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Superconducting dome in MoS2 and TiSe2 generated by quasiparticle-phonon coupling
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We use a first-principles based self-consistent momentum-resolved density fluctuation (MRDF) model
to compute the combined effects of electron-electron and electron-phonon interactions to describe the
superconducting dome in the correlated MoS2 thin flake and TiSe2. We find that without including the
electron-electron interaction, the electron-phonon coupling and the superconducting transition temperature (Tc)
are overestimated in both these materials. However, once the full angular and dynamical fluctuations of the spin
and charge density induced quasiparticle self-energy effects are included, the electron-phonon coupling and Tc

are reduced to the experimental value. With doping, both electronic correlation and electron-phonon coupling
grows, and above some doping value, the former becomes so large that it starts to reduce the quasiparticle-phonon
coupling constant and Tc, creating a superconducting dome, in agreement with experiments.
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I. INTRODUCTION

Unconventional superconductivity in cuprates, pnictides,
and heavy fermions often reaches its optimum value near
the quantum critical point (QCP) of a magnetic ground
state, providing a perspective that critical phase fluctuations
of the intertwined electronic order drive unconventional
superconductivity [1]. However, looking back at conventional
superconductors, a superconducting (SC) dome is not an
unfamiliar feature. It has been observed in Li metal under pres-
sure [2], doped SrTiO3 [3] gated LaAlO3/SrTiO3 (LAO/STO)
interface [4], pressure tuned Fe metal [5], and also in T Se2

(T = Ti, Ta, and Nb) families [6–9], and more recently in a
thin flake of MoS2 [10,11]. More interestingly, no evidence of
an intertwined electronic order in the SC state is reported in
these materials, except in T Se2. The possible role of the charge
density wave (CDW) in the SC dome in the latter family has
also recently been called into question by a pressure dependent
x-ray scattering measurement [12], because the QCP of CDW
in 1T-TiSe2 lies at a higher pressure than the termination of
the SC dome. Therefore, the presence of a SC dome with and
without an intervening QCP leads to the fundamental question:
Can there be an alternative and universal origin of the SC dome
which is applicable to all families of superconductors?

We explore the possible role of the momentum dependent
density fluctuations (MRDF) in renormalizing the electronic
pairing strength and thereby producing optimized SC transi-
tion temperature (Tc) as a function of doping. Spin and charge
fluctuations are among the two dominant electron-electron
(EE) correlations which are ubiquitous in weakly to strongly
correlated materials, irrespective of the formation of a static
electronic order [13,14]. These fluctuations renormalize the
quasiparticle states, which in turn renormalizes the electron-
phonon (EP) or more appropriately quasiparticle-phonon
coupling strength and vice versa. In this work we present a
self-consistent theory for the combined EE and EP interaction
to calculate the electronic self-energy for the band renormal-
ization, the renormalized EP coupling spectral function α2F ,
and Tc (see Fig. 1 for these results in MoS2), starting from the
materials specific first-principles band structure. We find that
the interplay between the EE and EP coupling has a common
role in reproducing the SC dome as a function of doping in
both MoS2 [11] and TiSe2 [6] samples.

The rest of the paper is organized as follows. In Sec. II we
present the methodology which includes the details of DFT
calculation in Sec. II A, the MRDF method of calculating
momentum dependent density-density fluctuation and self-
energy in Sec. II B, and the quasiparticle-phonon coupling
constant and Tc calculations in Sec. II C, and finally the relevant
parameters in Sec. II D. The results of band structure, α2F , and
Tc are presented in Sec. III for a MoS2 thin flake and for bulk
TiSe2. Finally, we conclude in Sec. IV. Some additional results
such as spin and charge fluctuations, momentum dependent
self-energies, doping dependent mass renormalizations, ωlog,
and μ∗ are presented in the Appendixes.

