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Nontopological nature of the edge current in a chiral p-wave superconductor
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The edges of time-reversal symmetry breaking topological superconductors support chiral Majorana bound
states as well as spontaneous charge currents. The Majorana modes are a robust, topological property, but the
charge currents are nontopological—and therefore sensitive to microscopic details—even if we neglect Meissner
screening. We give insight into the nontopological nature of edge currents in chiral p-wave superconductors
using a variety of theoretical techniques, including lattice Bogoliubov–de Gennes equations, the quasiclassical
approximation, and the gradient expansion, and we describe those special cases in which edge currents do
have a topological character. While edge currents are not quantized, they are generically large, but they can be
substantially reduced for a sufficiently anisotropic gap function, a scenario of possible relevance for the putative
chiral p-wave superconductor Sr2RuO4.
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I. INTRODUCTION

Time-reversal symmetry breaking topological supercon-
ductors support branches of chiral Majorana bound states at
their edges [1]. The number of these branches is insensitive
to perturbations such as weak disorder, and it is equal to
a Chern number, a topological invariant that is determined
by the Fermi surface topology and the chirality of the order
parameter. Quantum Hall systems support both topologically
protected edge states and topologically protected quantized
edge currents, with the conductance equal to fundamental
constants multiplied by a Chern number [2]. Even though the
number of topological edge modes is given by a Chern number
in both these systems, the edge current of a topological super-
conductor is not topologically protected or quantized. This fact
is clear from Bogoliubov–de Gennes (BdG) calculations [3–5]
of topological chiral p-wave superconductors that reveal
nonuniversal behavior dependent on microscopic details. This
nonuniversal behavior is present even without taking into
account the effects of Meissner screening (which we neglect
here), which forces the total current to vanish (though the local
currents should still yield observable magnetic signals [6,7]).
One reason to study this issue is that the lack of topological
protection of edge currents in chiral p-wave superconductors
is crucial to any attempt to reconcile the null result of
precision magnetometry experiments on the putative chiral
p-wave superconductor Sr2RuO4 [8–11] with straightforward
theoretical predictions [6].

In this work, we provide insight into the nontopological
nature of edge currents in chiral p-wave superconductors
using a variety of theoretical techniques, including lattice
Bogoliubov–de Gennes equations, the quasiclassical approxi-
mation, a gradient expansion of the effective action, and spec-
tral flow arguments. We begin by examining the circumstances
under which topology does straightforwardly govern edge
currents: (i) the coupling is weak, so that �0 � EF (assumed
throughout this paper), and (ii) a spatially varying site energy
A0(r) (equivalent to a static, unscreened scalar potential) drives
the density to zero at the edge over a distance L much longer
than the coherence length ξ0. [We will refer to condition (ii) as

the soft edge limit.] Under these circumstances, the gradient
expansion gives [12–15]

j (r) = − C

4π
(ẑ × ∇)A0(r) (1)

for the current density, where C is the Chern number and we
use units where the electron charge e = � = 1 throughout.
Apart from a factor of one-half, this is also the current density
in quantum Hall systems, both in fractional quantum Hall
systems where the Chern-Simons action was first derived in a
condensed-matter context [16,17], as well as integer quantum
Hall systems. In the quantum Hall context, (1) implies a
quantized, topological value for the Hall conductance.

Contrary to the above assumptions, the edges of actual
superconducting crystals are atomically sharp: the density
at the edge vanishes over an atomic scale k−1

F � ξ0. This
explicitly invalidates the systematic gradient expansion in
powers of ξ0/L. Even within the gradient expansion, there
are subleading corrections to (1) whose importance grows as
L is diminished; one such correction is discussed in Sec. IV.
That said, despite the fact that (1) fails to even approximately
describe the current density in the sharp edge limit, there
are special models with sharp edges for which the integrated
current (which is roughly proportional to the strength of the
magnetic signal expected in experiment) coincides with the
prediction of (1). These special models include all continuum
models (for which the integrated current can be calculated
using a one-dimensional Dirac equation [12,18]), as well as
certain lattice models with restricted hopping matrix elements.
We analyze these special models in Sec. V, using the “spectral
flow” [19] properties of the BdG eigenvalues, to show that
the integrated current remains equal to its “topological value”
[i.e., the one inferred from the Chern-Simons expression (1)]
as the edge is deformed from soft to sharp.

Outside of these special models, the integrated edge
current generically evolves to a nontopological value (i.e., one
unrelated to the Chern number) as we adiabatically deform
a soft edge into a sharp one. While it remains generically
substantial, there is nothing to prevent it from being small, and
it can be tuned through zero by varying the band and/or gap
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structure. For example, in a model with an anisotropic p-wave
order parameter consistent with next-nearest-neighbor (NNN)
pairing [20] on the γ band of Sr2RuO4, the integrated edge
current vanishes at a filling fraction close to the experimental
value (see Fig. 2). Although reliant on the fine-tuning of
parameters, this result might be important for reconciling
chiral p-wave superconductivity in Sr2RuO4 [21–24] with the
null results of experiments designed to measure the expected
magnetic fields [8–11].

II. TOPOLOGICAL PROPERTIES IN
THE CONTINUUM LIMIT

The topological properties of a two-dimensional chiral p-
wave superfluid are characterized by the Chern number

C = 1

4π

∫
d2k ĥ · (

∂kx
ĥ × ∂ky

ĥ
)
. (2)

Here �h = {Re[�0(k)], − Im[�0(k)],ξ (k)} and ĥ = �h/|�h|.
�0(k) is the complex chiral order parameter and ξ (k) ≡ ε(k) −
μ, with ε(k) the single-particle dispersion. For a chiral p-wave
order parameter �0(k) = �0(kx ± iky)/kF appropriate for
continuum systems, the Chern number is ±1. For lattice
models, it depends not just on the chirality or winding of the
order parameter, but also the topology of the Fermi surface,
but it always takes an integer value.

