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Fluctuation-induced first-order phase transitions in type-1.5 superconductors in zero external field
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In a single-component Ginzburg-Landau model which possesses thermodynamically stable vortex excitations,
the zero-field superconducting phase transition is second order even when fluctuations are included. Beyond the
mean-field approximation the transition is described in terms of proliferation of vortex loops. Here we determine
the order of the superconducting transition in an effective 3D vortex-loop model for the recently proposed
multiband type-1.5 superconductors. The vortex interaction is nonmonotonic, i.e., exponentially screened and
attractive at large separations, and short-range repulsive. We show that the details of the vortex interaction, despite
its short-range nature, can lead to very different properties of the superconducting transition than found in type-1
and type-2 systems. Namely, the type-1.5 regime with nonmonotonic intervortex interaction can have a first-order
vortex-driven phase transition not found in the single-band case.
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I. INTRODUCTION

The order of the zero-field superconducting transition has
been studied in many works in the usual single-component
type-1 and type-2 superconductors. Halperin, Lubensky, and
Ma established that in extreme type-1 superconductors the
gauge field fluctuations render the superconducting phase
transition first order [1,2]. In the opposite limit of extreme
type-2 systems, Dasgupta and Halperin [3] demonstrated that
the superconducting transition is continuous and in the univer-
sality class of the inverted-3DXY model. The different nature
of the superconducting phase transition in this limit is revealed
by a duality mapping [3–5], which demonstrates that the phase
transition is driven by proliferation of vortex-loop fluctuations.

While the extreme type-1 and type-2 limiting cases are
well investigated, the value of Ginzburg-Landau parameter
κ = λ/ξ at which the phase transition changes from second
to first order is much harder to establish. The attempted
analytical approaches [6] are based on approximations that
are unfortunately not controllable, in contrast to the well
controllable duality mapping in the London limit [3–5]. The
most reliable information to date comes from numerical
simulations. The largest Monte Carlo simulations performed
so far [7,8] claim that the tricritical κtri = (0.76 ± 0.04) /

√
2 is

slightly smaller than the critical κc = 1/
√

2, which separates
the type-1 regime with thermodynamically unstable vortices
and the type-2 regime with thermodynamically stable vortices.
In these works it is claimed that even in the weakly type-1
regime where the vortex interaction is purely attractive and
vortices are not thermodynamically stable, the phase transition
can be continuous [9].

Recently it has been proposed that in multicomponent
superconductors there is a new regime that falls outside the
type-1/type-2 classification. Such materials are described by
theories with multiple superconducting components, e.g., by
Ginzburg-Landau theory of the form

F =
∑
a=1,2

1

2
|(i∇ − eA)ψa|2 + V (|ψa|,θ1 − θ2) + (∇ × A)2

2
,

(1)
where ψa = |ψa|eiθa are superconducting components, V is a
collection of potential terms, and A is the vector potential. Such

systems have multiple coherence lengths ξa . For detailed dis-
cussion of the definitions of coherence lengths in the presence
of intercomponent coupling, see Ref. [10]. In type-1.5 regimes
some of the coherence lengths are larger and some are smaller
than the magnetic field penetration length λ [10–12]. The
different coherence lengths can originate from the existence
of different superconducting gaps in different bands [13], or
superconducting states breaking multiple symmetries [14,15].

In what follows we focus on the two-band case. It has been
shown that thermodynamically stable double-core vortices
exist in the regime where ξ1 <

√
2λ < ξ2. In 2D such vortices

asymptotically have an interaction of the form [10–12]

V (r) ∼ m2K0 (r/λ) − q2
1K0 (r/ξ1) − q2

2K0 (r/ξ2) , (2)

where m,q1,q2 are system dependent coefficients and K0 is a
modified Bessel function. The first term in Eq. (2) with range λ

originating from the magnetic and current-current interaction
is repulsive for two vortices with like vorticity and attractive
otherwise. The second and third terms are attractive with range
ξL = max {ξ1,ξ2}, and originate from core-core interaction for
vortices with two cocentered overlapping cores in the two su-
perconducting components. Consequently in type-1.5 regime
with ξL > λ the interaction is short-range repulsive due to the
first term, while at the longer range it is exponentially screened
and attractive due to the core-core attraction. We will refer
to the core-core attraction as intermediate-range attractive to
emphasize that all interactions here are exponentially screened.
In contrast to the type-1 regime, type-1.5 systems have
thermodynamically stable vortex excitations, while in contrast
to the type-2 regime the intermediate-range intervortex forces
are attractive. Therefore, the nature of the superconducting
phase transition in the type-1.5 systems cannot be deduced
from known cases of single-component superconductors.
Currently the problems of type-1.5 superconductivity is a
subject of intense experimental research on materials where
vortex clusters were observed [16–21].

