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Ferromagnetic Coulomb phase in classical spin ice
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Spin ice is a frustrated magnetic system that at low temperatures exhibits a Coulomb phase, a classical spin
liquid with topological order and deconfined excitations. This work establishes the presence of a Coulomb
phase with coexisting ferromagnetic order in a microscopic model of classical spin ice subject to uniaxial lattice
distortion. General theoretical arguments are presented for the presence of such a phase, and its existence is
confirmed using Monte Carlo results. This example is used to illustrate generic properties of spin liquids with
magnetic order, including deconfinement of monopoles, signatures in the neutron-scattering structure factor, and
critical behavior at phase transitions. An analogous phase, a superfluid with spontaneously broken particle-hole
symmetry, is demonstrated in a model of hard-core lattice bosons, related to spin ice through the quantum-classical
correspondence.
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I. INTRODUCTION

Spin liquids are phases where magnetic degrees of freedom
exhibit strong local correlations, despite the persistence of
large fluctuations [1], of either quantum-mechanical or thermal
origin. They occur at low temperature in certain frustrated
systems, where interactions are large compared to thermal
fluctuations, but mutual competition between the interactions
prevents formation of a rigidly ordered configuration. Spin liq-
uids have been of theoretical interest for several decades [2,3],
but evidence for their existence in physical systems [4,5],
and even in microscopic models [6–8], is considerably more
recent.

While spin liquids are often distinguished from conven-
tional low-temperature phases, such as ferromagnets, by the
fact that they lack magnetic order, their defining characteristics
go beyond the mere absence of conventional order. A precise
definition of a quantum spin liquid (QSL) can be phrased
in terms of long-range entanglement [1], while the Coulomb
phase [9], the classical spin liquid (CSL) that is of primary
interest here, can be defined through deconfinement of frac-
tionalized “monopole” excitations [8]. Experimental evidence
exists for a Coulomb phase in the spin-ice compounds, which
can be treated as classical at relevant temperatures [10].

These definitions provide positive characterizations for
QSL and CSL phases, and also make clear the possibility
of a magnetically ordered spin liquid, in which spin-liquid
phenomena coexist with conventional symmetry-breaking
order. Some examples of such phases have been reported in
the theoretical literature: Mean-field studies of quantum spin
ice [11] identified an ordered QSL, referred to as a “Coulomb
ferromagnet,” although quantum Monte Carlo simulations
have not revealed such a phase [12]. Recent work [13] has
also demonstrated the possibility of antiferromagnetic order
coexisting with a CSL.

The compatibility of magnetic order and spin-liquid phe-
nomenology also allows for the existence of phase transitions
between ordered and disordered spin liquids. One might
anticipate novel critical behavior at such transitions, since it
is known that transitions from spins liquids into conventional
ordered phases can transcend the usual Landau paradigm [9].

This work demonstrates that a ferromagnetic Coulomb
phase can occur in a model of classical spin ice, and

provides a detailed study of this phase and the associated
transitions. Theoretical arguments, including mapping to a
related quantum model, are used to show that such a phase
exists and that it can be reached through a continuous transition
from the paramagnetic Coulomb phase. We present Monte
Carlo (MC) results that confirm both of these statements,
and illustrate the generic properties of ordered spin liquids,
including the structure factor for elastic neutron scattering.

We also consider the critical behavior at the ordering
transition and predict that, despite the Ising nature of the order
parameter and the presence of only short-range interactions
in the microscopic model, the transition should belong in the
mean-field universality class, as a result of coupling to the
effective gauge-field fluctuations of the spin liquid. While the
numerical results are consistent with this prediction, larger
system sizes would be required for a definitive confirmation of
the universality class. This phase transition provides another
interesting example of the diversity of critical phenomena that
exists in the neighborhood of spin-liquid phases.