One manifestation of a nonzero Chern number is a
quantized value of the “static” Hall conductivity [12–15,25]:
σ̃xy ≡ limq→0 limω→0 σxy(ω,q) = C/4π + O[(�0/EF )2] in
the weak-coupling limit, a result that follows from (1) (which
we derive in Sec. IV). Note that in a continuum system,
reversing the order of limits to evaluate the standard dc Hall
conductivity, σxy ≡ limω→0 limq→0 σxy(q,ω), gives zero [25].
This noncommutativity of limits arises from a subtlety in the
effective action (12), which we will discuss later on.

Closely related to this static quantum Hall effect is the
fact that a long-wavelength density perturbation of a chiral
p-wave superfluid will give rise to a quantized current. With
C = 1 and A0(r) determining the local carrier density n(r)
according to ∇A0(r) = π∇n(r)/m, (1) reduces to the well-
known expression for the current in a chiral superfluid due to
Mermin and Muzikar [26]:

j = 1

4m
(ẑ × ∇n). (3)

Using this result to evaluate the edge current, assuming that
the density evolves slowly from zero at x = −∞ to its bulk
value n0 at x = +∞, the integrated current is

Iy = C

4m

∫ −∞

−∞
dx ∂xn(x) = n0C

4m
. (4)

Remarkably, this result agrees with calculations of the edge
current in a Galilean invariant chiral p-wave superfluid by
Stone and Roy [12] (using BdG) and Sauls [18] (using the
quasiclassical approximation). This is surprising because these
results are obtained for a sharp edge, whereas (1) is obtained
from a gradient expansion of the action and should only be
strictly valid in the soft-edge limit.

III. MODEL AND BDG RESULTS

We now turn to BdG calculations of the edge current for a
range of one-band lattice models of chiral p-wave supercon-
ductivity. For simplicity, we consider spinless fermions on a
two-dimensional square lattice (we will multiply our results
for the current by 2 to compensate):

H = −
∑
r,r′

tr,r′c†rcr′ − μ
∑

r

c†rcr −
∑
r,r′

gr,r′c†rc
†
r′cr′cr. (5)

Here r,r′ denote the lattice positions, and t ≡ tr,r±x̂ = tr,r±ŷ
and t ′ ≡ tr,r±(x̂±ŷ) are the nearest- (NN) and next-nearest-
neighbor (NNN) hopping parameters. Decoupling the interac-
tion term by introducing the two-component order parameter
(�x,�y), the pairing term in the Hamiltonian is

H� =
∑
r,s

[�x(r,s) + �y(r,s)]c†r−s/2c
†
r+s/2 + H.c. (6)

We select the chiral p-wave channel by taking a relative phase
of π/2 between �x and �y , and by assuming �x and �y

transform, respectively, under the px and py representation
of the square lattice point group. Assuming that pairing
occurs in a single lattice harmonic, �α(r,s) ≡ ηα(r)�0,α(s)
can be written as a separable function of the center-of-mass
r and relative s coordinates, where ηα(r) is the dimensionless
amplitude, equal to unity in the bulk. As is well known, this
model supports chiral Majorana modes at the edges of the
superconductor. Modulo a sign factor, the number of such
chiral modes per edge is given by (2), where now

ξ (k) = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky − μ (7)

and

�0(k) = �0,x(k) + �0,y(k), (8)

where �0,α(k) is the Fourier transform of �0,α(s). For the
simplest case of NN pairing, �0(k) = �0(sin kx ± i sin ky).

To calculate the edge current in this model, we perform
BdG calculations in a cylindrical geometry: periodic boundary
conditions are taken in the y direction, and open boundary
conditions in x. The current operator for the link from site i to
site j is

Ĵi,j = idij ti,j [c†i cj − c
†
j ci,], (9)

where dij is the bond length connecting i and j . (Here, in
addition to � = 1, we set e = 1; the unit cell length a is also
set to unity so that dij = 1 for NN sites and dij = √

2 for NNN
sites.) Our primary results for the edge currents will concern
the total current Iy flowing through one-half of the cylindrical
system along the y direction. Let the cylinder be Nx sites wide
and Ny sites in circumference (in all our calculations, we use
Nx = Ny). Then

Iy =
Nx/2∑
n=1

〈
Ĵnx̂,nx̂+ŷ + 1√

2
Ĵnx̂,nx̂+x̂+ŷ

〉
, (10)

where the two terms in the sum are for NN and NNN links.
The mean-field Hamiltonian comprised of the single-

particle terms of (5) and the pairing contribution (6) is
diagonalized, and self-consistency is enforced by iterating
the gap equation. Figure 1 shows the integrated edge current
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FIG. 1. (Color online) The integrated edge current calculated
from T = 0 BdG (solid curves) as a function of the chemical potential
over the entire bandwidth for (a) t ′ = (3/8)t (inset, t ′ = 0) and (b)
t ′ = t . �0 = 0.2t for all plots; this requires varying the interaction g

as the chemical potential is varied. In the inset of (a), for instance,
g/t is varied from 11.2 at μ = −4t to 3.25 at μ = 0. Calculations
are carried out for Nx = Ny = 300 lattice sites. The “topological
current” obtained from 1, with details given in Appendix A, is also
shown (dashed lines) and coincides with the BdG result for t ′ = 0.
Regions of μ with different Chern numbers are separated by a dotted
vertical line.

as a function of the chemical potential for different values
of the NNN hopping t ′. We also show the “topological”
(soft-edge limit) expressions for the integrated currents near
the continuum limit at the top and bottom of the band obtained
from (1) using the Chern numbers for these models (although
this topological expression is not always uniquely defined, as
we discuss in Appendix A). Apart from a coincidence in the
case in which t ′ = 0 [shown in the inset of Fig. 1 and elaborated
on in Sec. V], these topological values differ considerably from
the BdG results, explicitly demonstrating the nontopological
nature of the edge current.