II. METHOD

A. Density function theory calculation

Electronic structure calculations are carried out using den-
sity functional theory (DFT) within the local density approx-
imations (LDA) in the Caperley-Alder parametrization [15]
for an exchange-correlation functional as implemented in the
Vienna ab initio simulation package (VASP) [16]. Projected
augmented-wave (PAW) [17] pseudopotentials are used to
describe core electrons. The conjugate gradient method is used
to obtain relaxed geometries. Both atomic positions and cell
parameters are allowed to relax, until the forces on each atom
are less than 1 meV/Å. The relaxed lattice parameters are
a = b = 3.121 Å, c/a=3.868 (bilayer distance) for MoS2,
and a = b = 3.437 Å, c/a=1.693 for TiSe2.

The kinetic energy cutoff is fixed at 650 eV. � centered
k-mesh grids of 14 × 14 × 1 and 14 × 14 × 8 are used in the
self-consistent calculations for MoS2 and TiSe2, respectively.
Note that we did not consider any van der Waals (vdW)
correction in our calculations, as the previous vdW+DFT
calculations show that bilayer MoS2 exhibits an indirect
gap between the � and K direction, which contradicts GW

calculations [18,19]. However, our calculated LDA band
structure correctly describes this feature. Spin-orbit correction
(SOC) is included in the band structure calculations. We note
that for bilayer MoS2, the SOC is significantly reduced due
to the presence of the inversion symmetry [20]. Furthermore,
in order to study the lattice dynamics, force constants are
calculated for 3 × 3 × 1 and 3 × 3 × 2 supercells of MoS2

and TiSe2, respectively, within the framework of density
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FIG. 1. (Color online) SC phase diagram of a thin flake of MoS2.
Blue squares are experimental Tc data, taken from Ref. [11]. Red
filled circles give computed Tc by including self-consistent EE and
EP interactions. Green open circles give the EP coupling induced Tc

when the EE interaction is ignored. Magenta filled triangles and cyan
open triangles, respectively, are the computed mass renormalizations
for the corresponding two cases. Light blue shading is a guide to the
eyes to the experimental SC dome. Inset: EP coupling constant (λ)
when EE interaction is included (red filled circles) and ignored (green
open circles).

functional perturbation theory [21] using the VASP code.
Subsequently, phonon dispersions are calculated using the
Phonopy package [22].

The band structure for monolayer and bilayer MoS2 has
significant differences [23,24]. In the monolayer system, both
the conduction band bottom and the valence band top lie at the
K point. In the bilayer system, the bottom of the conduction
band shifts to somewhere in between the � and K points, and
the top of the valence band moves to the � point. However,
from the bilayer to the bulk system, the band structure does
not change significantly. Therefore, given that the experiment
is performed on a thin flake of MoS2 sample, we use the band
structure for the bilayer system.

The band dispersion between LDA and LDA+GW calcu-
lation does not change characteristically [19,24], which means
the doping dependence of the density of states would also be
similar for both cases at the expense of a constant energy shift.
Therefore, our many-body and Tc calculations would yield
similar results for the LDA and LDA+GW band structure
inputs.

Finally, we have used a rigid band shift for the DFT
dispersion, whereas with the self-energy correction, the new
Fermi level is recalculated self-consistently. For MoS2, the
carrier density is monitored experimentally by gating, which is
more appropriately modeled by a rigid-band shift. A previous
DFT calculation by one of the present authors [25] showed
that even an absorption alkali metal can rigidly shift the Fermi
level to the conduction band in the same way. For TiSe2,
the SC dome is observed experimentally by Cu intercalation.
However, as shown in the same experimental paper (Fig. 5
of Ref. [6]), the Sommerfield coefficient of the same sample
changes almost linearly with doping. This result is consistent
with our finding of the density of states at the Fermi level with
EE+EP correlation [our Fig. 4(d)]. This supports that the rigid
band shift method is applicable in this family as well.

