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Antiferromagnetic order oriented by Fulde-Ferrell-Larkin-Ovchinnikov superconducting order
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Resolving the high-field superconducting phase (HFSP), often called the Q phase, and the antiferromagnetic
or spin-density-wave (SDW) order appearing in the phase remains a crucial issue on the superconductor CeCoIn5.

It is shown that a switching of the SDW domain due to a tiny change of the magnetic field direction in HFSP,
reported and interpreted as evidence of the presence of a π -triplet pairing inducing the SDW order [S. Gerber et al.,
Nat. Phys. 10, 126 (2014)], can be explained with no triplet pairing component if the d-wave superconducting
order in HFSP includes the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) modulation parallel to the field. This
result corroborates the idea that HFSP of CeCoIn5 and the SDW order found only in the phase are consequences
of the strong paramagnetic pair breaking in this d-wave superconductor.
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I. INTRODUCTION

Unique superconducting (SC) properties in the high-field
region of the quasi-two-dimensional (2D) d-wave supercon-
ductor CeCoIn5 and, in particular, the presence of its additional
high-field SC phase (HFSP) in the in-plane field configuration
have attracted much interest so far. In 2003, this HFSP was
discovered [1] and, based on the fact that this material shows
an unusually strong paramagnetic pair breaking (PPB), has
been identified with a realization of the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [2] as a vortex phase [3]. After that,
an antiferromagnetic or spin-density-wave (SDW) order has
been detected in HFSP in a neutron-scattering measurement
[4]. Different models have been proposed to explain why
this SDW order occurs only in this high-field region of the
dx2−y2 -wave SC phase. Some of them have found its origin in
the strong PPB [5,6], while the others have ascribed its origin
to other aspects such as the vortex lattice structure [7], FFLO
modulation [8], and an additional π -triplet order [9].

Recently, a neutron scattering measurement has been
reported [10] which detects a sudden change of the direction of
the SDW modulation when the magnetic field is rotated within
the a-b plane through a crystal main axis [100]. In the field
precisely parallel to [100], the incommensurate part q of the
SDW modulation vector can take either of two degenerate
directions parallel to the gap nodes of the dx2−y2 -pairing
function. The experiment indicates that even a tiny deviation
of the field direction from [100] to [110] ([110]) lifts this
degeneracy and results in a discontinuous rotation of q to
the [110] ([110]) direction. The authors have argued [10] that
the scenario [9] requiring the presence of the triplet pairing
in HFSP, which induces the SDW order in the dx2−y2 -wave
pairing state, is promising and that the pictures ascribing the
origin of the SDW only to some spatial modulation of the SC
order parameter are not relevant to this phenomenon.

Previously, the present authors have proposed the picture
[5,11] that HFSP of CeCoIn5 is a coexistent phase of two orders
induced by strong PPB, i.e., the SDW order created by an
interplay between the dx2−y2 -wave SC pairing and PPB and the
FFLO SC order with a spatial modulation parallel to the field.
The fact that this HFSP is extremely sensitive [12] to the purity
of the material has been previously interpreted as evidence of
the presence of a spatial modulation parallel to the applied

field [13]. Further, NMR data have clarified a field dependence
of the quasiparticle weight in HFSP which is consistent only
with the scenario [5,8] invoking the presence of nodal planes
perpendicular to the field [14]. Therefore, it should be clarified
whether the neutron data [10] is consistent with this FFLO
picture.

In this paper, we theoretically examine a sudden switching
[10] of the magnetic domain upon the in-plane field rotation in
HFSP of the superconductor CeCoIn5. First, we point out that
such a switching of the SDW modulation direction does not
occur in any state with a spatially uniform SC order parameter
[6,7] and show in detail that this phenomenon is explained
within the picture of the PPB-induced SDW order and without
assuming the π -triplet order if HFSP includes the FFLO spatial
modulation parallel to the field [5]. This result implies that the
strong PPB is the main origin of the presence of HFSP and the
SDW order there.