Figure 2 compares the integrated current as a function
of chemical potential for models with chiral p-wave order
parameters of dramatically different anisotropy: the NN
pairing case, �0(k) = �0(sin kx + i sin ky), and the NNN
pairing case, �0(k) = �0(sin kx cos ky + i sin ky cos kx). For
comparison, we also show a suitably defined topological
expression which, away from the top and bottom of the band,
fails to even qualitatively track the current in the case of NNN
pairing. For parameters appropriate for Sr2RuO4, μ ∼ 1.4t
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FIG. 2. (Color online) The effect of order parameter anisotropy
on the edge current. The integrated edge current for two different order
parameters is shown for t ′ = 3t/8: �0(k) = �0(sin kx + i sin ky)
[solid curve; same as in Fig. 1(a)] and �0(k) = �0(sin kx cos ky +
i sin ky cos kx) (red dot-dashed curve). The Chern number in the latter
case is equal to 1 for −5.5t � μ < 0, −3 for 0 < μ < 1.5t , and −1
for 1.5t < μ < 2.5t . The topological current value is shown by the
blue dashed curves and coincides for the two order parameters.

[27], the current obtained for NNN pairing is significantly
reduced compared to that for NN pairing.

All our numerical BdG results are well approximated by
the expression

Iy = 1

(2π )d

∮
FS

dd−1k
|v| vxvy tan−1

(
�0,x

�0,y

)
, (11)

which is derived in detail using the quasiclassical approxima-
tion in Appendix B. Here the subscript “FS” denotes an integral
over the Fermi surface, vμ ≡ ∂kμ

ξ (k), |v| ≡
√

v2
x + v2

y , and
�0,x(k) and �0,y(k) are the momentum-dependent order
parameter components [cf. (8)]. This result confirms that the
edge current is generically equal to the Fermi energy times a
number of order 1 and fundamental constants. However, there
can be substantial cancellations in the integral of (11) if the
order parameter components have “accidental” sign changes
around the Fermi surface, as occurs for the anisotropic gap
shown in Fig. 2 at sufficiently large carrier density. For certain
non-p-wave chiral order parameters such as dxy + idx2−y2

on a square lattice, symmetry requires this cancellation to
be complete and the current vanishes identically within a
quasiclassical approximation [28,34].

IV. GRADIENT EXPANSION OF THE BCS ACTION
FOR A CHIRAL p-WAVE SUPERCONDUCTOR

To complement our BdG results, we now turn to a gradient
expansion of the mean-field BCS action for a chiral p-wave
superconductor. Previous authors [12,14,15] have used such
an expansion of the action with respect to gradients of the
scalar A0(r) potential to understand the edge current. A vector
potential A(r) is also included to generate an expression for the
current from the action, taking it to be zero after this is done.
At T = 0, and in the weak-coupling limit, the leading-order
terms that give rise to a spontaneous current in this gradient
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expansion are (see Appendix C)

Leff = − C

4π
ε0μνAμ∂νA0, (12)

where implicit summation over the Cartesian indices μ,ν

is assumed. C is the Chern number defined in (2), and
ελμν is the Levi-Civita symbol corresponding to space-time
indices (0,1,2) = (τ,x,y). Equation (12) resembles the Chern-
Simons term, which arises in the effective theory of the
fractional quantum Hall effect [16,17]. Unlike in that theory,
the “Chern-Simons-like” action (12) lacks the time derivative
−(C/4π )εμ0νAμ∂0Aν [12]. The absence of this only affects
dynamic properties such as the Hall response discussed earlier
and not static ones such as the edge current, and hence it is not
responsible for the nontopological nature of the edge current.
Applying j = δLeff/δA|A=0 to (12) gives the result (1) for the
current.

The gradient expansion leading to (12) is strictly valid
only when A0(r) varies on length scales much longer than
the superconducting coherence length. This is the opposite
limit to a sharp crystalline edge, where the density varies over
an atomic scale k−1

F � ξ0, so the gradient expansion formally
breaks down. As one moves away from the soft-edge limit,
there will be gradient corrections involving A0 beyond (12). In
addition, one expects the order parameter amplitudes ηx and
ηy to vary in space differently in response to the presence of an
edge [29]. Including such textures in the gradient expansion
of the BCS action leads to a term

L� = γ [Ay∂x + Ax∂y](ηy − ηx), (13)

where

γ ≡
∫

d2k
(2π )2

vxvyIm[�∗
0,x(k)�0,y(k)]

2E3
k

, (14)

with Ek =
√

ξ 2(k) + |�0(k)|2. Equation (13) gives rise to an
additional, nontopological contribution

j�,i(r) ≡ γ εij ∂j [ηi(r) − ηj (r)] (15)

to the edge current.
Equation (15) is the zero-temperature analog of the usual

Ginzburg-Landau expression (see, e.g., Ref. [30]) for the
current in the absence of an explicit potential A0(r). [For
A0(r) �= 0, there is also an analog of the Chern-Simons term
at T = Tc [28].] While the expansion involving gradients of
A0 breaks down completely in the sharp-edge limit [31], (13)
remains qualitatively valid since the order parameter textures
vary over the coherence length, putting this term at the edge
of the domain of validity of our gradient expansion. The same
calculation that yields γ at T = 0 gives the GL coefficient
k3 = k4 at T � Tc [28]. At T = 0, in the continuum limit, it
reduces to γ = μ/8π � n/8m, showing that this contribution
to the edge current is generically substantial. Indeed, the γ

coefficient bears a qualitative resemblance to the quasiclassical
expression (11) for the current. Calculating the integrated
current that results from (15) using (14) and self-consistent
values of ηx(r),ηy(r) from BdG calculations, the result is in
qualitative agreement with numerical BdG calculations for all
lattice structures and gap anisotropies studied.