Similar to the single-component case, in two-band systems
it is difficult to advance analytically in a controllable way
away from extremely type-2 regimes, in particular using
duality arguments. Nonetheless one can identify a limit in the
type-1.5 regime where certain simplifying assumptions can
be made. That is, consider a two-band superconductor with

1098-0121/2015/91(9)/094508(7) 094508-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.094508


HANNES MEIER, EGOR BABAEV, AND MATS WALLIN PHYSICAL REVIEW B 91, 094508 (2015)

relatively strong interband coupling made of a strongly type-2
component and a type-1 component with a much lower ground
state density. This condition implies that vortex excitations are
expected to drive the phase transition. Yet in contrast to type-2
superconductors, the vortices will feature a small attractive tail
in the interaction. In a regime with relatively strong interband
coupling, vortices can be approximated as objects with no fluc-
tuating internal structure, and, under certain conditions, multi-
body forces between type-1.5 vortices can be neglected [22].
Then the composite vortices can be seen as charged point parti-
cles interacting via a sum of screened Coulomb potential terms.

In this paper we study the 3D vortex-loop driven finite-
temperature superconducting phase transition in zero field for a
model of a type-1.5 superconductor. The main task is to inves-
tigate the order of the superconducting transition. We propose
an effective model for composite vortices with a nonmonotonic
length scale dependence of the vortex interaction. We study this
model by classical finite-temperature Monte Carlo (MC) sim-
ulation and finite-size scaling methods in order to classify the
order of the transition. From the U(1) symmetry of the
superconducting order parameter an inverted 3DXY transition
is the expected result for a system with thermodynamically
stable vortices, but instead we obtain first-order transitions
in the cases involving a nonmonotonic vortex interaction
that we tested. This result differs qualitatively from the
single-band systems where the zero-field transition driven by
thermodynamically stable vortices is considered to be always
continuous.

II. GENERALIZED EFFECTIVE VORTEX-LOOP MODEL

For the type-1.5 regime in the limit outlined above,
fluctuations near the phase transition can be expected to be
described by a generalized 3D vortex-loop model that we will
now formulate. In a 3D system vortex lines form closed loops,
and on a lattice the vortex degrees of freedom become directed
integer link current variables qσ

i , where σ = x̂,ŷ,ẑ are the unit
lattice vectors connecting the site i with its neighbor i + σ on a
simple cubic lattice with vertices i = 1, . . . ,Ld . The numerical
lattice constant is set to unity. The functions K0(r/λ) in Eq. (2)
generalize to 3D Yukawa interactions, represented on a lattice
with periodic boundary conditions by lattice Green’s functions

Yij = Y

( |ri − rj |
λY

)
= cY

Ld

∑
k

cos (k · (ri − rj ))

6 − ∑
σ 2 cos(kσ ) + λ−2

Y

,

(3)

where cY is a real coupling constant. The 3D counterpart of
Eq. (2) is then given by the vortex line Hamiltonian

H =
∑
i,j,σ

1

2
qσ

i Vij q
σ
j +

∑
i,j,σ

1

2

∣∣qσ
i

∣∣Uij

∣∣qσ
j

∣∣ , (4)

where both Uij and Vij shall have the form of Eq. (3). The
first term corresponds to m2K0 (r/λ) in Eq. (2) with λV = λ in
Eq. (3). Thus Vij mediates the screened Coulomb interaction
of the composite vortex lines as obtained for a two-component
3D superconductor with range set by the London penetration
depth λ. The second term corresponds to the slowest decaying
density interaction −q2

LK0 (r/ξL) in Eq. (2), which is always
attractive (cU < 0) and of exactly the same form as Vij with

range λU = ξL. The faster decaying component has been
ignored meaning that its range and amplitude are assumed
to be sufficiently small. This model is highly simplified and
neglects amplitude fluctuations, additional core-energy contri-
butions, and core-core interactions between perpendicular line
segments. While such effects can in principle be included in
the model to reach accurate description of a given material,
we here focus on properties of the effective model and leave
more detailed investigations for future work.

For a weak attractive part |cU | � cV and ξL � λ, Eq. (4)
is similar to a type-2 superconductor, and from the U(1)
symmetry of the model it is expected that the transition
from the ordered low-temperature phase to the disordered
high-temperature phase is a second-order phase transition
belonging to the inverted 3DXY universality class. However
for a general choice of parameters in Eq. (4) such an a priori
assertion is not possible. The order of the transition must in
general be determined by simulations or by other means.