In Sec. II, the model and the procedure of our calculation
are sketched, and the main numerical calculation results are
presented in Sec. III. Summary and comments are given in
Sec. IV, and the details of the theoretical calculation used here
are explained in the Appendix.

II. MODEL

The starting model of our analysis is essentially the same
as that used previously [5,11] and is an electronic Hamiltonian
H = Hkin + Hint of a quasi-2D material. The interaction
term Hint associated with the SC and SDW orders will be
treated in the mean field approximation. In the zero field, the
Hamiltonian is represented in the form

Hkin =
∑

k

∑
σ=±1

c
†
k,σ ε(k)ck,σ ,

Hint =
∑

p

[
1

U
m∗

Q,j (p)mQ,j (p) + 1

g
|�p|2

−
(

m∗
Q,j (p)

∑
k

ĉ
†
k−p,α(σj )α,β ĉk+Q,β + h.c.

)

−
(

�∗
p

∑
k

wk ĉ−k+p/2,↑ĉk+p/2,↓ + h.c.

)]
, (1)
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FIG. 1. (Color online) Configuration in a-b (X-Y ) plane. The tilt
angle φH of the applied field H is measured from [100]. The dotted
(blue [gray]) lines indicate possible FFLO nodal planes perpendicular
to H ‖ x̂.

with the dispersion ε(k) = ξ (k⊥) − J cos(kZD), where J is
an interlayer coupling constant, D is the spacing between
the neighboring layers which are parallel to the a-b plane,
and mQ(p) and �p are Fourier components of the SDW
and SC order parameters, respectively. Hereafter, the crystal
coordinate system a-b-c will be denoted as X-Y -Z, and a
vector s⊥ implies a 2D vector perpendicular to Ẑ. Further,
as in the situation in CeCoIn5 in high fields [4], m(r) is
assumed to have only the c-axis component, i.e., m = mẐ.
For awhile, the Fermi surface is assumed to be isotropic in the
X-Y plane, and the in-plane anisotropy will be included later
through the density of states (DOS). Further, wk = −wk+Q0

is the normalized pairing function with the dx2−y2 -wave
symmetry. In a nonzero field H = Hx̂, the Zeeman energy
I ≡ 1.76αM,cTc0H/Horb,c needs to be included by shifting
ξ (k⊥) to ξ (k⊥) + Iσ , while the orbital pair breaking is simply
included in terms of the vector potential A by replacing
ξ (−i∇⊥) with ξ (−i∇⊥ + eA), where Tc0 is the transition
temperature in H = 0, Horb,c is the orbital limiting field at
T = 0 in H ‖ c case, and the constant αM,c measures the PPB
strength [11]. As sketched in Fig. 1, the rotated coordinates
x = XcosφH + Y sinφH , y = Y cosφH − XsinφH , and Z = z

are defined.
The SDW Q vector is the sum of a commensurate

component Q0 (one of (±π , ±π , ±π )) and an incommensurate
one

q = |q|(X̂cosφq + Ŷ sinφq). (2)

In the ensuing expression of the free energy, this incommen-
surate part q will appear in the form δ(k) = ε(k + Q0) +
ε(k) − vk · q and be determined by minimizing the free energy,
where vk = ∂ε(k)/∂k. However, the SDW order parameter can
have other spatial modulations to lower the energy through a
coupling to the spatially varying SC order parameter �. In
Eq. (1), possible spatial modulations of � and the above-
mentioned additional modulation of the SDW order parameter
m are represented by their p dependencies.