4 2 0 2
0

0.3

0.6

μ t

I y
t Eq. 1

6.5ξ0

2.5ξ0

0.0ξ0

FIG. 3. (Color online) Plots of the integrated edge current from
BdG for t ′ = 3t/8 [see also Fig. 1(b)] with an edge at x = 0 and
an edge potential A0(x) = (μ + 5.5t)[1 − tanh(x/λ)] for μ < 1.5t

and A0(x) = (μ − 2.5t)[1 − tanh(x/λ)] for μ > 1.5t . As the edge
becomes progressively softer (λ/ξ0 increasing), the BdG results
approach the topological value (A3) obtained from (1). All results
should coincide near the bottom (μ = −5.5t) and top (μ = 2.5t) of
the band. The van Hove singularity at μ = 1.5t pushes the region of
agreement near the top of the band to values of μ very close to 2.5t .
For λ = 6.5ξ0, the current does not vanish at the top of the band since
we had to use a large value of the order parameter, �0 = 0.4t , to keep
the coherence length small.

V. TOPOLOGICAL AND NONTOPOLOGICAL
ASPECTS OF THE EDGE CURRENT

The existence of nontopological gradient corrections to the
current density means that the integrated edge current will
generically evolve from a topological to a nontopological value
as the edge is deformed from soft to sharp. This evolution is
shown Fig. 3 for BdG results for a range of edge widths, using
the t ′ = 3t/8 lattice model, which are compared to the current
predicted by (1).

While the current density is never topological near the
atomically sharp edges of superconducting crystals, as noted
in Sec. III, there do exist special models of chiral p-wave
superconductivity for which the integrated current at an
atomically sharp edge agrees exactly with the “topological”
result (1), valid for a soft edge. One such model is the simple
case of NN hopping and pairing on the square lattice with an
edge along the y direction, the results for which are shown
in the inset of Fig. 1(a). In that case, the integrated current is
actually independent of the length scale over which the density
vanishes at the edge (unlike the case shown in Fig. 3), so it
maintains its topological value as we deform a soft edge into
a sharp one.

To understand this curious result, we begin by noting a
property of the energy spectrum. For the cylindrical geometry
considered in Sec. III (open boundary conditions along x,
periodic along y), the single-particle energy levels are enu-
merated by the quasimomentum ky as well as an eigenvalue j

associated with the choice of potential or boundary conditions
implemented along x. The usual particle-hole redundancy of
the BdG equations is reflected as follows: for each value of j
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and ky , there exists a j̄ satisfying

E(ky,j ) = −E(−ky,j̄ ). (16)

This relation allows us to write the integrated current for the
cylindrical geometry with NN hopping as

Iy = − 1

4π

∫
dkyvy(ky)η(ky), (17)

where vy = 2t sin ky is the velocity and

η(ky) ≡
∑

j

sgn(E(ky,j )) (18)

is the spectral asymmetry [32]. This result—valid for both soft
and sharp boundary conditions along x—shows that the only
way the total integrated edge current (i.e., for a cylinder of
width 2L, the integrated current between −L and +L) Iy can
change as one or both edges are adiabatically deformed is if
there is spectral flow of the eigenvalues across zero energy.
That is, the total current only changes if unoccupied states
[E(ky,j ) > 0] evolve to occupied ones [E(ky,j ) < 0] or vice
versa.

Spectral flow was invoked by Volovik [19] (see also Stone
and Gaitan [32]) to argue that the angular momentum of a
disk of N superfluid 3He − A atoms would be equal to N/2
in the weak-coupling BCS limit as long as there is no spectral
flow as the chemical potential is tuned from large and negative
(the so-called “BEC limit” [26,33], where this value for the
angular momentum is evident) to the Fermi energy in the
BCS limit. The absence of spectral flow in a disk geometry
through this BCS-BEC crossover has been confirmed recently
for continuum chiral p-wave superfluids in Ref. [34].

We consider instead the related crossover from a soft to a
sharp edge in a cylinder geometry, amounting to an evolution of
the local chemical potential μ − A0(r). Specifically, consider
the situation in which both boundaries, one at x � 0 and
the other at x 
 0, are initially soft, such that the integrated
currents between (−L,0) and (0,L) are both topological, given
by ±(C/4π )μ(0), where μ(0) is the bulk chemical potential at
x = 0. These two currents are equal in magnitude but opposite
in sign such that the total integrated current Iy over (−L,L)
is zero. Now imagine deforming one of the edges, say the one
in the domain x > 0, into a sharp one. Since the integrated
current over (−L,0) remains unchanged (the two edges are
very far apart), the integrated current at the sharp edge will
remain equal to its soft-edge value if and only if the total
current remains equal to zero. That is, spectral flow as an edge
is deformed is required in order for the integrated current at
a sharp edge to be different from that at a soft one. In turn,
since the total integrated current is initially zero, the spectral
asymmetry η(ky) must evolve to a nonzero value.