Next we discuss the choice of parameter values. The
possible parameter choices are restricted by a stability criterion
in order to represent a valid description for multicomponent
superconductors. That is, the coefficients cV < 0 < cU and
the ranges λ,ξL in Eq. (4) must be chosen such that the lowest
energy state is the vortex free state with all the qσ

i = 0. At
the parameters we will consider the minimum of the vortex
interaction comes from the attraction energy between nearest
neighbor link variables with opposite sign. A candidate low
energy state is thus given by a Néel-type stacked loop config-
uration on a cubic lattice such as qz (r) = (−1)x+y+z ,qy (r) =
−qz (r) ,qx (r) = 0. The energy of the stacked state can
be calculated from the Hamiltonian in Fourier space, H =

1
2Ld

∑
σ,k[Ṽ (k)|q̃σ (k)|2 + Ũ (k)|Q̃σ (k)|2], where Qσ (r) =

|qσ (r)|, which gives E = Ld [Ṽ (π,π,π ) + Ũ (0,0,0)] =
Ld [cV /(12 + λ−2) + cUξ 2

L]. The boundary of stable param-
eters is identified by setting this energy to zero to make the
stacked state degenerate with the vortex-free vacuum state.
The parameters used in the model must thus satisfy

cV

12 + λ−2
+ cUξ 2

L > 0. (5)

To investigate the different types of behavior of the model in
Eq. (4) we focus on several different parameter regimes.

(1) Screened repulsive parameters (SR): ξL = λ = 0.5,

cV = 41,cU = −2.5. The attractive coefficient cU is small
compared to cV yielding a net repulsive interaction between
vortex segments with equal vorticity, thus representing a
two-band type-2 superconductor. The transition in this model
is therefore expected to belong to the inverted-3DXY univer-
sality class, which will be verified below.

(2) Nonmonotonic parameters (NM): ξL = 1,λ = 0.5,cV =
41,cU = −2.5. The range ξL of the attractive part has been
increased compared to the SR case yielding an effectively
nonmonotonic interaction with a net repulsion at short length
scales and a net attraction at intermediate length scales between
equal vorticities. For these values of ξL,λ,cU , the choice cV =
41 is within the stability requirement cV > 40 given by Eq. (5).
This regime gives a simplified effective model for vortex loops
in type-1.5 superconductors.

(3-4) Screened repulsive parameters with enhanced at-
traction (SR10, SR1024999): λ = ξL = 0.5,cV = 41 and
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cU = −10,−10.24999, respectively, which are close to the
minimum allowed value −10.25 set by Eq. (5). For the
SR1024999 parameters the vortex free state and the staggered
configuration are almost degenerate in energy. In ordinary
superconductors the energy of such vortex configurations
contain contributions from nonpairwise forces, which are not
present in our model. In this parameter regime the model is not
representative for currently known ordinary superconductors
and has mainly theoretical interest.

III. CALCULATED QUANTITIES AND
SCALING ARGUMENTS

Destruction of superconductivity in systems with thermo-
dynamically stable vortices is associated with proliferation
of vortex-loop fluctuations. For finite λ we can assume an
ensemble where number fluctuations of the vortex lines are
included at finite energy cost. The proliferation of vortex loops
at the phase transition is signaled by fluctuations in the winding
numbers

Wσ = 1

L

∑
i

qσ
i . (6)

The singular behavior at a second-order phase transition is
described by the finite-size scaling ansatz〈

W 2
σ

〉 = W̃ 2(L1/ν t), (7)

where W̃ 2 is a scaling function, L is the system size, t =
T/Tc − 1, and ν is the correlation length critical exponent.
This means that curves of MC simulation data of 〈W 2

σ 〉 vs
temperature T for different system sizes L will intersect at T =
Tc. The derivative scales as ∂〈W 2

σ 〉/∂T ∼ L1/ν at the transition.
For the 3DXY universality class the critical exponent for the
correlation length is ν ≈ 0.671 and for the heat capacity α =
2 − dν ≈ −0.015 [23].

In the vicinity of a first-order transition the two different
phases coexist, the correlation length is finite, and scaling
given by Eq. (7) is not fulfilled. Precisely at Tc the system is
equally probable to be in either of the phases. In simulations the
internal energy histogram P (e), where e = H/Ld is the energy
density, shows a double-peak structure centered around the two
characteristic internal energy values H1,H2. The free-energy
barrier given by �FL = (1/β) log [Pmax/Pmin] increases with
system size and behaves asymptotically as Ld−1 [24]. For a
second-order transition the double-peak structure disappears
in the thermodynamic limit.