Outline

In Sec. II, the model of spin ice is introduced, and a choice
of perturbations that lead to a ferromagnetic Coulomb phase
is motivated. The basic structure of the phase diagram is
then illustrated using MC results, showing the appearance
of such a phase at intermediate temperatures for certain
values of the parameters. In Sec. III, the phase in question is
studied in detail, to confirm that it has nonzero magnetization
while simultaneously exhibiting the characteristic features of a
Coulomb phase. Sections IV and V consider in turn the critical
behavior at the higher- and lower-temperature transitions out
of this ferromagnetic Coulomb phase.

We conclude in Sec. VI, by summarizing the features
that are expected to be generic to ordered spin liquids, both
quantum and classical, and discuss briefly the effect of a
nonzero density of magnetic monopoles. In the Appendix, the
classical-quantum mapping developed in Ref. [14] is applied
to this system, and the resulting quantum model is related to a
problem of hard-core quantum bosons studied by Rokhsar and
Kotliar [15].
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II. MODEL AND PHASE STRUCTURE

A. Nearest-neighbor model of spin ice

The spin-ice materials [8,10] Ho2Ti2O7 and Dy2Ti2O7

are well described by a model of classical spins Si on the
sites i of a pyrochlore lattice, a network of corner-sharing
tetrahedra. Each spin is subject to a strong easy-axis anisotropy
constraining it to point parallel or antiparallel to the local
〈111〉 axis joining the centers of adjacent tetrahedra, Si = ±n̂i .
Including only nearest-neighbor interactions, the Hamiltonian
can be written as

Hnn = −
∑
〈ij〉

Jij Si · Sj , (1)

where Jij is a ferromagnetic coupling between nearest-
neighbor sites 〈ij 〉 of the lattice.

In the unperturbed model, the interaction is uniform, Jij =
J > 0, and favors those states where, of the four spins on each
tetrahedron, two point in and two point out. The latter condition
is referred to as the “ice rule” and selects a set of states that is
degenerate in the nearest-neighbor model and whose number
grows exponentially with the number of spins. While a more
realistic microscopic model thanHnn would also include dipo-
lar interactions [10], their effect is primarily to renormalize J ,
with only a small splitting of the ice-rule states [16].

We will mostly concentrate on the limit where the ice
rule is enforced as a constraint, represented by Eq. (1) with
temperature T � J . Assuming ergodicity within the ice-rule
manifold, the system in this limit exhibits a Coulomb phase, in
which the spins are disordered but highly correlated. Replacing
the spins Si by a continuous vector field B(r) and the ice rule
by ∇ · B = 0 leads to an effective coarse-grained description
for this phase [9]. A quadratic action for the “magnetic field” B
correctly describes the long-wavelength neutron scattering at
low temperature in spin ice [17], and predicts that monopoles
in B, corresponding to single tetrahedra where the ice rule is
broken, are deconfined [8]. Much of the physics is in fact
qualitatively unaltered by a small density of such defects
(see Sec. VI), and their effects on the critical properties can
be understood by treating monopole fugacity as a relevant
perturbation (in the renormalization-group sense) [18,19].

An important property of the ice-rule states for present
purposes is that they obey a topological constraint on the mag-
netization [8,9]: Starting from any ice-rule state and flipping
a spin Si breaks the ice rule on the two tetrahedra shared by
site i. The only updates that connect configurations within the
ice-rule manifold are those that involve flipping a set of spins
aligned head to tail along a closed loop. Any such update for
a contractible loop preserves the magnetization density,

