single resonator
(in the absence of dispersive shift, self-Kerr, and cross-Kerr
nonlinearities, and residual σzσz interactions), while allowing
scalable single-qubit operations and sideband transitions. This
coupling scheme has the merit of keeping the aforesaid
properties once included in an array of arbitrary dimension
and topology, as the free Hamiltonian of each physical qubit
commutes with the coupling terms with the surrounding
resonators. Such a unit cell can be integrated among a 2D
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square lattice of qubits, which is the requisite architecture for
fault-tolerant quantum computation based on the surface code.

We presented a way to realize a controlled-phase gate
between both qubits comprised in such unit cell, based on
sideband transitions in a similar manner to the proposal of
Cirac and Zoller in the context of trapped ions [37]: we
proposed to encode the state of one of the two qubits into a
two-mode state of the resonators, and use a two-mode sideband
transition to selectively accumulate a global phase π for one of
the four two-qubit states, instead of using a three-level artificial
atom as in the latter reference.

We described a readout scheme that allows a QND-like
measurement of the qubit state conceived by analogy with the
idea of electron shelving. It takes advantage of the fact that we
have two resonators in between each pair of neighboring qubits
in the 2D array instead of requiring an extra atomic degree of
freedom, as in the proposal by Englert et al. in the context
of XcQED [106], thus bringing no additional complication to
the justification of the RWA. More importantly, we showed
how to overcome the limitations imposed by the nonlinear
Jaynes-Cummings model, bringing the possibility of achieving
single-shot readout within reach.

A rather obvious objection to this latter approach is that
coupling qubits via their longitudinal degree of freedom
naturally increases their sensitivity to low-frequency noise;
however, qubit dephasing can be efficiently mitigated using
dynamical decoupling [111–117]. It is more favorable to
manipulate the state of a system with well-defined energy
levels and suppress the spurious accumulation of phase all
along the computation by ensuring the exact cancellation of
residual interactions, while preserving resources to counteract
qubit dephasing with error suppression.

The coherence time enhancement of transmons observed in
a 3D cavity showed that there is still room for improvement
of these devices [45]. The architecture described in this work
is more likely to be integrated in a planar layout: shielding
from infrared radiation, improved circuit designs, and progress
in material science show promise for meeting the accuracy
threshold for fault-tolerant quantum computation [118,119].
Whether similar improvement of coherence properties can be
achieved for flux qubits remains an open question. Different
directions targeting at the experimental implementation of
the surface code are actively pursued, either via direct
couplings [120] or XcQED layouts [121,122].

The aim of the present work was to contrive a scalable archi-
tecture to process quantum information with superconducting
qubits. However, we believe that beyond that, ZcQED paves
the way for further experimental investigations in quantum
optics, thus benefiting from the already existing and vast
literature on trapped ions: possible directions include the
generation [123–125] and the QND measurement [126–128]
of arbitrary quantum states of a quantum harmonic oscillator.
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FIG. 14. (Color online) Schematic representation of a tunable
gap flux qubit inductively coupled to a quantum harmonic oscillator
(lumped element resonator in this case). The interaction with the
longitudinal degree of freedom of the artificial atom is achieved by
coupling the flux through the split α-junction and the resonator via
mutual inductance.

APPENDIX A: FLUX QUBIT LONGITUDINALLY
COUPLED TO A RESONATOR

1. Inductive coupling

The most natural way to longitudinally couple a flux qubit to
a resonator relies on inductive coupling, as depicted in Fig. 14.
As discussed in the foregoing sections, both longitudinal and
transverse degrees of freedom of such an artificial atom can
be controlled independently and tuned in situ. The gap of a
flux qubit can be adjusted by splitting the α-junction into two
junctions in parallel, thus defining a SQUID whose flux can
be tuned in order to control its effective Josephson energy and,
in so doing, its gap [129]. The purpose of the gradiometric
design represented in Fig. 14 is to access both transverse and
longitudinal degrees of freedom separately.