The presence of a double-peak structure in the energy
histogram is not enough to distinguish between a first- and
a second-order transition. For a first-order transition it is also
required that the latent heat �H = H1 − H2 does not vanish
in the thermodynamic limit. The latent heat contributes to the
heat capacity

cL (T ) = 〈(H − 〈H 〉)2〉
T 2Ld

. (8)

A double-peak structure in P (e) leads to a heat capacity
maximum at the transition with a leading size dependence
given by c∗

L ∼ Ld (�e)2 ∼ Ld , corresponding to a δ-function
singularity at Tc for L → ∞. This is equivalent to an
energy peak separation given by �e ∼ (c∗

L/Ld )1/2 > 0. On

the contrary, if the transition is continuous the scaling form
cL(T ) ≈ a(t,L)t−α + b(t) ≈ Lα/νã(L1/ν t) + b(t) holds. This
implies that the maximum c∗

L grows slower upon increasing
the system size than in the case of a first-order transition as
long as dν > 1, and a histogram with a single energy peak.
In the data analysis below we sometimes find it useful to plot
the rescaled heat capacity cL/Ld which for increasing system
size should approach a constant maximum for a first-order
transition and a decreasing maximum for a 3DXY transition.
To reduce the influence of the analytic term it can be beneficial
to consider the third moment [25]

M3 = 〈H − 〈H 〉〉3 ∼ ∂

∂T
(T 2LdcL). (9)

This quantity exhibits two extrema around Tc whose differ-
ence �M3 scales as ∼L

1+α
ν for continuous and ∼L2d for

discontinuous transitions. The size dependence of c∗
L and �M3

at a first-order transition corresponds to effective exponents
α = 1,ν = 1/d.

In addition a method by Challa, Landau, and Binder [26]
which does not rely on a precision determination of the energy
histogram can be used to determine the order of a transition.
The reduced fourth order energy cumulant for system size L is

VL = 1 − 〈H 4〉
3〈H 2〉2

. (10)

For both discontinuous and continuous transitions this
quantity approaches the trivial limit V ∗

∞ = 2/3 for T �= Tc.
For finite-size systems a minimum VL < V ∗

∞ is obtained at
the transition. For second-order transitions this minimum
converges towards V ∗

∞ for L → ∞, while for first-order
transitions the minimum approaches a nontrivial value
V∞ < V ∗

∞ with a correction term ∼L−d .

IV. MONTE CARLO METHODS

Our MC simulations use a hybrid scheme combining
worm and exchange methods that performs well both at
first- and second-order phase transitions. The classical worm
algorithm [27] constructs closed vortex-loop fluctuations in
terms of closed random walk trajectories, and gives efficient
simulation performance at a second-order phase transition
by minimizing critical slowing down of the dynamics. In
addition the replica exchange algorithm [28] is used in order
to reduce the autocorrelation time and the risk of getting stuck
in metastable states, which reduces hysteresis at first-order
transitions. In our simulations we use 8-80 parallel threads.
Prior to each production run the system was equilibrated for
215 sweeps for the SR parameters, for at least 217 sweeps for
the NM and SR1024999 parameter sets, and for 216 sweeps
for the SR10 set. A MC sweep is taken to be 3Ld link
variable updating attempts. Equally many sweeps were done
to compute averages. The MC trajectories were then further
analyzed using the multihistogram reweighting technique [29].
Error bars are obtained via reweighting of different bootstrap
realizations of the same MC trajectory. As a consistency check
we also performed parallelized Wang-Landau simulations
[30,31] for the NM case in a finite energy window determined
by the energy expectation value of the MC simulations. In
the WL simulations the MC moves used are two types of
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closed loops, formed as attempts to insert closed elementary
plaquette loops or as straight lines that close on themselves by
the periodic boundary conditions. Consistent results between
the different methods were obtained.

V. RESULTS

We start within the strong type-2 regime with model
parameters given by the SR set with a repulsive short-range
interaction. Figure 1(a) shows MC results for the winding
number fluctuations. At a second-order phase transition data
curves of the winding number fluctuations vs temperature
for different system sizes L must intersect at the transition
temperature according to Eq. (7). Corrections to scaling
produce deviations from the intersection point visible in the
figure for the smallest system sizes, but the biggest sizes
intersect within error bars at a single temperature that estimates
Tc. The inset in Fig. 1(a) shows a finite-size scaling collapse
of MC data for the four largest system sizes L = 20,22,24,26
onto a single curve representing the scaling function W̃ 2 in
Eq. (7). In the scaling collapse the value ν = 0.671 of the
3DXY model was used. This is consistent with a second-order
phase transition in the inverted-3DXY universality class as
expected for short-range repulsive interactions.