B. Momentum resolved density fluctuation (MRDF) theory

The VASP band structure information is directly imple-
mented within our MRDF code. The single-particle Green’s
function is defined as G̃0(k,iωn) = (iωn1̃ − H̃ )−1, where iωn

is the Matsubara frequency for the fermions, and H is the
noninteracting Hamiltonian constructed by downfolding the
DFT bands into the low-energy energy levels. The explicit
form of G is then obtained as

Gmn(k,iωn) =
∑

ν

φν
k,mφ

ν†
k,n

iωn − ξν
k
. (1)

Here k and ω are the quasiparticle momentum and frequency,
and q and ωp are the bosonic excitation momentum and
frequency, respectively. φν

k,m is the eigenstate for the νth DFT
band (ξν

k ), projected onto the mth orbital. The noninteracting
density fluctuation susceptibility in the particle-hole channel
represents joint density of states (JDOS), which can be
calculated by convoluting the corresponding Green’s function
over the entire Brillouin zone (BZ) to obtain (spin and charge
bare susceptibility are the same in the paramagnetic ground
state) [26]

χst
0,mn(q,ωp) = − 1


BZβ

∑
k,n

Gmn(k,iωn)Gst (k+q,iωn + ωp),

(2)

where β = 1/kBT , kB is the Boltzmann constant, and T

is temperature. 
BZ is the electronic phase space volume.
f ν

k and np are the fermion and boson occupation numbers,
respectively. After performing the Matsubara summation over
the fermionic frequency ωn and taking analytical continuation
to the real frequency as ωn → ω + iδ, we get

χst
0,mn(q,ωp) = − 1


BZ

∑
k,ν,ν ′

φ
ν†
k+q,sφ

ν
k+q,tφ

ν ′
k,nφ

ν ′†
k,m

× f ν
k+q − f ν ′

k

ωp + iδ − ξν ′
k + ξν

k+q

. (3)

The interacting density-density correlation functions are
computed within the random phase approximation (RPA)
which includes multiband components of the electronic inter-
action including intra- and interorbital Coulomb interactions,
U and V , as well as Hund’s coupling JH , and pair-exchange
term J ′:

Hint =
∑

k1−k4

{
U

∑
m

c
†
k1,m↑ck2,m↑c

†
k3,m↓ck4,m↓

+
∑

m<n,σ

[
V c

†
k1,mσ ck2,mσ c

†
k3,nσ̄ ck4,nσ̄

+ (V − JH )c†k1,mσ ck2,mσ c
†
k3,nσ ck4,nσ

]
+

∑
m<n,σ

(
JHc

†
k1,mσ c

†
k3,nσ̄ ck2,mσ̄ ck4,nσ

+ J ′c†k1,mσ c
†
k3,mσ̄ ck2,nσ̄ ck4,nσ + H.c.

)}
. (4)

Here c
†
k1,mσ (ck1,mσ ) is the creation (annihilation) operator for

an orbital m at crystal momentum k1 with spin σ =↑ or ↓,
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where σ̄ corresponds to opposite spin of σ . In the multiorbital
spinor, the above interacting Hamiltonian can be collected in a
interaction tensor Ũs/c, where the subscripts s and c stand for
spin and charge density fluctuations. The nonzero components
of the matrices Ũc and Ũs are given as [26,27]

Ũmm
s,mm = U, Ũmm

s,nn = 1
2JH ,

Ũmn
s,mn = 1

4JH + V, Ũnm
s,mn = J ′,

(5)
Ũmm

c,mm = U, Ũmm
c,nn = 2V,

Ũmn
c,mn = 3

4JH − V, Ũnm
c,mn = J ′.

Of course it is implicit that all the interaction parameters are
orbital dependent. Within the RPA, spin and charge channels
become decoupled. The collective many-body corrections of
the density-fluctuation spectrum can be written in matrix
representation: χ̃s/c = χ̃0[1̃ ∓ Ũs/cχ̃

0]−1, for spin and charge
densities, respectively. χ̃0 matrix consists of components χst

0,mn

with the same basis in which the interactions Ũs/c are defined
above.

The interaction parameters (U , V , JH , and J ′) are not
parametrized individually. Rather, we estimate the components
of the interaction matrices Ũs/c within the Kanamori criterion
Ũs � {max[χ̃ ′

0(q,0)]}−1, and Ũs = Ũc, and set the values at the
optimal doping for each system. Note that in the self-consistent
loop when the self-energy is included in χ̃ ′

0, the corresponding
values of U effectively include the screening phenomena due
to spin, charge, and phonon scatterings.