M = 1

Ns

∑
i

Si , (2)

where Ns = ∑
i 1 is the number of spins. Changing the

magnetization while remaining within an ice-rule state in fact
requires flipping spins along a loop that spans the system
(assuming periodic boundary conditions). Sets of states with
the same magnetization therefore constitute “topological
sectors,” [8] disconnected by local updates. This topological
conservation law is broken by a nonzero density of monopoles,
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FIG. 1. (Color online) Three configurations of a single tetrahe-
dron, and their energy Et in the nearest-neighbor Hamiltonian Hnn,
Eq. (1), with Jij given in Sec. II B. Pairs of spins situated in
the same horizontal plane, indicated with dashed (red) lines, have
reduced coupling Jij = J − 3p, while others have Jij = J . All three
configurations obey the ice rule, having two spins pointing in and
two pointing out. The first two are lowest-energy configurations for a
single tetrahedron (since the antiferromagnetically aligned pairs are
those with reduced coupling), while the one on the right is one of the
remaining four ice-rule configurations whose energy is higher by 4p.
Excitations above the ground state are described by strings of spins
flipped relative to a fully polarized configuration, and increase the
energy by 4p per tetrahedron. When a pair of strings pass through the
same tetrahedron, all four spins are inverted and the energy is again
minimized; the strings therefore feel an attractive interaction.

but remains approximately valid, and conceptually useful, at
low temperatures.

Nonzero magnetic susceptibility χ requires that the system
fluctuates between different sectors [20]; in the thermody-
namic limit, one can therefore distinguish “incompressible”
phases with χ = 0 from those with χ > 0.

B. Uniaxial distortion

To split the energy of the six ice-rule states on a given
tetrahedron requires breaking the cubic symmetry of the
pyrochlore lattice. Following Ref. [21], we consider an explicit
uniaxial symmetry breaking, with Jij = J − 3p (J > 3p >

0) for pairs of spins whose relative displacement lies in the
(001) plane and Jij = J for all others. (Such a perturbation
could be effected in experiment by application of uniaxial
pressure [21].) As illustrated in Fig. 1, the result is to favor
the two configurations where the total (vector) spin of the
tetrahedron is along the [001] axis, whose energy is reduced
by 4p compared to the other four. In contrast to the case of an
applied field [14,22], an Ising symmetry remains; there are two
degenerate lowest-energy states, with all spins on all tetrahedra
maximally polarized, consistent with the local easy axes, either
along (“up”) or against (“down”) the [001] direction.

We first briefly review the phase structure of the model
Hnn with this distortion; readers are referred to Refs. [21,23]
for more details. For p � T � J , the system remains in
the Coulomb phase, while below a critical temperature
Tc = 4p(ln 2)−1 it becomes a fully polarized ferromagnet.
At the transition, the up-down symmetry is broken and
the magnetization along the [001] direction, Mz, becomes
nonzero. While an Ising order parameter can naturally be
defined, the transition in the ice-rules limit has quite different
properties from the standard Ising universality class. Starting
from either of the fully polarized states, the only closed loops
are “strings” spanning the system in the [001] direction, which
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cost energy proportional to the (linear) system size L. The
transition occurs when the entropy of a single string, also ∝L,
outweighs the energy, and so its free energy changes from
positive to negative; the string density then increases from
zero to nonzero.

As a consequence, the system on the lower-temperature side
of the transition is fully polarized, with zero string density,
as in the related case of an applied field [14,22]. A crucial
distinction in this case is that two strings feel an effective
attraction when sharing a tetrahedron (see Fig. 1). At the
critical point, this exactly balances the entropy cost of the
excluded volume due to the hard-core interactions between
strings. In fact, as Jaubert et al. [21] have shown, the free energy
at T = Tc as a function of string density is precisely constant
(in the thermodynamic limit). Because each string consists
of a fixed number of flipped spins relative to the starting
configuration, this implies that the free energy is independent
of magnetization. As the temperature increases through the
transition, the global minimum of F (Mz), which can be
interpreted as a Landau function, jumps from Mz = ±Msat to
Mz = 0. (The resulting discontinuity in the magnetization is
illustrated below in Fig. 3.) Since all coefficients in the Landau
free energy vanish at the transition, this has been referred to
as “infinite-order multicriticality” [21].