To investigate the effect of a nonmonotonic vortex interac-
tion, MC data for W 2 for the NM parameter set is shown in
Fig. 1(b). The data deviates clearly from 3DXY scaling since
the slope dW 2/dT at the transition is much steeper than the
3DXY relation L1/0.671 found in (a). This demonstrates that
the transition of the NM model is not of the 3DXY type, and it
will become clear below that it is instead first order. Panels (c)
and (d) show data for the repulsive SR10 and SR1024999
models, respectively. The inset in (d) plots the maximum of
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FIG. 1. (Color online) MC data for vortex-loop winding number
fluctuations. (a) SR data curves intersect at the critical temperature
Tc ≈ 1.386, with scaling corrections visible for the smallest system
sizes. Inset: finite-size scaling data collapse for L = 20,22,24,26
with ν = 0.671. (b) NM model. The onset is steeper than for the
SR model, which indicates a first-order transition. (c) SR10 model
with cU = −10. (d) SR1024999 model with cU = −10.24999. Inset:
maximum of the winding number fluctuation derivative dW 2/dT for
all data sets. All curves have been normalized by the value obtained
for L = 8. The dashed blue line corresponds to a power law ∼L3 and
the dotted line to ∼L4.

dW 2/dT . Data curves for the SR and SR10 models both show
deviations from a pure power-law form for the system sizes
studied here. The SR data indicates approach to the 3DXY
result L1/0.671 for large L but corrections to power-law scaling
are visible also for the largest lattice sizes. The SR10 model
data show a possible slow crossover towards 3DXY scaling,
but the sizes are too small to decide. The SR1024999 model is
consistent with the size dependence dW 2/dT ∼ L3, showing
no tendency for a crossover to 3DXY scaling for the range
system sizes examined here. For the NM model the data
scales approximately as ∼L(d+1) = L4. This suggests that the
assumption of a universal scaling distribution for the winding
number fluctuations ∼L0 at the transition does not hold and
indicates that the NM model has a first-order transition.

Results for the heat capacity and energy histograms are
shown in Figs. 2 and 3. Figure 2(a) shows the evolution of MC
data for the heat capacity cL for a sequence of parameter values
in ξL = 0.5–1 interpolating from the SR to NM case for system
size L = 14. The SR data curve is smooth, while increasing
ξL increases the peak height and decreases the width. The
NM curve peaks sharply at the transition in agreement with a
δ-function peak in the heat capacity at a first-order transition.
The insets of Figs. 2(b) and 2(c) show the maximum value
c∗
L and the difference �M3 vs L. For the SR model good

agreement is found with c∗
L ∼ L2/ν−3 and �M3 ∼ L(3−dν)/ν

with ν = 0.671 as expected for the inverted-3DXY scenario.
In the NM case the heat capacity maxima scale as c∗

L ∼ Ld and
�M3 ∼ L2d indicating a strong first-order transition. Neither
of the SR10 and SR1024999 sets show any tendency towards
the same behavior, which suggests either a slow approach to
second order or to weak first-order transitions. In both SR10
and SR1024999 cases much bigger system sizes are required
for definite conclusions.

Figure 3 shows energy histograms at the transition tempera-
ture for the NM model and reveals a double-peak structure. The
results from the Worm and Wang-Landau methods are similar,
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FIG. 2. (Color online) MC data for the rescaled heat capacity and
M3. (a) cL/Ld vs T for L = 14 for a sequence of models ranging
from the SR model with ξL = 0.5 to the NM model with ξL = 1.
(b) Scaling of the maxima of cL vs L for the different parameter
sets. The dashed black line is a fit to the form aLω + b with ω =
−0.02 and the dotted blue line is a pure power law with ω = d = 3.
(c) Scaling of �M3 vs L normalized by the value at L = 10. The NM
and SR curves scale with the exponents expected for a first-order and
inverted-3DXY transition, respectively.
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FIG. 3. (Color online) (a) MC results for the energy histogram
at the transition for the NM model. The probability density P (e)
exhibits a characteristic double-peak structure with a monotonically
growing barrier �P upon increasing the system size. The dashed
curves shown for L = 14,16 are results of Wang-Landau calculations.
(b) The normalized latent heat �e obtained from the maxima in (a)
approaches a nonzero value for L → ∞. (c) The free-energy barrier
determined in (a) grows with increasing system size which indicates
a strong first-order transition.

but the latter gives smoother data curves in the region between
the peaks. Figure 3(b) indicates that the latent heat saturates
at a finite value for large system sizes, and (c) shows that the
free-energy barrier grows with increasing system size. This
indicates that the NM model has a strong first-order transition
which is our main result.