The mean-field free energy density F is derived following
a familiar route [5,6,11] and consists of three terms, i.e., F =
FSC + FSDW + Fcl. Their details can be seen in the Appendix.
The SC term FSC is the familiar Ginzburg-Landau (GL)
expansion in � kept up to the O (|�|6) term. In truncating

the expansion to the sixth-order term, we have verified that
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FIG. 2. (Color online) (a) Example of the low-T and high-H
phase diagram in H ‖ [110] obtained in terms of the parameters
γ = 2.77, αM,c = 2.5, δIC = 3.0, and TN = 0.815Tc0. The HFSP
sandwiched between the normal and the Abrikosov vortex lattice
(AVL) phases has q ‖ [110] ⊥ H except in quite a narrow range
close to the second-order transition to AVL. See the text for details.
(b) Field dependencies of the resulting energy gap |�| and the wave
number qLO, normalized by the coherence length ξ0 = �vF/(2πTc0),
of the FFLO modulation at T = 0.02Tc0 in panel (a).

the coefficient of this term is positive. As in previous works,
we follow the picture [3,5,8,11,13] that HFSP occurs due to
the formation of a FFLO spatial modulation of � parallel
to H ‖ x̂. In this case, the SC order parameter �(r) in the
coordinate representation takes the form

�(r) =
√

2�0(y,z)cos(qLOx). (3)

This solution has nodal planes which are parallel to the y-z
plane and periodic in x. Regarding the vortex lattice structure
expressed by �0(y,z), the Abrikosov lattice solution in the
lowest Landau level under the in-plane field Hx̂ in a system
with an uniaxial anisotropy will be used. The anisotropy is
measured by the parameter γ (>1) which, roughly speaking,
corresponds to the ratio of the in-plane and out-of-plane
coherence lengths and is determined by the velocity vk and
the gap function’s magnitude |wk| (see the Appendix). Since
the Hc2 transition is discontinuous, reflecting the strong PPB
[3] (see Fig. 2), the magnitude |�| of the SC order parameter
is rigid anywhere below Hc2 so that the FFLO spatial order is
stabilized irrespective of the appearance of the SDW order. For
this reason, it will be assumed that the presence of the SDW
order does not affect the details of the FFLO order.

Below, we focus on other free-energy terms associated with
the SDW order parameter mQ(r). As already mentioned, mQ
should have an additional spatial modulation induced by the
FFLO modulation of � [see Eq. (3)] with the wave vector
qLO ‖ H. According to the conventional treatment [15] on the
metallic SDW ordering, the SDW free energy density FSDW
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unaccompanied by the SC order parameter is given by

FSDW

N (0)
=
〈
ln

(
T

TN

)
+Re

[
ψ

(
1

2
+i

δ(k)

4πT

)
−ψ

(
1

2

)]〉
k̂
〈|m|2〉s

−
〈
Re

[
ψ (2)

(
1

2
+ i

δ(k)

4πT

)]〉
k̂

〈|m|4〉s

(4πT )2
, (4)

where ψ(x) and ψ (2)(x) are the di-gamma function and its
second derivative, respectively, and TN is a Neel temperature
in the commensurate limit. We choose parameter values for
which the coefficient of the |m|2 term in FSDW remains positive
at any temperature. That is, as in the situation of CeCoIn5 in
H ⊥ c, we focus on the case with no SDW order in the normal
phase. We have verified that, for those parameter values, the
coefficient of the |m|4 term in FSDW is positive.

The SDW order is induced by the following coupling term
Fcl between the two orders [5]. Up to the lowest order in |�|2,
it takes the form

Fcl =
∫ ∞

0
dρ

∫ ∞

0
d�

4πT N (0)〈|�|2〉s〈|m|2〉s
sinh(2πT (ρ + 2�))

∫ ∞

−∞
dτ

×〈|wk|2[K (n)(�,τ,ρ; k̂) + K (an)(�,τ,ρ; k̂)]〉k̂, (5)

where

K (n) = [cos(I (2� − τ ))cos(δ(k)(� + ρ + τ/2))

× e−|ηk|2(�−τ/2)2/2 + cos(4I�)cos(δ(k)ρ)e−2|ηk|2�2
]

× (2cos(2qLOvk,x�)cos(qLOvk,xρ)

+ cos(qLOvk,x(τ + ρ))),

K (an) = −cos(2Iτ )cos(δ(k)ρ)e−|ηk|2τ 2/2[2cos(qLOvk,xτ )