Finally, the EE interaction potentials for the electronic state
are computed as

V st
mn,i(q,ωp) = ηi

2
[Ũi χ̃

′′
i (q,ωp)Ũi]

st
mn, (6)

where i stands for spin and charge components, η = 3, 1 for the
spin and charge channels, respectively. The electron-phonon
coupling effect is calculated similarly:

V st
mn,p(q,ωp) =

∑
k,μ

∣∣gμ
ms(k,q)

∣∣∣∣gμ
nt (k,q)

∣∣δ(ωp − ωqμ), (7)

where ωqμ is the phonon dispersion for band μ, and the
subscript p stands for the EP term. The EP coupling matrix
element is g

μ

ij (k,q) = ∑
ν g

μ

q,0φ
ν†
k,iφ

ν
k+q,i , where the momen-

tum averaged EP scattering amplitude g0 is deduced from the
first-principles calculation.

The feedback effect of the two EE potentials, and the EP
coupling on the electronic spectrum, is then calculated via
self-energy calculation within the MRDF method [14,28,29]

�mn,i(k,ω) = 1


BZ

∑
q,st,ν

∫ ∞

−∞
dωpV st

mn,i(q,ωp)�st
mn,ν(k,q)

×
[

1 − f ν
k−q + np

ω + iδ − ξν
k−q − ωp

+ f ν
k−q + np

ω + iδ − ξν
k−q + ωp

]
, (8)

where the subscript i stands for spin, charge, and phonon
contributions. The vertex correction �st

mn,ν(k,q) encodes both
the angular and dynamical parts of the vertex, which are

combined to obtain �st
mn,ν(k,q) = φ

ν†
k−q,sφ

ν
k−q,t [1 − ∂�mn(k −

q,ω)/∂ω]0. Full self-consistency requires the bare Green’s
function G0 in Eq. (1) to be replaced with the self-
energy dressed G̃−1(k,ω) = G̃−1

0 (k,ω) − �̃(k,ω), where the
total self-energy tensor is �̃(k,ω) = �̃s(k,ω) + �̃c(k,ω) +
�̃p(k,ω), and calculate susceptibilities and self-energies with
the dressed Green’s function until the self-energies converges.
This procedure is numerically expensive, especially in the
multiband systems and when full momentum dependence
is retained. Therefore, we adopt a modified self-consistency
scheme, where we expand the real part of the total self-energy
tensor as �̃′(k,ω) = (1 − Z̃k)−1ω in the low-energy region
[|ω| < 0.2–0.3 eV in the present materials]. The resulting
self-energy dressed quasiparticle dispersions ξ̄ ν(k) = Zν

kξν(k)
are used in Eqs. (1)–(8), which keep all the formalism
unchanged with respect to the momentum resolved orbital
selective quasiparticle renormalization factor Z̃k.

C. Quasiparticle-phonon coupling and Tc calculation

In the systems where the interaction strength is of the
order of the bandwidth, i.e., the kinetic and potential energies
are of the same order, various instabilities develop. Different
materials having different lattice structure and Fermi surface
topology are prone to different forms of instabilities, among
which leading contributions usually arise from the supercon-
ductivity and density wave fluctuations in the spin, charge, and
lattice sectors. These instabilities often lead to an incoherent,
or a gapped Fermi surface at the expense of superconductivity
and/or a static density wave (s).

Therefore, even for conventional superconductors, espe-
cially for the d-electronic systems, such correlated electronic
structure or quasiparticle spectrum can lead to substantial mod-
ification of the EP coupling constant, as originally proposed
by Eliashberg [30]. The same effect also leads to a violation
of the Migdal’s theorem [31]. We treat this problem using a
quasiperturbation method in which the noninteracting electron
and phonon dispersions are computed via DFT framework.
Then the EP coupling vertex is calculated self-consistently in
which the electronic state is dressed with both EE (density
fluctuations) and EP coupling. The quasiparticle-phonon cou-
pling density of states (DOS) or the so-called α2F is calculated
as [30,32]

α2Fp(ωp) = 1


BZN̄ (0)

∑
q,k,ν

Tr[Ṽp(q,ωp)]δ
(
ξ̄ ν

k

)
δ
(
ξ̄ ν

k+q

)
, (9)

where N̄ (0) is the correlated electronic DOS at the Fermi
level, and the self-energy dressed quasiparticle band is ξ̄ ν

k =
ξν

k + �′
ν(ξ̄ ν

k ), and Vp is defined in Eq. (7) but with self-
energy correction. Therefore, the SC transition temperature
becomes [32]