In Fig. 4, we compare the spectral flows of the BdG
spectrum for NN hopping but with order parameters corre-
sponding to NN and NNN pairing as the edge is evolved
from soft to sharp. Consistent with the results in Ref. [34],
there is no spectral flow for NN pairing for the smoothly
varying edge potentials that we consider. This is related to the
symmetry protection of the ky = 0 crossing of the chiral edge
branch. Particle hole redundancy (16) is incompatible with any
continuous shift up or down in energy, as would be required to

FIG. 4. Spectral flow plots showing the evolution of BdG
eigenvalues for E

(j )
ky=−0.29π , �(k) = �0(sin kx + i sin ky) (left) and

E
(j )
ky=−0.26π , �(k) = �0(sin kx cos ky + i sin ky cos kx) (right) for NN-

only hopping and μ = −t as the edge width λ is evolved.

have spectral flow, of the edge modes near E = 0 and ky = 0.
In the finite strip geometry studied here, the two lowest energy
ky = 0 edge modes are separated by a finite gap [which scales
as exp(−L/ξ0)], and so it is clear that one cannot have spectral
flow at ky = 0 [34]. However, the symmetry (16) ensures no
spectral flow even in the thermodynamic limit where this gap
closes. By contrast, zero crossings away from ky = 0 do not
individually satisfy (16), but come in pairs with the same
chirality, such that the pair of edge modes satisfy (16). In
this case, one can continuously shift the states up or down in
energy while satisfying (16), so spectral flow is allowed.

The absence of spectral flow for the case of NN pairing
explains why the edge current retains its topological value:
analogous to the constancy of the angular momentum of a
chiral p-wave superfluid through the BCS-BEC crossover,
the integrated edge current does not change as the edge is
deformed, and it remains equal to the topological value inferred
from the gradient expansion. The absence of spectral flow
also explains why a continuum chiral p-wave superfluid in a
disk with sharp edges [12,18,34] has the same total angular
momentum N/2 as one confined to a harmonic trap, where the
density vanishes slowly [35].

In contrast, for the case of NNN pairing, shown in the lower
panel of Fig. 4, there are zeros in the excitation spectrum at
momenta ky �= 0,π , giving rise to spectral flow under edge
deformation. These zeros arise not only from the additional
chiral edge branches that open up when the Chern number
changes, but even for lower filling fractions, as the single
Majorana branch at zero momentum bends over and crosses
E = 0 elsewhere as well. For the spectral flow shown in Fig. 4,
there is a single Majorana branch (C = 1) and the spectral flow
is due entirely to this additional zero crossing of this branch.
In Fig. 5(a), we show the dispersion for the case in which
one edge is sharp while the other is soft. Consistent with the
spectral flow shown in Fig. 4, the Majorana branch for the
soft edge with a single zero crossing at ky = 0 evolves into
one with additional zero crossings at the sharp edge. As with
non-p-wave superfluids [34], these zeros at ky �= 0,π provide
channels for spectral flow, and hence a nonzero spectral
asymmetry [see Fig. 5(b)] and nontopological value of the
integrated current moving to the sharp-edge limit.
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FIG. 5. (Color online) Dispersion (left) and spectral asymme-
try (right) for the NNN-pairing model �(k) = �0(sin kx cos ky +
i sin ky cos kx) for NN-only hopping at μ = −t where one edge is
sharp and the other is soft. Left: arrows point to the Majorana branch
at the sharp edge. Unlike the soft-edge branch, which only crosses
zero at ky = 0, the sharp-edge branch has an additional zero crossing
away from ky = 0, as expected from the spectral flow shown in Fig. 4.
This extra zero crossing gives rise to the nonzero spectral asymmetry
shown in the right panel.

Introducing NNN hopping, the integrated edge current
can be written as a sum of (17) and another component
I ′
y involving the NNN velocity operator v′

y ≡ 4t ′ sin kyf (a),
where a is some quantum number appropriate for the potential
or boundary conditions implemented along x, and f reduces
to cos kx in the sharp-edge limit. As the edge is deformed, f (a)
and hence I ′

y will evolve even without spectral flow across zero
energy, although the component described by (17) will remain
constant without it.

VI. DISCUSSION

In this paper, we have reconciled the nonuniversal and
nontopological nature of the edge currents in chiral p-wave
superconductors, as inferred from BdG calculations [3,4,6,36],
with naive expectations for a topological value based on the
leading-order Chern-Simons term in a gradient expansion of
the action [13,15]. While the integrated edge current is always
dictated by a Chern number in the soft edge limit in which
the density varies over a length scale much longer than the
coherence length—as would happen, for instance, in a chiral p-
wave atomic gas superfluid confined to a harmonic trap [35]—
nontopological gradient corrections to the current can arise
outside this limit. Using numerical BdG and quasiclassical
calculations of lattice p-wave superconductors, we have
investigated the evolution of the integrated edge current as the
edge is evolved from soft to sharp. Symmetry-allowed physics
such as next-nearest-neighbor hopping and gap anisotropy lead
to evolution away from the topological value.

In the special cases—certain lattice models with restricted
hopping as well as the continuum limit of all models—where
the integrated current is found to be topological when the
edge is sharp, we have shown how this result follows from
the soft-edge topological value by invoking the spectral flow
of the BdG eigenvalues as the edge is deformed. In general,
however, the nontopological nature of the edge current in a
topological superconductor means that the edge current is

sensitive to effects such as band structure [3–6] and gap
anisotropy, as well as to disorder and pair-breaking surface
effects [30]. Even for a topologically trivial superconductor
with zero Chern number, such as would arise in the putative
chiral p-wave superconductor Sr2RuO4 were pairing only to
arise on the quasi-one-dimensional α and β bands [37], the
edge current is generically substantial [3,4,36].