× cos(qLOvk,xρ) + cos(qLOvk,x(2� + ρ))], (6)

and |ηk|2 = |e|H (v2
k,y + γ 2v2

k,z)/γ which depends on the H
direction, i.e., on φH . Derivation of the above expressions,
presented in the Appendix, is a simple extension of the
GL approach in the previous works [5,11] to the case with
the FFLO modulation. Here, we have assumed the FFLO
modulation mQ(x) ∝ cos(qLOx) with the same phase as Eq. (3)
because, up to the lowest order in |�|2, the SDW order favors
the region in real space with a nonvanishing � rather than that
with � = 0 [11].

The sign of K (n) and K (an) is determined by trigonometric
factors of different origins, the PPB effect due to the Zeeman
energy, the q direction reflected in δ(k), and effects of a
nonvanishing qLO. On the other hand, the magnitudes of K (n)

and K (an) are affected by the exponential factor, reflecting the
presence of vortices. Roughly speaking, this exponential factor
selects the component nearly parallel to H of k on the Fermi
surface. The SDW order is present when

χ (φq) ≡ FSDW + Fcl

〈|m|2〉s

∣∣∣∣
m=0

(7)

is negative. The direction of q, which is the main focus in this
paper, is determined through minimizing the free energy.

III. RESULTS

Among the obtained results in the present work, let us
first discuss the q orientation in H ‖ [100], i.e., φH = 0, case.
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FIG. 3. (Color online) (a) Field dependence of δχ≡χ (φq=π/4) −
χ (φq = −π/4) in H ‖ [110] following from the same set of
parameters as in Fig. 2(b). (b) Corresponding χ (φq) curves in
H = 0.5Horb,c (solid red [gray] curve) and in H = 0.52Horb,c

(dashed blue [gray] one).

In this case, the expressions are symmetric in the sign of ky ,
and thus, the two configurations symmetric with respect to
[100] are degenerate in energy with each other. Further, the
Hc2 values in the present system with strong PPB is not so
large that the twofold symmetry due to the vortices in the X-Y
plane is a weaker effect compared with the fourfold symmetry
of the pairing function |wk|. Consequently, the free energy
density F has its extreme values around φq = ±π/4, while
the curvature ∂2F/∂φ2

q depends on the magnitude of the in-
commensurability |δIC| = |ε(k) + ε(k + Q0)|/Tc0. Typically,
for larger |δIC| (>1), F is minimized around φq = ±π/4 (see
Fig. 3). We note that the PPB-induced SDW order tends to be
enhanced with increasing |δIC| [5]. In our calculation results,
which are shown hereafter, the value |δIC| = 3 has been used.

Once φH becomes nonzero, however, the degeneracy is
lifted by the presence of the vortices and the FFLO modulation.
Interestingly, these two effects favor different orientations of
q from each other. To see this, let us first focus on the qLO = 0
case, i.e., the ordinary vortex lattice with no FFLO modulation,
by assuming φH > 0. As Fig. 3(b) shows, the free energy in
lower fields than HFSP, i.e., H < 0.508Horb,c, is lower when
φq > 0, implying the tendency that q is oriented along the
vortex axis parallel to H. This feature has also been verified
elsewhere [7]. If HFSP is merely a coexistent phase of the
ordinary vortex lattice with the dx2−y2 -wave SC pairing and a
SDW order [6,7], φq would have the same sign as that of φH ,
in contrast to the experimental observation [10].