Tc = ωlog

1.2kB

exp

(
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

)
, (10)

where the traditional Debye frequency is replaced by [33]

ωlog = exp

(
2

λ

∫
dωp log ωp

α2Fp(ωp)

ωp

)
, (11)
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and the EP coupling strength for the Cooper pair is

λ = 2
∫

dωp

α2Fp(ωp)

ωp

. (12)

Note that the EP coupling in the SC channel λ is different
from the EP coupling constant for the single particle spectrum
λqp = Z−1 − 1, where Z−1 = 1 − (∂�′/∂ω)ω=0, that one
often obtains from the quasiparicle self-energy [34].

The Coulomb pseudopotential μ∗
0 is often taken as a

parameter, however, the evolution of it in the correlated system
and as a function of doping can be estimated as

μ∗ = μ∗
0

1 + μ∗
0log

(
Ū

ωlog

) , (13)

where the renormalized Coulomb interaction is Ū = U/(1 +
λ). The doping dependent values of ωlog and μ∗ are shown in
Fig. 8 for both materials.

D. Parameters

The band structure and the phonon spectrum are deduced
from first-principles calculations without any adjustable pa-
rameter. All other parameters are adjusted only at the optimal
doping for the corresponding systems to get the experimental
value of Tc. For example, we deduce the Coulomb interactions
from the Kanamori criterion from the self-energy dressed
“bare” susceptibilities (here bare refers to the susceptibility
before invoking RPA effect, but with self-energy). The values
are set at the optimal doping, and are kept to be doping inde-
pendent, but material dependent. The largest interaction value
we find is 2 eV for both cases. The EP coupling potential g0 is
found to be 33 meV for MoS2 and for 35 meV TiSe2 at their op-
timal dopings. Finally, for the bare value of μ∗

0 in Eq. (13), we
use a standard value μ∗

0 = 0.1 for both materials. All the other
values, such as renormalized ωlog, μ∗, and Ū are computed
self-consistently at all dopings using the formulas given above.

III. RESULTS

A. MoS2 thin flake

For MoS2, SC is observed in a thin flake sample. As men-
tioned in Sec. II A above, to simulate a thin flake sample, we
use the band structure for the bilayer MoS2 [see Fig. 2(a)]. In
the band insulator MoS2 at x = 0, susceptibility is fully gapped
below the particle-hole continuum [Figs. 5(a) and 5(b)], and
thus no significant renormalization arises from the EE part. At
finite doping, as shown for optimal doping x = 0.1 in Figs. 2(b)
and 2(c), several new dynamical excitation channels arise at
low energy, mainly dominated by the intraband transitions
across EF . The spin channel moves to a lower energy than the
charge one, and possesses a larger intensity, giving the largest
contribution to the many-body renormalization effect.

We show the doping evolution of all three correlation
functions by computing the k and orbital averaged correlation
spectrum, in the same spirit as Eq. (9), for spin and change
fluctuations [34] as α2Fi(ωp) = 1/
BZ

∑
q Tr[Ṽi(q,ωp)]. In

Fig. 2(d) the total electronic (spin + charge) α2F is plotted
for several dopings. We find several dominant peaks at all
dopings, except at x = 0, whose strength increases with
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FIG. 2. (Color online) (a) DFT band structure of bilayer MoS2.
(b) and (c) Imaginary part of the spin- and charge-fluctuations (χ ′′

s/c)
dispersion along the high-symmetry directions (q), respectively, at
optimal doping x = 0.1. (d) Self-consistently evaluated electronic
α2F (ω) is plotted for various representative dopings. Solid lines are
the total value (spin+charge), while the dashed lines are their charge
contributions. (e) Doping evolution of the EP coupling α2F in the
presence of self-consistent EE and EP interactions. Dashed lines
are the same self-consistent EP α2F but without EE interaction. The
arrow dictates the presence of multiple acoustic phonon modes with
finite doping.

doping, suggesting that the strength of the EE correlation
gradually increases. On the other hand, the EP α2F , shown in
Fig. 2(e), shows maximum intensity at x = 0.1. Interestingly,
the EP α2F without including EE interaction in the electronic
spectrum (dashed lines) shows fairly doping independent
behavior from underdoped to the optimally doped region.
The resulting EP coupling constant λ exhibits a dome feature
with doping as shown in the inset to Fig. 1. This result
suggests that although superconductivity in MoS2 is unlikely
to have an electronic mechanism, however, the EE correlation
is important in renormalizing the EP coupling which in turn
governs the SC dome.