The transition in the models SR10 and SR1024999 is more
difficult to categorize. Energy histograms for the SR10 model
did not produce any double peaks for the system sizes we
explored. The heat capacity peak in the inset in Fig. 2 increases
significantly slower than a ∼L3 law expected for a first-order
transition, and may possibly approach 3DXY scaling for large
systems for the SR10 model. Both these results favor a second-
order transition.

Figure 4 shows energy histogram data for the SR1024999
model. Figure 4(a) shows a double-peak structure in the
histogram. Figure 4(b) shows a free-energy barrier growing
slowly with increasing system size which is expected at a
first-order transition. However, the heat capacity maximum
plotted in Fig. 2(b) grows slower than a Ld power law
corresponding to a first-order transition, indicating that the
width of the energy histogram �e → 0 for L → ∞. While
this suggests a continuous transition, two further observations
can be made. The scaling deviation from first-order behavior
could in principle be attributed to finite size corrections as
follows. The width of the energy histogram in Fig. 4(a) is
related to the heat capacity data in Fig. 2 by �eL ∼ (L−dcL)1/2.
A finite size scaling ansatz �eL = �e∞ + A/L + B/L2 with
fit parameters �e∞,A,B gives a good fit to the data and
extrapolates to a finite peak width �e∞ ≈ 0.18 in the large
system limit, which is consistent with a first-order transition
showing substantial finite-size corrections. Alternatively, a
power law of the form �eL ∼ 1/Lp also fits the data and
gives p ≈ 0.7, which extrapolates to a single δ peak histogram
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FIG. 4. (Color online) (a) Energy histogram of the SR1024999
model at the phase transition. The tendency towards double-peak
formation is much weaker than for the NM case plotted in Fig. 3.
(b) The free-energy barrier �F increases slowly with system size.
(c) Minimum value of the energy cumulant VL vs system size L.
The black line is the asymptotic limit 2/3 expected for second-order
transitions. Dashed curves are fits to the form VL = V∞ + a/Lb.

for L → ∞. This corresponds to a heat capacity maximum
that varies with system size as c∗

L ∼ L1.6. However, as also
seen in Figs. 2(b) and 2(c), this is far from the finite-size
scaling behavior expected at a 3DXY transition given by
c∗
L ≈ aL−0.02 + b.

Figure 4(c) shows results for the minimum of the energy
cumulant VL. All data curves can be fitted to the form
VL = V∞ + aL−b. Data for the SR model quickly converges
towards the expected value V∞ = 2/3 for a second-order
transition. A fit of the data for the SR10 model gives
V∞ = 0.66 ± 0.01 which is consistent with a second-order
transition. The corresponding fit for the SR1024999 model
gives a slightly lower asymptotic limit V∞ = 0.64 ± 0.01, but
with a correction exponent b ≈ 1.9 rather than b = d = 3
expected for a strong first-order transition. The NM model
gives a negative minimum value of VL for all L consistent
with a strong first-order transition (data not shown).

To further assess the importance of nonmonotonicity in the
vortex interaction we implemented the following modification
of the NM model. The attractive potential Uij in Eq. (4) of the
NM model was set to zero beyond a cutoff radius rc without
altering the interaction for r < rc. Taking the cutoff radius to
rc = 3 gives a totally repulsive interaction in all directions.
The effect of truncating the interaction at different distances is
demonstrated in Fig. 5, which indicates that for rc = 3 the first-
order behavior vanishes and the transition becomes second
order, presumably turning into a 3DXY transition as for the SR
case. The energy histograms in this case have no double-peak
structure. If the cutoff radius is chosen to rc = 5 the interaction
becomes nonmonotonic in all directions. Then the first-order
signature reappears as shown by the black curve and the
double-peaked energy histogram in the inset in Fig. 5. This in-
dicates that the first-order mechanism found in the NM model
is affected by the nonmonotonicity of the vortex interaction.

Taken together the results in Figs. 1, 2, and 5 suggest
dν > 1 for all models with a screened monotonic interaction.
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FIG. 5. (Color online) Rescaled heat capacity for different cutoff
lengths of the NM model interaction. The NM model without
truncation (orange curve) has a first-order transition with a sharp
peak in the heat capacity. The truncated model with rc = 3 (blue,
purple, red curves) has a monotonic interaction, and gives a rescaled
heat capacity peak that decreases with system size indicating a
second-order transition. For the nonmonotonic model with rc = 5
(black curve) first-order signatures reappear, i.e., a sharp heat capacity
peak, and a double-peaked energy histogram at the transition (inset).