Therefore, HFSP must have a different factor for changing
the sign of φq. According to the original proposal on HFSP
of CeCoIn5 [1,3], we next examine the corresponding results
in the case with the FFLO modulation. In Eq. (5), the sign
of φq minimizing the free energy is determined by keeping
the sign of the product of two kinds of trigonometric factors,
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FIG. 4. (Color online) φH vs φq curves at H = 0.51Horb,c and
T = 0.01Tc0 in the case (solid curve) where the in-plane Fermi surface
is isotropic and the case (dashed one) with a Fermi surface anisotropy
incorporated through the replacement of DOS with β = 0.1 (see the
text). The used TN/Tc0 value is 0.86 in the solid curve and 0.91
in the dashed one, respectively, and other parameters are γ = 2.12,
δIC = 3.0, and αM,c = 2.5 in both curves.

the factor including q and that including qLO, unchanged: For
instance, in K (an), the sign of cos(δ(k)ρ) is reversed by a large
change of q direction, because the dominant k direction is, as
already mentioned, limited by the orbital pair breaking, and
this sign reversal is compensated rather by sign changes of
other trigonometric factors including qLO.

In Fig. 4, the resulting φH dependence of φq is shown as a
solid curve. The use of Eq. (3) with a nonzero qLO leads to the
result that the free energy is lowered in the configuration with
φqφH < 0, suggesting that the orientation q ⊥ H is favored,
in contrast to that in the qLO = 0 case. In a narrow region in
the close vicinity of the second-order transition entering HFSP
where |qLO|ξ0 is small (<0.2), the configuration φqφH > 0 is
realized, as in the low-field vortex lattice (see Fig. 2). For
larger qLOξ0 of order unity, however, the FFLO modulation
acts on the q orientation more strongly than the anisotropy
due to the vortices, and the configuration φqφH < 0 follows,
although φq favors values more or less close to ±π/4 due
to the fourfold symmetry of the gap function wk. Physically,
it implies that q tends to be oriented along the FFLO nodal
planes. This “pinning” of q to the nodal planes seems to be
the origin of the quick approach of the q vector to [110] as
φH is slightly increased from zero. In fact, it is clear from
Fig. 1 that, according to the above-mentioned pinning effect,
the tilt of the nodal plane due to a slight and positive (negative)
φH favors φq = −π/4 (+π/4). Further, since the effect of the
FFLO modulation on the q orientation is much bigger for the
PPB strength used here (see Fig. 3) than that of the in-plane
anisotropy due to the vortices, a change of φH at H ‖ [100]
with φqφH > 0, expected in the ordinary vortex lattice, does
not occur in this case. In addition, the feature seen in the solid
curve of Fig. 4 that |φq| > π/4 for smaller |φH | values can also
be understood from Fig. 1 by taking account of this pinning of
q to the nodal planes.

The dashed curve in Fig. 4 shows the corresponding φq vs
φH curve obtained in a more realistic case with a larger DOS
along [110]. In the present approach, the anisotropy on DOS
is incorporated with the replacement of the normal DOS on
the Fermi surface N (0) → N (0)/(1 + βcos(4φk)) with β > 0

[16], where φk = tan−1(kY /kX). Since this fourfold anisotropy
merely suppresses the deviation, seen in the solid curve, of
|φq| from π/4 in the small |φH | range, it seems that the solid
curve following from the isotropic Fermi surface includes all
of essential contents of the φH -dependent q orientation.

IV. SUMMARY AND COMMENTS

As shown in the preceding section, the sudden switching
of the magnetic domain due to a slight rotation of H
around the [100] direction seen in HFSP of the dx2−y2 -wave
superconductor CeCoIn5 [10] can be explained, based on the
original picture [1,3] that HFSP is a FFLO superconducting
phase, as an event stemming from a pinning of the SDW Q
vector to the FFLO nodal planes. This FFLO picture of HFSP
has been supported previously through the NMR [14] and
doping [12] experiments and a related theoretical study [13].
It should be stressed here that the origin of the SDW order
is not the FFLO modulation of � but consists in an interplay
between the PPB effect and the dx2−y2 -pairing symmetry [5].
On the other hand, it has been argued in Ref. [10] that the
observed switching of the magnetic domain is an evidence
of the presence of a π -triplet order in HFSP. Justification of
this phenomenology [10] would need to be accompanied by a
firm microscopic basis for the presence of such a rare pairing
state. In fact, as pointed out previously [13], it is difficult to
explain the strong doping effect [12] of HFSP based only on
the presence of the π -triplet order. We also note that observed
changes of HFSP on tilting the applied field from the a-b
plane have also been explained based on this FFLO-based
theory [17].
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APPENDIX

Here, the detailed derivation of the mean-field free energy
density F is presented. In this derivation, we use the perturba-
tive approach adopted in Refs. [5,11] by refining it in a form
incorporating the coupling between the FFLO modulation of
a SC order parameter and the SDW q vector.