We assume that the self-inductances of loops 1 and 2 are
equal, and their area as well. We denote by χ the ratio of the
length of the outer part of the α-loop to the total perimeter
of the flux trapping loop. The flux quantization conditions for
the flux trapping loop, loop 1, loop 2, and the α-loop read
respectively as

θ + 2π (f1 + f2 + fα) = 2π N
1
2 (1 − χ ) θ − ϕ3 − ϕ2 − ϕ1 + 2π f1 = 2π N1

ϕ1 + ϕ2 − ϕ4 + 1
2 (1 − χ ) θ + 2π f2 = 2π N2

ϕ3 + χ θ + ϕ4 + 2π fα = 2π Nα,

(A1)

where ϕi is the phase difference across each junction of the
qubit [see Fig. 14]. On the assumption that there is no fluxon
trapped in the α-loop (Nα = 0), the above conditions can be
recast as

ϕ3 = −(ϕ1 + ϕ2) − π (n − fε) − π [χ (N − f�) + fα]

ϕ4 = (ϕ1 + ϕ2) + π (n − fε) − π [χ (N − f�) + fα] ,

(A2)

where N = (N1 + N2), n = (N1 − N2), f� = (f1 + f2 + fα),
and fε = (f1 − f2).
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The Lagrangian of the qubit Lq is found to be

Lq = T − V

= (1 + 2α)
C

2
φ̇2

1 + 2α C φ̇1 φ̇2 + (1 + 2α)
C

2
φ̇2

2

−EJ (2(1 + α) − cos ϕ1 − cos ϕ2

− 2α cos{π [χ (N − f�) + fα]}
× cos[(ϕ1 + ϕ2) + π (n − fε)]), (A3)

where φi is the branch flux across each junction of the qubit
(i.e., φi = �0 ϕi/2π ). The charge operators can be obtained
by a Legendre transformation of the Lagrangian:

q1 = ∂Lq

∂φ̇1
= (1 + 2α) C φ̇1 + 2α C φ̇2

q2 = ∂Lq

∂φ̇2
= 2α C φ̇1 + (1 + 2α) C φ̇2.

(A4)

We thus deduce that the capacitance matrix is given by

¯̄C =
(

(1 + 2α)C 2α C

2α C (1 + 2α)C

)
. (A5)

Accordingly, the inverse of the capacitance matrix is found to
be

¯̄C−1 = 1

(1 + 4α) C

(
(1 + 2α) −2α

−2α (1 + 2α)

)
. (A6)

Finally, the Hamiltonian of the qubit Hq reads as

Hq = 1

2(1 + 4α)C

[
(1 + 2α)q2

1 − 4α q1 q2 + (1 + 2α)q2
2

]
+EJ (2(1 + α) − cos ϕ1 − cos ϕ2

− 2α cos{π [χ (N − f�) + fα]},
× cos[(ϕ1 + ϕ2) + π (n − fε)]). (A7)

Let us now consider the configuration wherein the current
in the resonator is coupled via mutual inductance to the
flux through the α-loop of the qubit, as depicted in Fig. 14.
Following the Feynman-Hellmann theorem, the transverse and
longitudinal coupling constants (g⊥ and g‖, respectively) are
given by

g⊥ = Mα Ir

�0
〈1| ∂H

∂fα

|0〉

= 2π (1 − χ )α EJ

Mα Ir

�0
〈1| sin{π [χ (N − f�) + fα]}

× cos[(ϕ1 + ϕ2) + π (n − fε)]|0〉,
g‖ = Mα Ir

�0
〈+|∂H

∂fα

|−〉

= 2π (1 − χ )α EJ

Mα Ir

�0
〈+| sin{π [χ (N − f�) + fα]}

× cos[(ϕ1 + ϕ2) + π (n − fε)]|−〉, (A8)

where |±〉 = (|0〉 ± |1〉) /
√

2 and Ir = √
ωr/(2 Lr ) is the

current in the resonator.

We ascertain that the transverse coupling g⊥ is zero based
on numerical diagonalizations, ergo the Hamiltonian that
describes this system is given by

H = ωr a†a + �

2
σz + g‖ σz(a

† + a), (A9)

where ωr = �/
√

Lr Cr is the resonant frequency of the
resonator. We perform numerical calculations to assess the tun-
ability of the gap of the qubit � [see Figs. 15(b) and 15(c)], and
we also evaluate the longitudinal coupling g‖ [see Fig. 15(d)].
Overall, the coupling g‖ is proportional to the product of the
dependence of the gap as a function of the effective αeff , and
the variation of αeff as a function of the magnetic flux piercing
the α-loop fα(g‖ ∝ ∂�/∂αeff × ∂αeff/∂fα). The achievable
longitudinal coupling g‖ is a trade-off between the maximum
feasible mutual coupling Mα and the sensitivity of the device
to the flux noise in the α-loop (qubit dephasing).