In Fig. 3 we present the electronic self-energy and the
dressed DOS for MoS2. The self-energy is presented for
the lowest energy band which crosses EF , and possesses
the largest renormalization. The corresponding (k-averaged)
mass renormalization factor m∗/mb = [1 − ∂�′(ω)/∂ω]−1

0
(where mb is the DFT band mass) is shown in Fig. 1. As
expected, the electronic � is very weak at x = 0. At finite
doping, the intraband excitations provide large mass enhance-
ments, reaching a value above 2 at optimal to overdoped region.
The EP contribution, shown in Figs. 3(c) and 3(d), remains
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FIG. 3. (Color online) (a) and (b) Real (�′) and imaginary (�′′)
parts of the EE self-energy at four representative dopings [see legend
in (c)]. (c) and (d) Same results, but for EP coupling. (e) DOS at
optimal doping. The vertical arrow in (a), (b), and (e) points out that
the peak in �′′ in (d) corresponds to the dip in the DOS in (e). Inset:
The doping evolution of the DOS at EF . Blue symbols are the bare
DFT value, while green open circles are DOS with only EP coupling
and the red filled circles are the same including both EE and EP
interactions. Light blue shading is the theoretical Tc in arbitrary unit.

comparatively weak throughout the phase diagram, however,
it reaches a maximum value near the optimal doping. Both
EE and EP self-energies show strong particle-hole asymmetry
due to the semimetalliclike band structure of this system.
The imaginary part of the self-energy �′′ possesses multiple
low-energy peaks, coming from several collective modes in

the susceptibility discussed in Fig. 2. Due to causality, the real
part of self-energy �′ sharply changes slope at energies where
�′′ has peaks.

The self-energy splits the noninteracting DOS into a low-
energy quasiparticle peak and a higher-energy incoherent
satellite (or hump) feature as seen in the �-dressed DOS
in Fig. 3(e). This unique self-energy behavior, creating a
peak-dip-hump feature, is also observed in cuprates [14]
and actinides superconductors [29]. Although, EP self-energy
possesses similar energy dependence, however, it fails to create
any accountable peak-dip-hump feature in this system due to
its weak strength. The spectral weight transfer from the higher
energy states to the quasiparticle states at EF , dictated by
the strength of the self-energy effects, can be deduced by the
change in DOS between the interacting case (red filled symbol)
and noninteracting DOS (blue open circles). This doping
dependence of the EE interaction plays a dominant role in cre-
ating the domelike doping dependence of Tc, shown in Fig. 1.

We estimate the value of Tc from the renormalized EP
α2F by using the standard Allen-Dynes formula given in
Eq. (10) above. The so-called Debye frequency, which is
modified to a renormalized value as ωlog, does not show
any significant doping dependence [Figs. 8(c) and 8(d)] [35].
Similarly, the renormalized screened Coulomb potential μ∗
also does not possess any significant doping dependence for
the constant value of μ∗

0 and on-site Coulomb potential U .
Using this formula we find that theoretical estimation of Tc

quantitatively reproduces the experimental dome [11] when
both EE and EP interactions are self-consistently included in
the renormalization term. When EE interaction is neglected,
but the EP self-energy is included in the renormalized α2F

spectrum, the calculation overestimates the experimental Tc in
the entire phase diagram (also see calculations of EP coupling
induced Tc in MoS2 without including its renormalization in
Refs. [36,37]).