We consider the GL expansion of the mean-field free energy
density F = FSC + FSDW + Fcl up to O(|�|6), O(|m|4), and
O(|�|2|m|2) terms:

FSC = F
(2)
� + F

(4)
� + F

(6)
� , (A1)

FSDW = F (2)
m + F (4)

m , (A2)

Fcl = F
(2,2)
�m . (A3)

Here, F
(N)
� (N = 2,4,6) and F (M)

m (M = 2,4) denote the ex-
pansion terms proportional to |�|N and |m|M , respectively,
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and F
(2,2)
�m represents the coupling term between SC and SDW

orders, which is proportional to |�|2|m|2.
In order to incorporate the orbital pair-breaking effect,

the quasiclassical approximation of the Green’s function
Gωn,σ (r,r ′) is employed:

Gωn,σ (r,r ′) � Gωn,σ (r − r ′)|A=0 × eie
∫ r

r′ A(s)·ds, (A4)

where ωn is the fermion Matsubara frequency and

Gωn,σ (r − r ′)|A=0 =
∑

k

Gωn,σ (k)eik·(r−r ′), (A5)

Gωn,σ (k) = 1

iωn − ε(k) − Iσ
. (A6)

Using the formula [18]

e2ie
∫ r1

r A(s)·ds�(r1) = ei(r−r1)·��(r), (A7)

where � = −i∇ + 2eA, F
(N)
� (N = 2,4,6) is straightfor-

wardly calculated in the form

F
(2)
� =

〈
�∗(r)

[
1

|g| − K
(2)
� (�)

]
�(r)

〉
s

, (A8)

F
(4)
� = 〈

K
(4)
� (�i)�

∗(r1)�(r2)�∗(r3)�(r4)|r i→r
〉
s, (A9)

F
(6)
� = 〈

K
(6)
� (�i)�

∗(r1)�(r2)�∗(r3)

×�(r4)�∗(r5)�(r6)|r i→r
〉
s, (A10)

where 〈〉s denotes the spatial average, and

K
(2)
� (�) = T

2

∑
ωn,k,σ

|wk|2Gωn,σ (k)G−ωn,−σ (−k + �) = 2πT N (0)
∫ ∞

0
dρf (ρ)〈|wk|2e−iρvk ·�〉k̂, (A11)

K
(4)
� (�i) = T

4

∑
ωn,k,σ

|wk|4Gωn,σ (k)G−ωn,−σ (−k + �∗
1)G−ωn,−σ (−k + �2)Gωn,σ (k + �∗

3 − �2)

= 2πT N (0)
∫ ∞

0

3∏
i=1

dρi f

(
3∑

i=1

ρi

)
〈|wk|4eivk ·(ρ1�

∗
1+ρ2�2+ρ3�

∗
3 )〉k̂ + (�2 ↔ �4), (A12)

K
(6)
� (�i) = −T

6

∑
ωn,k,σ

|wk|6Gωn,σ (k)G−ωn,−σ (−k + �∗
1)G−ωn,−σ (−k + �6)

×Gωn,σ (k − �∗
1 − �2)G−ωn,−σ (−k + �∗

1 + �∗
3 − �2)Gωn,σ (k − �6 + �∗

5)

= −2πT N (0)
∫ ∞

0

5∏
i=1

dρi f

(
5∑

i=1

ρi

)
〈|wk|6eivk ·(ρ1�

∗
1+ρ2�2+ρ3�

∗
3+ρ4�4+ρ5�

∗
5 )〉k̂ + (�∗

3 → �2 − �∗
3 + �4). (A13)