2. Capacitive coupling

The possibility of tuning the gap of a flux qubit (rf-SQUID)
with a gate voltage via the Aharonov-Casher effect [130,131]
was predicted by Friedman and Averin [132]. Their idea
was to split the Josephson junction of a rf-SQUID into two
junctions of equal Josephson energy in series, and to control
the electrostatic potential of the island thus defined. In the
single-junction case, the gap of the flux qubit is determined by
the fluxon tunneling rate across the junction, which allows one
to lift the degeneracy between different persistent current states
when the system is biased at half-flux quantum (� = �0/2).
In the two-junction case, the gate control allows one to tune
the interference between fluxon tunneling across each junction
and, accordingly, the gap. A similar idea can be applied to the
case of the three-junction flux qubit by splitting the α-junction
into two junctions in series. This configuration allows one to
simultaneously tune the gap of the qubit via gate control, and
to couple other devices to its longitudinal degree of freedom
by capacitive coupling. In the following, we will describe how
this idea can be applied to the realization of a qubit coupled
longitudinally to a quantum harmonic oscillator. The circuit
we are considering is depicted in Fig. 16. The Lagrangian L
of this circuit depends on four node fluxes [133,134]: three
relating to the artificial atom (φ1, φ2, and φI ) and one relating
to the resonator φr . It is given by

L = T − V

= (1 + α)
C

2

(
φ̇2

1 + φ̇2
2

) − α C(φ̇1 + φ̇2)φ̇I

+
(

α C + Cc

2
+ Cg

2

)
φ̇2

I − Cc φ̇I φ̇r + Cr

2
φ̇2

r

−Cg Vg φ̇I + Cg

2
V 2

g

−EJ [2(1 + α) − cos ϕ1 − α cos (ϕI − ϕ1)

−α cos (ϕ2 − ϕI + 2π f ) − cos ϕ2] − φ2
r

2 Lr

, (A10)
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FIG. 15. (Color online) (a) Energy levels of a gradiometric flux qubit as a function of the magnetic frustration fε(α = 0.5, χ = 0.05, and
fα = 0.2). (b) Dependence of the gap � on the magnetic flux threading the α-loop fα for different values of χ (α = 0.5). Dependence of (c)
the gap � and (d) the longitudinal coupling g‖ on fα for different values of α(χ = 0.05). Other parameters are as follows: C = 8 fF, EJ /h =
121 GHz, Cr = 250 fF, Lr = 1 nH, and Mα = 50 pH. We assume that there is one fluxon trapped in the flux trapping loop (N = n = 1), and
that the ratio of the total qubit loop area to the α-loop area A�/Aα is taken as being equal to 50. These results are obtained by numerical
diagonalization of the circuit Hamiltonian with nch = 15 charge states.

where ϕi is the phase corresponding to the node flux φi (i.e.,
ϕi = 2π φi/�0), f = �/�0 is the magnetic frustration of the
qubit loop, Cg is the gate capacitance, and Vg is the gate
voltage applied to tune the electrostatic potential of the island
defined by the split α-junction (not represented in Fig. 16). The
conjugate momenta of the node fluxes are found by a Legendre
transformation of the Lagrangian L:

q1 = ∂L
∂φ̇1

(1 + α)C φ̇1 − α C φ̇I

q2 = ∂L
∂φ̇2

(1 + α)C φ̇2 − α C φ̇I

(A11)
qI = ∂L

∂φ̇I

− α C φ̇1 − α C φ̇2 + (2 α C + Cc) φ̇I − Cc φ̇r

qr = ∂L
∂φ̇r

− Cc φ̇I + (Cr + Cc) φ̇r ,

where we assume that Cg � C,Cc, and qI = 2e(nI + ng)[nI

is the number of excess Cooper pairs on the island delimited by
the split α-junction and ng = Cg Vg/(2e) is the reduced gate
charge]. The node charges and the time derivative of the node
fluxes are linked by the capacitance matrix (q = ¯̄C φ̇), which

is defined by

¯̄C =

⎛
⎜⎝

(1 + α)C 0 −α C 0
0 (1 + α)C −α C 0

−α C −α C (2 α C + Cc) −Cc

0 0 −Cc (Cr + Cc)

⎞
⎟⎠.