On the other hand, the nontopological nature of the edge
current means that circumstances could arise in Sr2RuO4

[4], in which the total edge current arising from all three
bands is strongly suppressed compared to predictions based
on continuum systems [6,7]. For instance, even with a fixed
band structure, gap anisotropy can reduce the edge current
substantially below naive expectations. Large-gap anisotropy
has been predicted from weak-coupling renormalization-group
calculations [37–39]. Note that the reduction in current due to
gap anisotropy discussed here is present in the clean limit and is
unrelated to the disorder effect suggested in Ref. [38], although
disorder near the surface or interface can further reduce the
current. If a sufficiently anisotropic gap is present in Sr2RuO4,
this reduction, along with some interface effect [4,20,36,40],
may reconcile theory with experiment.
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APPENDIX A: TOPOLOGICAL EXPRESSIONS FOR
THE EDGE CURRENT IN LATTICE MODELS

Integrating (1) gives Iy = C(μ)[A0(xedge) − A0(bulk)]/4π

for the integrated edge current where the location xedge of
the edge is determined by the point where the effective local
chemical potential μ − A0(x) equals its “vacuum value” μvac.
Assuming that A0 is zero in the bulk, this result can thus be
written as

Iy = C(μ)[μ − μvac]/4π. (A1)

The value of μvac depends on whether the Fermi surface (FS)
is hole- or electronlike. In the former case, it corresponds to the
value of the chemical potential at the top of the band, whereas
in the latter case, it is the chemical potential at the bottom of
the band. For the model with no NNN hopping, μvac = −4t

in the bottom half of the band (μ < 0) and 4t in the top half
(μ > 0), and (A1) reduces to

Iy = 1

4π
(4t − |μ|). (A2)

For t ′ �= 0, the topological expression fails to describe the
current at intermediate μ, and so we restrict our attention to μ

near the bottom and top of the band. For t ′ = 3t/8, there is a
van Hove singularity at μ = 1.5t where the FS changes from
being electronlike to holelike. This change is accompanied
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by a change in the Chern number from C = 1 to −1. For
the electronlike FS, the bottom of the band is μvac = −5.5t .
For the holelike FS, the top of the band is μvac = 2.5t . Thus,
using (A1),

Iy =
{

1
4π

(5.5t + μ) for μ near band bottom.
1

4π
(2.5t − μ) for μ near band top.

(A3)

For t ′ = t and μ < 0, there is an electronlike FS with C = 1
and μvac = −8t . For μ > t , there are two hole pockets, each
with C = 1 for a total Chern number of 2, and μvac = 4t .
Hence,

Iy =
{

1
4π

(8t + μ) for μ near band bottom.
2

4π
(μ − 4t) for μ near band top.

(A4)

APPENDIX B: QUASICLASSICAL EXPRESSION
FOR THE EDGE CURRENT

In this section, we extend the calculation of the integrated
edge current in Ref. [18] to an arbitrary band structure
and either two or three spatial dimensions. We consider a
single-band problem on a lattice, near an edge or (surface)
parallel to a reflection plane of the bulk band structure.
In three dimensions, we further assume a symmetry of the
superconducting state under reflection through a horizontal
plane. For triplet order parameters, we assume a fixed d-vector
axis, which we take to be z, so that the spin structure is
trivial for both triplet and singlet cases. We assume a chiral
order parameter �x( �p) + i�y( �p), where �x,y are real and
�p represents a momentum vector on the Fermi surface (FS).
Furthermore, we neglect the texture of the order parameter in
the vicinity of the edge, and so we take �x,y to equal their
uniform bulk values. Note that the presence of a sharp edge
formally invalidates the quasiclassical approximation, which is
valid only on length scales much greater than k−1

F , so the edge
physics is incorporated here as a phenomenological boundary
condition. Form the quasiclassical propagator,

Ĝ(�r, �p; iωn) =
(

g(�r, �p; iωn) f (�r, �p; iωn)

f ∗(�r, �p; iωn) −g(�r, �p; iωn)

)
. (B1)

This object is essentially the Nambu propagator integrated
with respect to relative momentum. It depends on the center-
of-mass position �r , the Fermi surface momentum �p, and
the Matsubara frequency ωn ≡ (2n + 1)πT . Ĝ obeys the
Eilenberger equation:

i�v · ∇�r Ĝ = −[Ĥ ,Ĝ], where (B2)

Ĥ =
(

iωn �x( �p) − i�y( �p)
−�x( �p) − i�y( �p) −iωn

)
(B3)

and �v is the Fermi velocity at momentum �p (with �p on the
Fermi surface). Ĝ is taken to obey the normalization condition

(Ĝ)2 = −π2. (B4)

If we decompose Ĝ into Pauli matrices according to

Ĝ = gτ̂3 + if2τ̂1 − if1τ̂2, (B5)

and form the column vector

|G〉 =
⎛⎝f1

f2

g

⎞⎠ , (B6)

then |G〉 obeys the (vector) differential equation

1

2
�v · ∇�r |G〉 = M̂|G〉, where (B7)

M̂ =
⎛⎝ 0 iωn �y

−iωn 0 −�x

�y −�x 0

⎞⎠ . (B8)

Solutions to (B7) are exponential in position, with the decay
length determined by the eigenvalues of M̂ . Since M̂ is
Hermitian these are real, and they have eigenvectors

|0; �p〉 = 1

λ

⎛⎝−�x

−�y

iωn

⎞⎠ (B9)

for eigenvalue 0, where λ =
√

ω2
n + �2

x + �2
y , and

|±; �p〉 = 1√
2λλ1

⎛⎝±iωnλ − �x�y

λ2
1

iωn�y ∓ λ�x

⎞⎠ (B10)

for eigenvalues ±λ, where λ1 =
√

ω2
n + �2

x . We now assume
the edge is along x = 0, with the superconductor in the region
x > 0, and we use translation invariance along y to write down
the generic solution of (B7):

|G(x, �p)〉 = C0|0; �p〉 + C+ exp

(
2λ

vx

x

)
|+; �p〉

+C− exp

(
−2λ

vx

x

)
|−; �p〉. (B11)