Here, 〈〉k̂ represents the k-space average on the Fermi surface, and f (ρ) = cos(2Iρ)/ sinh(2πTρ). In order to obtain Eqs. (A11),
(A12), and (A13), the identity 1/α = ∫∞

0 dρ e−αρ (Re[α] > 0) is used.
Similarly, the expressions for F (M)

m (M = 2,4) are written as

F (2)
m =

〈
1

U
− T

2

∑
ωn,k,σ

Gωn,σ (k)Gωn,−σ (k + Q)

〉
k̂

〈|m(r)|2〉s, (A14)

F (4)
m =

〈
T

2

∑
ωn,k,σ

Gωn,σ (k)Gωn,−σ (k + Q)Gωn,σ (k)Gωn,−σ (k + Q)

〉
k̂

〈|m(r)|4〉s, (A15)

where m(r) = ∑
p mQ( p) exp(i p · r). Substituting Eqs. (A14) and (A15) into Eq. (A2), and using the expression 1/U =

N (0)[ln(T/TN ) +∑
ωn>0 2πT/ωn], we obtain Eq. (4) in the main text.

Similarly, we can calculate F
(2,2)
�m in the form

F
(2,2)
�m = 〈[2K�m,1(�i , − i∇i) + K�m,2(�i , − i∇i)]�

∗(r1)�(r2)m∗(r3)m(r4)|r i→r〉s, (A16)

where

K�m,1(�i , − i∇i) = − T
∑

ωn,k,σ

|wk|2Gωn,σ (k − Q + i∇3)Gωn,−σ (k)G−ωn,σ (−k + �2)Gωn,−σ (k − �2 + �∗
1)

=
∫ ∞

0

3∏
i=1

dρi

2πT N (0)

sinh
[
2πT

(∑3
i=0 ρi

)] 〈|wk|2[cos (2I (ρ1 + ρ2))eiδ(k)ρ3e−ivk ·(ρ1�
∗
1+ρ2�2−ρ3i∇3)

+ cos(2Iρ2)eiδ(k)(ρ1+ρ3)e−ivk ·((ρ1+ρ2)�∗
1−ρ1�2−(ρ1+ρ3)i∇3)] + h.c.〉k̂, (A17)
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K�m,2({�i , − i∇i}) = −T
∑

ωn,k,σ

wkw
∗
k+ QGωn,σ (k + �2)G−ωn,−σ (−k)G−ωn,σ (−k − Q + i∇3)Gωn,−σ (k + Q + �∗

1 − i∇3)

= −
∫ ∞

0

3∏
i=1

dρi

2πT N (0)

sinh
[
2πT

(∑3
i=0 ρi

)] 〈|wk|2 cos (2I (ρ1 − ρ2))eiδ(k)ρ3

× [eivk ·(ρ1�
∗
1−ρ2�2+ρ3i∇3) + eivk ·((ρ1+ρ3)�∗

1−(ρ2+ρ3)�2−ρ3i∇3)] + h.c.〉k̂. (A18)

As discussed in the main text, the SC and SDW order parameters in the coordinate representation are given by

�(r) =
√

2�0(y,z) cos(qLOx), (A19)

m(r) =
√

2m cos(qLOx). (A20)

Here, �0(y,z) is the Abrikosov lattice solution defined in the anisotropic plane:

�0(y,z) = �

(
k2

π

) 1
4 ∞∑

n=−∞
exp

[
i

(
nk

rH
√

γ
z + π

2
n2

)
− 1

2

(√
γ

rH

y + nk

)2]
, (A21)

where rH = (2|eH |)−1/2, and γ =
√

〈|wk|2v2
k,y〉k̂/〈|wk|2v2

k,z〉k̂ (vk,y and vk,z are the y and z components of vk in the rotated
coordinates, respectively). Further, for simplicity, the square lattice solution with k = √

π has been adopted. We note that the
type of the vortex lattice does not affect our main results even quantitatively.