B. TiSe2

Next we study the origin of the SC dome in TiSe2. In
Fig. 4(a) we present our results of Tc, calculated for the case
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of EP, EE+EP, and with CDW and EE+EP interactions. We
include CDW at nesting Q = (1/2,1/2,1/2) as demonstrated
experimentally [12], and the mean-field CDW gap is taken
to be � = 13.4kBTCDW at various dopings, which reason-
ably reproduces the experimental gap [38]. The self-energy
properties and the peak-dip-hump feature in the DOS are all
characteristically analogous to MoS2. Moreover, in TiSe2 the
spin component dominates the fluctuation strength, and then
follows the contributions of charge and phonon terms in order.

TiSe2 is a three-dimensional system with considerable
dispersion along the kz direction as shown in Fig. 4(b).
Therefore, the correlation effect is reduced here compared
to MoS2, as evident in the lower mass renormalization seen
in Fig. 4(a). As a result, the values of EP coupling constant
and Tc with and without including EE interaction are closer
to each other in this system. However, the presence of CDW
enhances the EP coupling constant above λ > 2 at the optimal
doping, as shown in Fig. 4(c), in which the Migdal theorem
is violated [39]. We find that CDW overestimates Tc by about
10–20 times. On the basis of this reasoning, we conclude
that CDW and SC are competing in TiSe2. Our finding is
consistent with the conclusions of the x-ray scattering data in
1T -TiSe2 systems [12], and also with a DFT calculation [40].
Moreover, in QCP induced unconventional superconductors,
a linear-in-T dependence of resistivity is observed at the SC
dome, which is attributed to non-Fermi liquid behavior. But
in TiSe2, the resistivity data continues to exhibit quadratic T

dependence throughout the entire SC dome [6–9], pointing
against the existence of a QCP. Therefore, the quasiparticle
renormalization and the spectral weight transfer between the
quasiparticle state and the high-energy states, driven by spin
and charge fluctuations, play a dominant role in reducing Tc in
conventional superconductors.

With the same interaction parameters which give good
estimation of Tc, we also get mass renormalization in good
accord with experiments in both systems. For MoS2 we find
m∗/mb ∼ 2–2.5 in the optimal to overdoped region. The
corresponding experimental value, deduced by ARPES [41]
with respect to a simple parabolic band, is ∼2.4 for the hole
band. Again for TiSe2 we estimate the experimental mass
renormalization by comparing ARPES data [42] with the
DFT band, and find the average value for the two low-lying
bands is m∗/mb ∼ 1.74, which is close to our result of 1.8–2.
It is interesting to notice that despite having similar mass
renormalizations, Tc values differ substantially in two systems.
This is because EE interaction does not solely determine the
value of Tc, but it reduces the EP coupling strength. For
MoS2 at optimal doping, the EP coupling constant without EE
interaction is ∼1.3 which reduces by a factor of ∼0.53 when
the EE interaction is included, and the mass enhancement at
the same doping is ∼2. For TiSe2 at optimal doping, these
corresponding numbers are 0.85, 0.65, and 1.8, respectively.

IV. CONCLUSION

The main conclusion of this work is that the EP coupling
constant is substantially modified by the dynamical EE inter-
actions, which are, in general, tunable via external parameters
such as doping, pressure, magnetic field, and others. While
the examples are demonstrated here for two families of

conventional superconductors, generalization to other forms
of electron-boson coupling, such as spin fluctuation or polaron
mediated superconductivity is rather straightforward. Doping
a Mott insulator usually weakens the EE correlation strength
as seen in cuprates [14]. On the other hand, as demonstrated
here, doping enhances EE interactions in the band insulator. In
both Mott and band insulators, superconductivity seemingly
emerges when the EE interaction strength falls into the
intermediate coupling region where sufficient spectral weight
is transferred to the quasiparticle states near EF from the
higher energy “incoherent” hump (s) via coupling to dominant
spin and charge fluctuations [14,43]. We find that when these
EE interactions are taken into account in the EP (or, more
appropriately, quasiparticle-phonon) coupling, its strength and
Tc are significantly changed and acquires doping dependence.
Taken together, our study suggests that as a method of
controlling the quasiparticle-boson coupling to optimize Tc,
EE interactions may play the common role in creating the
SC dome behavior in both conventional and unconventional
superconductors.
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APPENDIX A: SPECTRUM OF DENSITY FLUCTUATIONS
FOR THIN FLAKE MoS2 AND TiSe2