We must exclude solutions that explode as x → +∞. If we
define s ≡ sgn(vx), then

|G(x, �p)〉 = C0|0; �p〉 + C−s exp

(
− 2λ

|vx |x
)

| − s; �p〉. (B12)

The normalization condition fixes C0 = −π . C−s is de-
termined by boundary conditions at x = 0, namely that
|G(0, �p)〉 = |G(0,�p)〉, where �p is the specular reflection of �p,
i.e., �p = (−px,py). Applying this condition yields

C−s =
√

2π�xλ1

iωnλs + �x�y

. (B13)

The current density is computed from the normal part of the
propagator according to

�J (�r) = 2T

(2π )d
∑
iωn

∮
FS

d �p
|�v| �v × g(�r, �p; iωn), (B14)

where d is the spatial dimension. The current flows solely in
the y direction and depends only on x:

Jy(x) = 2T

(2π )d
∑
iωn

∮
FS

d �p
|�v| vy × g(x, �p; iωn). (B15)
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Our solution for the normal part of the propagator can be
written

g(x, �p; iωn) = − π
iωn

λ
+ π

�x

λ

iωn�x − λs�y

(iωn)2 − �2
y

× exp

(
− 2λ

|vx |x
)

. (B16)

The only part of the above whose contribution to the current
density does not vanish by symmetry is

g̃(x, �p; iωn) = π
s�x�y

ω2
n + �2

y

exp

(
− 2λ

|vx |x
)

. (B17)

We compute the integrated current

Iy =
∫ ∞

0
dx Jy(x)

= 2T

(2π )d

∫ ∞

0
dx

∑
iωn

∮
FS

d �p
|�v| vy × g̃(x, �p; iωn)

= 1

2(2π )d

∮
FS

d �p
|�v| vxvy�x�y2πT

∑
iωn

1

λ

1

ω2
n + �2

y

. (B18)

In the zero-temperature limit, the Matsubara sum becomes an
integral: 2πT

∑
iωn

→ ∫
dω,

Iy = 1

2(2π )d

∮
FS

d �p
|�v| vxvy�x�y

×
∫ ∞

−∞
dω

1√
ω2 + �2

x + �2
y

1

ω2 + �2
y

. (B19)

The integral has a closed-form solution:∫ ∞

−∞
dω

1√
ω2 + �2

x + �2
y

1

ω2 + �2
y

= 2

|�x ||�y | tan−1

( |�x |
|�y |

)
(B20)

yielding

Iy = 1

(2π )d

∮
FS

d �p
|�v| vxvy tan−1

(
�x

�y

)
. (B21)

Equation (B21) is the main result. It shows that the edge
current, unless prohibited by symmetry, is generically equal to
the Fermi energy times a number of order 1 and fundamental
constants.

Up until now we have taken the order parameter to be
chiral, but we assumed nothing about its symmetry and very
little about the point group symmetry. We now specialize
to a tetragonal point group and consider various possible
chiral order parameters. For an order parameter of symmetry
dxy + idx2−y2 , the total current of Eq. (B21) vanishes by
symmetry. The total current also vanishes by symmetry
(under reflection y → −y) for a dx2−y2 + is order parameter,
though the analysis above does not directly apply in that
case.

When �x,y corresponds to a two-dimensional representa-
tion of the tetragonal point group (i.e., the order parameter
has either px + ipy or dxz + idyz symmetry), there is a useful

simplification of (B21). Under a 90◦ rotation in the kxky

plane,

�x → �y, �y → −�x, vx → vy, vy → −vx.

vxvy tan−1

(
�x

�y

)
→ vxvy tan−1

(
�y

�x

)
= vxvy

[
π

2
sgn(�x�y) − tan−1

(
�x

�y

)]
.

Accordingly, the relative magnitudes of �x,y are unimportant,
and the zero-temperature current is determined only by the
sign structure of the order parameter components on the Fermi
surface:

Iy = π

4(2π )d

∮
FS

d �p
|�v| vxvysgn(�x�y). (B22)

In the absence of “accidental” zeros of either order parameter
component, the dependence on �x,y drops out entirely, except
for the overall chirality η = sgn(vxvy�x�y):

Iy = πη

4(2π )d

∮
FS

d �p
|�v| |vxvy |. (B23)

For the special case of a two-dimensional system in which
the dispersion relation separates according to ε(k) = εx(kx) +
εy(ky), this simplifies to

Iy = πη

(2π)2

∫
first quadrant dpyvy = η

4π

∫ μ

0 d(εy) = ημ

4π
, (B24)

which coincides with the result gleaned from the gradient
expansion, with η equal to the Chern number.

APPENDIX C: GRADIENT EXPANSION OF THE
MEAN-FIELD BCS ACTION FOR A CHIRAL

p-WAVE SUPERCONDUCTOR

The effective Euclidean Bose action for a superconductor
has the usual form [41,42]

Seff = −
∫

d2+1x

∫
d2+1x ′ |�(x,x ′)|2

V (r,r′)
− Tr ln Ĝ

−1
, (C1)

where V (r,r′) is the attractive effective interaction that
supports p-wave superconductivity and x = (r,τ ), where
τ ≡ it is the Wick-rotated imaginary time variable. Con-
sistent with mean-field BdG, we will deal with the mean-
field, “saddle-point” value of this action by ignoring fluc-
tuations of the phase of the order parameter. The inverse
of the mean-field 2 × 2 matrix Nambu-Gorkov Green’s
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function is thus (� = e = c = 1)

Ĝ
−1

(x,x ′) =
([−∂τ − (−i∇+A)2

2m
+ μ + A0

]
δ(x − x ′) �(r,r′)δ(τ − τ ′)

�∗(r′,r)δ(τ − τ ′)
[−∂τ + (i∇+A)2

2m
− μ − A0

]
δ(x − x ′)

)
,

where the minimal coupling scheme ∂τ → ∂τ − A0,

∇ → ∇ + iA has been used.
We now expand (C1) in gradients of the static potential

A0(r) = A0 sin Q · r (C2)

as well as gradients of the order parameter amplitudes

�α(x,x ′) = �0,α(r − r′)ηα

(
r + r′

2

)
δ(τ − τ ′) (C3)

with

ηα(r) = 1 + λα sin Q · r. (C4)

Here �0,α are the complex mean-field order parameter compo-
nents for α = x,y (only dependent on the relative coordinate
r − r′) and ηα is the corresponding amplitude, equal to unity
in the absence of an external potential. A gradient expansion
need not be applied to the vector potential A(r) since this will
be set to zero at the end of the calculation of the current and we
can simply treat it as small, retaining only terms in the action
that are linear in A.