Substituting Eqs. (A19) and (A20) into Eqs. (A8), (A9), (A10), and (A16), and employing the local approximation [3], we
obtain the expressions for F

(N)
� (N = 2,4,6) and F

(2,2)
�m as follows:

F
(2)
� = N (0)

[
ln

(
T

Tc0

)
+ 2πT

∫ ∞

0
dρ

〈
|wk|2

(
1

sinh(2πTρ)
− f (ρ)e−|ηk |2ρ2/2 cos(qLOvk,xρ)

)〉
k̂

]
|�|2, (A22)

F
(4)
� = πc4T N (0)√

2

∫ ∞

0

3∏
i=1

dρi f

(
3∑

i=1

ρi

)〈
|wk|4 exp

[
−|ηk|2

2

3∑
i=1

ρ2
i

]
Re[e−p0 ]

× [cos (qLOvk,x(ρ1 + ρ2 + ρ3)) + cos(qLOvk,x(ρ1 + ρ2 − ρ3)) + cos (qLOvk,x(ρ1 − ρ2 − ρ3))]

〉
k̂

|�|4, (A23)

F
(6)
� = − 5πc6T N (0)√

3

∫ ∞

0

5∏
i=1

dρi f

(
5∑

i=1

ρi

)〈
|wk|4 exp

[
−|ηk|2

2

5∑
i=1

ρ2
i

]
Re[e−p1 ]

〉
k̂

|�|6

+ (ρ2 → ρ2 + ρ3,ρ3 → −ρ3,ρ4 → ρ4 + ρ3), (A24)

F
(2,2)
�m = N (0)

∫ ∞

0

3∏
i=1

dρi

4πT

sinh
(
2πT

∑3
i=1 ρi

) 〈|wk|2[K (n) + K (an)]〉k̂|�|2|m|2, (A25)

where

K (n) = [cos (2I (ρ1 + ρ2)) cos(δ(k)ρ3)e−|ηk |2(ρ1+ρ2)2/2 + cos(2Iρ2) cos (δ(k)(ρ1 + ρ3))e−|ηk |2ρ2
2 /2]

× [cos (qLOvk,x(ρ1 + ρ2 + ρ3)) + cos (qLOvk,x(ρ1 − ρ2 + ρ3)) + cos (qLOvk,x(ρ1 + ρ2 − ρ3))], (A26)

K (an) = − cos (2I (ρ1 − ρ2)) cos(δ(k)ρ3)e−|ηk |2(ρ1−ρ2)2/2[cos (qLOvk,x(ρ1 + ρ2 + ρ3))

+ cos (qLOvk,x(ρ1 − ρ2 + ρ3)) + cos (qLOvk,x(ρ1 − ρ2 − ρ3))]. (A27)

Here, vk,x is the x component of vk in the rotated coordinates, ηk = (γ −1/2vk,y − iγ 1/2vk,z)/(
√

2rH ), c4 = 1.67, c6 = 2.59,
p0 = 1

2 [η∗
k

2(ρ2
1 + ρ2

3 ) + η2
kρ

2
2 ] − 1

4 [η∗
k(ρ1 + ρ3) − ηkρ2]2, and

p1 =
⎡
⎣−1

2

(
η∗

k
2
∑
i:odd

ρ2
i +η2

k

∑
i:even

ρ2
i

)
+ 1

6

(
η∗

k

∑
i:odd

ρi +ηk

∑
i:even

ρi

)2

+ 1

3

⎛
⎝η∗

k
2
∑

(i,j ):odd

(ρi − ρj )2+η2
k

∑
(i,j ):even

(ρi − ρj )2

⎞
⎠
⎤
⎦

ρ6=0

.

(A28)

Changing the integration variables of Eqs. (A25), (A26), and (A27) to ρ = ρ3, � = (ρ1 + ρ2)/2, and τ = ρ1 − ρ2, we reach
Eqs. (5) and (6) in the main text.
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