This implies a collapse of the histogram in Fig. 4 to a
single peak in the thermodynamic limit, and thus second-order
transitions for all SR models. However, given the results
presented in Fig. 4 and the fact that the exponents for
the SR10 and SR1024999 data in Figs. 1 and 2 clearly
deviate from the 3DXY values, weak first-order transitions in
the thermodynamic limit cannot be completely ruled out. The
model then would have weak first-order transitions also for
parameters where the interaction between vortices is fully
repulsive. Again, in this near degenerate regime the model
does not correspond to ordinary type-2 superconductors.

VI. DISCUSSION

We present simulation results suggesting that in type-1.5
superconductors there is a new mechanism that drives the

superconducting transition to become first order. This however
does not imply that the superconducting phase transition in
type-1.5 material is generically first order. We described the
fluctuations by a generalized effective link-current model.
To answer the question in the general case requires much
more computationally demanding large-scale simulations of
full two-band Ginzburg-Landau models. It is conceivable
that fluctuation-induced enhancement of the repulsion for
some of the parameters of the model eliminates the bare
attractive interaction between vortices, which may make the
phase transition continuous for certain parameter ranges in the
type-1.5 regime. Among various scenarios for realization of
type-1.5 superconductivity, a special reservation should be
made for simple U (1) multiband materials. In that particular
case, at the mean-field level, the intervortex interaction
depends on temperature and a superconductor becomes either
type-1 or type-2 in the limit T → Tc by standard mean-
field symmetry-based arguments [13]. This is consistent with
experiments that study the temperature dependence of the
vortex attraction [17]. Therefore for this particular kind of
type-1.5 materials for the phase transition to be first order,
the fluctuations should be strong enough so that the phase
transition takes place substantially below the mean-field
estimate of Tc. This means that the effects suggested here
are probably more likely to be observed in multiband type-1.5
superconductors with a relatively high Tc.
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Center in Linköping, Sweden.

[1] B. I. Halperin, T. C. Lubensky, and S.-K. Ma, Phys. Rev. Lett.
32, 292 (1974).

[2] S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).
[3] C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556 (1981).
[4] M. E. Peskin, Ann. Phys. (NY) 113, 122 (1978).
[5] P. R. Thomas and M. Stone, Nucl. Phys. B 144, 513 (1978).
[6] H. Kleinert, Lett. Nuovo Cimento Ser. 2 35, 405 (1982).
[7] S. Mo, J. Hove, and A. Sudbø, Phys. Rev. B 65, 104501 (2002).
[8] J. Hove, S. Mo, and A. Sudbø, Phys. Rev. B 66, 064524 (2002).
[9] The interaction is purely attractive between type-1 vortices

only in the continuum limit [7,8]; for lattice Ginzburg-Landau
model there is always contact repulsion between vortex lines.
The contact repulsion can, for entropic reasons, make the
effective interaction purely repulsive [32,33]. In Refs. [7,8] it
was discussed that the effect can result in a continuous phase

transition for vortices with bare attractive interaction and contact
repulsion. The difference in our case is that we consider the
regime with thermodynamically stable vortices with repulsion,
which is not contact, and no other degrees of freedom present in
the model.

[10] J. Carlström, E. Babaev, and M. Speight, Phys. Rev. B 83,
174509 (2011).

[11] E. Babaev and M. Speight, Phys. Rev. B 72, 180502 (2005).
[12] E. Babaev, J. Carlström, and M. Speight, Phys. Rev. Lett. 105,

067003 (2010).
[13] M. Silaev and E. Babaev, Phys. Rev. B 84, 094515 (2011).
[14] J. Carlström, J. Garaud, and E. Babaev, Phys. Rev. B 84, 134518

(2011).
[15] D. F. Agterberg, E. Babaev, and J. Garaud, Phys. Rev. B 90,

064509 (2014).