Fourier transforming (C1) to Matsubara frequency/
momentum space k ≡ (k,iωn), the logarithm is expanded as

Tr ln[Ĝ(k,k′)−1] = Tr ln
[
Ĝ

−1
0

] + Tr[(Ĝ0�̂)]

+ 1
2 Tr[(Ĝ0�̂)2] + · · · , (C5)

where (τ̂α are Pauli matrices)

Ĝ
−1
0 (k) = iωn − ξ (k)τ̂3 + Re�0(k)τ̂1 − Im�0(k)τ̂2, (C6)

�̂(k,k′) = − 1

m

∑
q

A(q) · (k − q/2)δk′,k−q +
{[

A0

2i
τ̂3

+ λα

2i
[Re�α(k − Q/2)τ̂1 − Im�α(k − Q/2)τ̂2]

]
× δk′,k−Q − (Q → −Q)

}
, (C7)

and the trace is performed over frequency and momentum
variables in addition to Nambu indices. �̂ = 0 when Q = 0
and A = 0, and consequently (C5) constitutes a perturbative
expansion in powers of Q and A.

Using (C6) and (C7) in (C5), the leading-order gradients
terms in the action [given by the second term on the right-hand
side of (C5) and discarding terms of order A2] are (from hereon
in, we reserve μ and ν to denote Cartesian components x,y)

S(2) = A0Aμ(Q)

2i
χ0μ(Q) + λμAν(Q)

2i
χ�μν(Q) − (Q → −Q).

(C8)

Here we only show the gradient terms involving the vector
potential A since only these contribute to the current. The

following static correlation functions have been defined
[k ≡ (ωn,k) and q ≡ (0,Q), where ωn is a Fermi-Matsubara
frequency and the external Bose-Matsubara frequency is zero]:

χ0μ(Q) ≡ 1

β

∑
k

vμ(k)tr
[
Ĝ0

(
k + q

2

)
τ̂3Ĝ0

(
k − q

2

)]
(C9)

is the density-current correlation function, and, taking �x(k)
and �y(k) to be purely real and imaginary, respectively,

χ�xν(Q) ≡ 1

β

∑
k

�x(k)vν(k)tr
[
Ĝ0

(
k + q

2

)
Ĝ0

(
k − q

2

)
τ̂1

]
,

×χ�yν(Q)

≡ − 1

β

∑
k

�y(k)vν(k)tr
[
Ĝ0

(
k + q

2

)
Ĝ0

(
k − q

2

)
τ̂2

]
(C10)

are the order parameter–current correlation functions.
vμ ≡ ∂kμ

ξ (k) is the bare velocity vertex.
Continuing with the gradient expansion, we expand the

static correlation functions (C9) and (C10) in powers of Q. At
T = 0,

χ0y(Q) = −iQx

∑
k

vy�y

(
∂kx

�x

)
2E3

k

+ O(Q3), (C11)

χ0x(Q) = iQy

∑
k

vy�y

(
∂kx

�x

)
2E3

k

+ O(Q3), (C12)

χ�xμ(Q) = −iQν

∑
k

vμ�x

2E3
k

[
vν�y − ξ

(
∂kν

�y

)] + O(Q3),

(C13)

and

χ�yμ(Q) = iQν

∑
k

vμ�y

2E3
k

[
vν�x − ξ

(
∂kν

�x

)] + O(Q3).

(C14)

The first terms in the square brackets in (C11) and (C12)
are both equal to the Chern number modulo particle-hole
corrections:∑

k

vy�y

(
∂kx

�x

)
2E3

k

=
∑

k

vx�x

(
∂ky

�y

)
2E3

k

= C

4π
+ O

(
�2

0/E
2
F

)
. (C15)

Note that this is the static Hall conductivity σ̃xy defined in
Sec. II. Turning to (C13) and (C14), the first term in square
brackets is the γ coefficient, also shown in (14). The second
term in both expressions is O(�2

0/E
2
F ) and is related to the

difference in the Ginzburg-Landau coefficients k3 and k4 [30],
which can also be obtained from the order parameter–current
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correlation function (C10), albeit in the limit T → Tc instead
of T = 0.

Using the long-wavelength limiting values (C11)–(C15)
in (C8) and Fourier-transforming back to real space gives
the Chern-Simons action (12) plus the amplitude contribution
(13).

The generalization of the above results to lattice models
is straightforward. As long as the coherence length ξ0 is
much longer than k−1

F ∼ a, where a is the lattice spacing, the

hydrodynamic Lagrangian retains the same form as (12), with
only a few minor modifications to the coefficients. For a single-
band model, one can simply use the expressions (C11)–(C15)
for the hydrodynamic coefficients using values appropriate for
a lattice model, e.g., (7) and (8) instead of ξ (k) = k2/2m − μ

and �0(k) = �0(kx + iky)/kF . For multiband models, one
must go back and evaluate the correlation functions (C9)
and (C10) using the appropriate higher-dimensional matrix
Green’s functions.
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