In the band insulating state of MoS2, both spin and charge
susceptibilities, shown in Figs. 5(a) and 5(b), are gapped inside
the particle-hole continuum. No collective excitation develops
inside the spin gap in a band insulator, unlike in a magnetic
insulator where a spin-wave dispersion (Goldstone mode)
arises inside the particle-hole continuum due to symmetry
breaking (see, e.g., Fig. 6 of Ref. [44]). At finite doping
[Figs. 5(c) and 5(d)], in the metallic state, various intraband
transitions turn on and give rise to low-energy modes. Some of
the modes extend to ωp → 0. The spin channels are moved to
lower in energy than the charge counterpart due to the many-
body correction within the RPA model. These low-energy
modes are responsible for the increase of renormalization
effect at finite doping. In TiSe2 at its optimal doping, due
to the presence of many bands in the low-energy spectrum, the
density fluctuation channels exhibit several modes, as shown
in Figs. 5(g) and 5(h).

APPENDIX B: MOMENTUM AND DOPING DEPENDENT
SELF-ENERGY

The momentum dependence of the self-energies is one of
the advantages of the present MRDF method, which allows
us to understand the origin of the strong correlation feature
from the band structure properties. As mentioned before, the
density-density fluctuations arise from the JDOS fluctuation,
which means it is dominated by the higher DOS regions in
both filled and empty states. As seen in Fig. 6, for MoS2,
there is a strong spectral weight of the spin and change mode
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around the q = M point, which disperses strongly along the
� point, rather than along the K point. This low-energy mode
is mainly responsible for the low-energy band renormalization
in the self-energy, see Fig. 7. In both the real and imaginary
part of the self-energy, the strongest renormalization appears
around k = K point, where the two bands almost overlap,
see Fig. 2, giving rise to higher DOS at the Fermi level. In the
right-hand panel of Fig. 6, it is shown that the spin contribution
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total self-energy at the same doping. As mentioned in the main text,
the largest contribution stems from the spin channel.

to the fluctuation spectrum is dominant, and then the charge
contribution, while phonon contribution is the least.

The momentum dependence of the self-energy is very weak
in TiSe2, as shown in Fig. 7. This is also reflected in the the
susceptibility spectrum in Fig. 5 which is quite broad and
dispersive. Similarly, the electronic dispersion of this system
also indicates that there is not much of an electronic “hot spot”
for the strong correlation phenomena. Despite TiSe2 having a
metallic DFT band structure, its self-energy spectrum exhibits
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particle-hole asymmetry. This is due to the fact that the bands
are more dispersive below EF than above it, which makes the
correlation effects larger in the empty states.

APPENDIX C: DOPING DEPENDENT m∗/mb,
RENORMALIZED ωlog, AND μ∗

The mass enhancement m∗/mb = 1/Z at the Fermi level is
plotted in the upper panel of Fig. 8 for the highest renormalized
band (nearest to the Fermi level) as a function of doping.
As shown in Fig. 1, the phonon part (black dots) exhibits
a domelike feature centering the optimal doping, while spin
and charge contributions increase gradually with doping. As
the phonon contribution decreases in the overdoped region,
the spin contribution rises sharply. For TiSe2, the phonon
and charge contributions are very similar as a function of
doping. In the CDW state, the renormalization is dominant
in the undoped case, and then decreases monotonically with
doping. All results are presented for one of the two bands in
the low-energy spectrum in which the renormalization effect
is strongest. As deduced before, we get m∗/mb ∼ 2–2.5 in the
optimal to overdoped region in MoS2, which is close to the
experimental value of ∼2.4 for the hole band. Again for TiSe2,
the experimental value of m∗/mb ∼ 1.74 is close to our result
of 1.8–2.

As demonstrated in the main text, the self-energy effects
on ωlog and μ∗ are rather small, and the values remain fairly
doping independent, and do not exhibit any apparent anomaly
at the optimal doping. More interestingly, the values are almost
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identical for EP and EE+EP cases, demonstrating that these
features do not contribute to the formation of the SC dome in
these systems.
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