C. Additional interactions

Given the magnetization-independent free energy at the
transition, it is clear that any perturbation that produces a
positive fourth-order coefficient in the Landau function should
lead to an intermediate phase with 0 < |Mz| < Msat. While
this argument does not provide a prescription for constructing
appropriate perturbations, one expects on general grounds that
a sufficiently long-ranged four-spin interaction will have this
effect. (As will also be demonstrated, a quartic coefficient with
opposite sign should lead to a first-order transition.)

As we detail in the following, MC results in fact demon-
strate that it is sufficient to add a four-spin interaction acting
between tetrahedra on opposite sides of a hexagonal loop, as
illustrated in Fig. 2.

The perturbation used throughout this work can be written
explicitly as

H4s = V4

∑
{t t ′}

[�+(St ,St ′) + �−(St ,St ′)] , (3)

where

�±(S,S′) =
{

1 if S = S′ = ± 4√
3

ẑ
0 otherwise

(4)

and St ≡ ∑
i∈t Si is the total (vector) spin on tetrahedron t .

The sum in Eq. (3) is over pairs of tetrahedra {t t ′} across a
hexagon (see Fig. 2), and the summand is 1 if both tetrahedra
have all spins polarized in the same vertical direction, and
0 otherwise. (Note that, while this expression apparently
involves eight spins, it is equivalent to a four-spin interaction
under projection into the ice-rule states. This form of the
interaction is partly motivated by the quantum mapping,
described in the Appendix.)

Regarding the choice ofH4s, it is not the goal of this work to
classify the various types of interactions according to whether

FIG. 2. (Color online) Illustration of the four-spin interaction
H4s added to the model to stabilize the ferromagnetic Coulomb phase.
The arrows represent spins on the sites of a pyrochlore lattice, a
network of corner-sharing tetrahedra. (This configuration obeys the
ice rule, with two spins pointing into and two pointing out of each
tetrahedron.) The additional interaction couples pairs of tetrahedra
at opposite sides of hexagons; one such pair and its hexagon are
highlighted.

they produce a ferromagnetic Coulomb phase, and we are
not aware of a general argument that would allow for such a
classification [24]. (The search for appropriate interactions is
in any case better informed by experimental evidence about
which interactions occur in particular materials.) Rather, the
goal here is to study a particular case where such a phase is
known to exist, and elucidate those properties of the phase
and its transitions that are expected to be universal, or at least
qualitatively generic.

Plots of the magnetization as a function of temperature, for
V4 positive, negative, and zero, are shown in Figs. 3 and 4.
These results were produced using MC simulations based on
a directed-loop algorithm [25,26]. The lattice consists of L ×
L × L cubic unit cells, each containing four tetrahedra of each
orientation, and hence 16 spins. For V4 � 0, a step is observed

5.5 6.0 6.5 7.0

0.2

0.4

0.6

0.8

1.0

m
ag

ne
ti

za
ti

on
M

z
M

sa
t

T p

FIG. 3. Magnetization vs temperature, for fixed V4/T = 0 (left)
and V4/T = −0.01 (right), and L = 24 (Ns = 16L3 
 2 × 105

spins). In both cases, there is a jump from saturation to zero
magnetization, at a transition temperature indicated with a vertical
line. For each temperature, the spontaneous magnetization is found
by applying a weak field along the z direction and extrapolating to
zero field.
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FIG. 4. Magnetization vs temperature, for fixed V4/T = 0.05
and system size L = 24. The vertical lines at T/p 
 3.15 and 3.35
indicate positions of phase transitions, determined as described in
Secs. V and IV respectively. Below the lower-temperature transition,
the magnetization remains at its saturation value, apart from small
finite-size corrections, while above the higher-temperature transition,
it vanishes. The intermediate phase is a ferromagnet with nonzero
and continuously varying magnetization.

in the magnetization, from essentially fully saturated, with
small deviations due to finite-size effects [21], to zero within
error bars. This step is accompanied by a single peak in the
specific heat (not shown), whose height grows with system
volume, indicating a single first-order transition.