094508-6

http://dx.doi.org/10.1103/PhysRevLett.32.292
http://dx.doi.org/10.1103/PhysRevLett.32.292
http://dx.doi.org/10.1103/PhysRevLett.32.292
http://dx.doi.org/10.1103/PhysRevLett.32.292
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevLett.47.1556
http://dx.doi.org/10.1103/PhysRevLett.47.1556
http://dx.doi.org/10.1103/PhysRevLett.47.1556
http://dx.doi.org/10.1103/PhysRevLett.47.1556
http://dx.doi.org/10.1016/0003-4916(78)90252-X
http://dx.doi.org/10.1016/0003-4916(78)90252-X
http://dx.doi.org/10.1016/0003-4916(78)90252-X
http://dx.doi.org/10.1016/0003-4916(78)90252-X
http://dx.doi.org/10.1016/0550-3213(78)90383-8
http://dx.doi.org/10.1016/0550-3213(78)90383-8
http://dx.doi.org/10.1016/0550-3213(78)90383-8
http://dx.doi.org/10.1016/0550-3213(78)90383-8
http://dx.doi.org/10.1007/BF02754760
http://dx.doi.org/10.1007/BF02754760
http://dx.doi.org/10.1007/BF02754760
http://dx.doi.org/10.1007/BF02754760
http://dx.doi.org/10.1103/PhysRevB.65.104501
http://dx.doi.org/10.1103/PhysRevB.65.104501
http://dx.doi.org/10.1103/PhysRevB.65.104501
http://dx.doi.org/10.1103/PhysRevB.65.104501
http://dx.doi.org/10.1103/PhysRevB.66.064524
http://dx.doi.org/10.1103/PhysRevB.66.064524
http://dx.doi.org/10.1103/PhysRevB.66.064524
http://dx.doi.org/10.1103/PhysRevB.66.064524
http://dx.doi.org/10.1103/PhysRevB.83.174509
http://dx.doi.org/10.1103/PhysRevB.83.174509
http://dx.doi.org/10.1103/PhysRevB.83.174509
http://dx.doi.org/10.1103/PhysRevB.83.174509
http://dx.doi.org/10.1103/PhysRevB.72.180502
http://dx.doi.org/10.1103/PhysRevB.72.180502
http://dx.doi.org/10.1103/PhysRevB.72.180502
http://dx.doi.org/10.1103/PhysRevB.72.180502
http://dx.doi.org/10.1103/PhysRevLett.105.067003
http://dx.doi.org/10.1103/PhysRevLett.105.067003
http://dx.doi.org/10.1103/PhysRevLett.105.067003
http://dx.doi.org/10.1103/PhysRevLett.105.067003
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.84.134518
http://dx.doi.org/10.1103/PhysRevB.84.134518
http://dx.doi.org/10.1103/PhysRevB.84.134518
http://dx.doi.org/10.1103/PhysRevB.84.134518
http://dx.doi.org/10.1103/PhysRevB.90.064509
http://dx.doi.org/10.1103/PhysRevB.90.064509
http://dx.doi.org/10.1103/PhysRevB.90.064509
http://dx.doi.org/10.1103/PhysRevB.90.064509


FLUCTUATION-INDUCED FIRST-ORDER PHASE . . . PHYSICAL REVIEW B 91, 094508 (2015)

[16] V. Moshchalkov, M. Menghini, T. Nishio, Q. H. Chen, A. V.
Silhanek, V. H. Dao, L. F. Chibotaru, N. D. Zhigadlo, and
J. Karpinski, Phys. Rev. Lett. 102, 117001 (2009).

[17] S. J. Ray, A. S. Gibbs, S. J. Bending, P. J. Curran, E. Babaev,
C. Baines, A. P. Mackenzie, and S. L. Lee, Phys. Rev. B 89,
094504 (2014).

[18] L. J. Li, T. Nishio, Z. A. Xu, and V. V. Moshchalkov, Phys. Rev.
B 83, 224522 (2011).

[19] J. Gutierrez, B. Raes, A. V. Silhanek, L. J. Li, N. D. Zhigadlo,
J. Karpinski, J. Tempere, and V. V. Moshchalkov, Phys. Rev. B
85, 094511 (2012).

[20] T. Nishio, V. H. Dao, Q. Chen, L. F. Chibotaru,
K. Kadowaki, and V. V. Moshchalkov, Phys. Rev. B 81, 020506
(2010).

[21] C. W. Hicks, J. R. Kirtley, T. M. Lippman, N. C. Koshnick,
M. E. Huber, Y. Maeno, W. M. Yuhasz, M. B. Maple, and K. A.
Moler, Phys. Rev. B 81, 214501 (2010).

[22] J. Carlström, J. Garaud, and E. Babaev, Phys. Rev. B 84, 134515
(2011).

[23] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and
E. Vicari, Phys. Rev. B 63, 214503 (2001).

[24] J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990).
[25] J. Smiseth, E. Smørgrav, F. S. Nogueira, J. Hove, and A. Sudbø,

Phys. Rev. B 67, 205104 (2003).
[26] M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34,

1841 (1986).
[27] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87, 160601

(2001).
[28] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604

(1996).
[29] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195

(1989).
[30] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
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