(A12)
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FIG. 16. (Color online) Schematic representation of a tunable
gap flux qubit capacitively coupled to a quantum harmonic oscillator:
the interaction to the longitudinal degree of freedom of the artificial
atom is achieved by coupling the electric potentials of the island
defined by the split α-junction and the resonator via a capacitance.
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The inverse of the capacitance matrix reads

¯̄C−1 = 1

C2
0

⎛
⎜⎜⎝

α (2 + α) C� + (1 + α)C� α2 C� α(1 + α)C� α(1 + α)Cc

α2 C� α (2 + α) C� + (1 + α)C� α(1 + α)C� α(1 + α)Cc

α(1 + α)C� α(1 + α)C� (1 + α)2C� (1 + α)2Cc

α(1 + α)Cc α(1 + α)Cc (1 + α)2Cc (1 + α) [2 α C + (1 + α)Cc]

⎞
⎟⎟⎠,

(A13)

where C� = (Cr + Cc), C� = (Cr Cc)/C, and C0 is defined by C2
0 = (1 + α) [2 α C (Cr + Cc) + (1 + α)Cr Cc]. Eventually, the

Hamiltonian of the circuit is found to be

H = 1

2 C2
0

[
α (2 + α) (Cr + Cc) + (1 + α)

Cr Cc

C

] (
q2

1 + q2
2

) + α2 (Cr + Cc)

C2
0

q1 q2

+α(1 + α)
(Cr + Cc)

C2
0

(q1 + q2) qI + (1 + α)2 (Cr + Cc)

2 C2
0

q2
I

+α(1 + α)
Cc

C2
0

(q1 + q2) qr + (1 + α)2 Cc

C2
0

qI qr + (1 + α)
2 α C + (1 + α)Cc

2 C2
0

q2
r

+EJ [2(1 + α) − cos ϕ1 − α cos (ϕI − ϕ1) − α cos (ϕ2 − ϕI + 2π f ) − cos ϕ2] + φ2
r

2 Lr

. (A14)

Based on this expression, one can define the transverse and longitudinal coupling constants (g⊥ and g‖, respectively) as

g⊥ = 〈1|
√

�

2 Z′
r

⎡
⎣α(1 + α)

Cc

C2
0

(q1 + q2) + (1 + α)2 Cc

C2
0

qI

⎤
⎦ |0〉 ,

(A15)

g‖ = 〈+|
√

�

2 Z′
r

⎡
⎣α(1 + α)

Cc

C2
0

(q1 + q2) + (1 + α)2 Cc

C2
0

qI

⎤
⎦ |−〉 ,

where |±〉 = (|0〉 ± |1〉)/√2, and Z′
r = √

Lr/C ′
r . The res-

onator capacitance C ′
r renormalized by the interaction with

the flux qubit is given by

C ′
r = 2 α C (Cr + Cc) + (1 + α)Cr Cc

2 α C + (1 + α)Cc

. (A16)

We check numerically that the transverse coupling g⊥ is
zero. It turns out that the presently considered circuit reduces
to a qubit coupled purely via its longitudinal degree of freedom
to a quantum harmonic oscillator:

H = ω′
r a†a + �

2
σz + i g‖ σz(a

† − a), (A17)

where ω′
r = �/

√
Lr C ′

r is the resonant frequency of the
resonator. We perform numerical calculations to illustrate the
tunability of the gap of the qubit based on the Aharanov-Casher
effect [see Figs. 17(a) and 17(b)], and estimate the coupling
strengths which can be achieved with some typical parameters
[see Figs. 17(c) and 17(d)]. As expected, the longitudinal
coupling g‖ is maximal when the derivative of the gap
versus the gate voltage ∂�/∂ng is also maximal, i.e., for
ng = 0.5 (mod 1). We note that the longitudinal coupling g‖
is saturated when the value of the coupling capacitance Cc is
increased, which is a consequence of the renormalization of the
effective charging energy of the flux qubit by the interaction
with the resonator due to the inversion of the capacitance
matrix.

APPENDIX B: DIAGONALIZATION OF TWO QUBITS
COUPLED VIA TWO RESONATORS IN Zp(qq)pZ

CONFIGURATION

The coupling terms between a qubit and a resonator and
between both resonators can be equivalently diagonalized
in one order or another. Nevertheless, it is preferable to
diagonalize the coupling term between resonators first, as this
will simplify the treatment of the qubit under the microwave
drive. In the first step, we will diagonalize the secular term
related to the fixed coupling between both resonators by
applying the following unitary transformation:

U1 = exp[θ1(a†b − ab†)]. (B1)

The cancellation condition for the secular term reads

tan(2θ1) = − 2 gc

ω1 − ω2
. (B2)

In a second step, the nonsecular term can be diagonalized by
applying the unitary transformation as follows:

U2 = exp[θ2(a†b† − ab)]. (B3)

The cancellation condition for the nonsecular term is given by

tanh(2θ2) = 2 cos(2θ1) gc

ω1 + ω2
. (B4)
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FIG. 17. (Color online) Tunability of the gap vs the reduced gate charge ng of the island defined by the split α-junction (a) for different
values of α(Cc = 0 fF) and (b) for different values of the coupling capacitance Cc(α = 0.4). (c) Dependence of the longitudinal coupling g‖
on ng for different values of the coupling capacitance Cc(α = 0.4). (d) Longitudinal coupling g‖ as a function of the coupling capacitance
Cc(α = 0.4 and ng = 0.25). Other parameters are as follows: C = 8 fF, EJ /h = 121 GHz, Cr = 100 fF, and Lr = 10 nH. These results are
obtained by numerical diagonalization of the circuit Hamiltonian with nch = 7 charge states.

After diagonalizing the fixed interaction between both resonators, the Hamiltonian is found to be

H′ =

�+︷ ︸︸ ︷[
cosh(2θ2)

ω1 + ω2

2
− cos(2θ1) sinh(2θ2)gc

]
(a†a + b†b) +

�−︷ ︸︸ ︷[
cos(2θ1)

ω1 − ω2

2
− sin(2θ1)gc

]
(a†a − b†b)

− sin(2θ1)

2
gc[−(a†2 + a

2
) + (b†

2 + b
2
)] +

∑
i=1,2

�i

2
σ z

i

+ (cos θ1 cosh θ2 + sin θ1 sinh θ2)g1 σ z
1 (a† + a) + (sin θ1 cosh θ2 + cos θ1 sinh θ2)g1 σ z

1 (b† + b)

+ (− sin θ1 cosh θ2 + cos θ1 sinh θ2)g2 σ z
2 (a† + a) + (cos θ1 cosh θ2 − sin θ1 sinh θ2)g2 σ z

2 (b† + b). (B5)

In a third step, we diagonalize the two-photon terms associated with each resonator:

U3 = exp[θ3(a†2 − a
2
) + θ4(b†

2 − b
2
)]. (B6)

The cancellation conditions for the two-photon terms are found to be

tanh(4θ3) = − sin(2θ1) gc

�+ + �−
, tanh(4θ4) = sin(2θ1) gc

�+ − �−
. (B7)

After diagonalizing the fixed coupling between both resonators, the Hamiltonian reads

H′′ = ω+ a†a + ω− b†b +
∑
i=1,2

�i

2
σ z

i + (cos θ1 cosh θ2 + sin θ1 sinh θ2)e2θ3 g1 σ z
1 (a† + a)

+ (sin θ1 cosh θ2 + cos θ1 sinh θ2)e2θ4 g1 σ z
1 (b† + b) + (− sin θ1 cosh θ2 + cos θ1 sinh θ2)e2θ3 g2 σ z

2 (a† + a)

+ (cos θ1 cosh θ2 − sin θ1 sinh θ2)e2θ4 g2 σ z
2 (b† + b), (B8)
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where ω± correspond to the resonant frequencies of two fixedly coupled resonators, given by

ω2
± = ω2

1 + ω2
2

2
± ς

2

√(
ω2

1 − ω2
2

)2 + 16 g2
c ω1 ω2, (B9)

where ς = sign(ω1 − ω2). In the fourth step, the static interaction between qubit 2 and both resonators can be diagonalized by
applying the unitary transformation as shown below:

U4 = exp
[−θ5 σ z

2 (a† − a) − θ6 σ z
2 (b† − b)

]
. (B10)

The cancellation conditions for the static interaction between qubit 2 and both resonators are given by

θ5 = (cos θ1 sinh θ2 − sin θ1 cosh θ2) e2θ3 g2

ω+
, θ6 = (cos θ1 cosh θ2 − sin θ1 sinh θ2) e2θ4 g2

ω−
. (B11)

Eventually, the static interaction between qubit 1 and both resonators can be diagonalized by applying the unitary transformation:

U5 = exp
[−θ7 σ z

1 (a† − a) − θ8 σ z
1 (b† − b)

]
. (B12)

The cancellation conditions for the static interaction between qubit 1 and both resonators read

θ7 = (cos θ1 cosh θ2 + sin θ1 sinh θ2) e2θ3 g1

ω+
, θ8 = (cos θ1 sinh θ2 + sin θ1 cosh θ2) e2θ4 g1

ω−
. (B13)
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