By contrast, when V4 > 0 (Fig. 4), there are clearly three
distinct regimes as the temperature T is lowered. The high-
temperature phase is paramagnetic, with M = 0, and is the
usual Coulomb phase observed at T � J in spin ice. The
magnetization first becomes nonzero at T c> before reaching its
saturation value at T c<. While the system is ferromagnetic for
all T < T c>, it is a saturated ferromagnet, with Mz = ±Msat,
only below T < T c<. As shown in Fig. 5, the variance of the
energy (proportional to the specific heat) in this case displays
two peaks, both at most weakly diverging with L, consistent
with a pair of continuous transitions.

Figure 6 shows histograms of the energy and magneti-
zation for L = 16, V4/T = 0.05, and T/p = 3.31, near the
higher-temperature peak of the energy variance. The unimodal
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FIG. 5. (Color online) Variance of energy, (〈E2〉 − 〈E〉2)/Ns, vs
temperature for fixed V4/T = 0.05 and various system sizes. The
vertical lines indicate the positions of phase transitions in the
thermodynamic limit (determined by other means). The double-peak
structure, with peak heights at most weakly diverging with L, is
consistent with a pair of continuous transitions.

structure of the energy distribution confirms the continuous na-
ture of the transition, while the two peaks of the magnetization
indicate that this is a symmetry-breaking transition into a state
with nonzero but unsaturated magnetization. This should be
contrasted with the case of V4 = 0, where the magnetization
histogram is flat at the transition [21]. Figure 7 shows the
case of V4 < 0, where the transition is of first order, with a
bimodal structure in the energy and coexisting peaks in the
magnetization distribution, at both Mz = 0 and Mz = ±Msat.

III. INTERMEDIATE PHASE

Having established the presence of a pair of phase tran-
sitions when V4 > 0, we now turn to the intermediate phase
in the temperature range T c< < T < T c>. It will be argued
that this phase shares the essential spin-liquid features of the
Coulomb phase above T c>, but it is distinguished by a nonzero
spontaneous magnetization.

The presence of a nonzero but unsaturated magnetization
in the intermediate phase is evident from Figs. 4 and 6.
Continuously changing magnetization implies that the mag-
netic susceptibility is nonzero, and hence that there are
fluctuations between different topological (magnetization)
sectors. This fact alone distinguishes the intermediate phase
from the low-temperature saturated ferromagnet, where the
flux stiffness vanishes in the thermodynamic limit, and there
are no topological-sector fluctuations [8,20].

Two phenomena that are characteristic of the Coulomb
phase are deconfinement and algebraic spin-spin correlations;
these are discussed in turn in the following subsections.

A. Monopole distribution function

A single tetrahedron at which the ice rule is broken
(i.e., where the number of spins pointing in and out differs)
corresponds to a monopole in the continuous vector field
B(r). Such defects are rare for T � J , and, at least as a
first approximation, we treat the density of thermally excited
monopoles as vanishing.

It is useful to consider, however, the introduction of a single
pair of oppositely charged monopoles into an otherwise defect-
free background. The effective interaction between the pair,
induced by the fluctuations of the surrounding spins, allows
one to distinguish spin-liquid phases from others such as the
saturated ferromagnet. In the Coulomb phase, the monopoles
are subject to an effective Coulomb interaction, with a finite
limit for large separation. The saturated ferromagnet is, by
contrast, a confining phase, in which the free energy of a
pair of monopoles grows without bound as their separation
increases [8,18,19].

To determine directly whether monopoles are deconfined,
one can define the monopole distribution function Gm(r+,r−)
as the partition function calculated in the presence of a pair
of monopoles of opposite charge at r±. (More explicitly, the
ensemble is constrained so that all tetrahedra obey the ice
rule, apart from those at r±, where three spins point out
and one points in, and vice versa.) This function, which is
related to the effective interaction between monopoles Um by
Gm = e−Um/T , has a nonzero limit for infinite separation
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FIG. 6. (Color online) Energy and magnetization histograms for L = 16, V4/T = 0.05, and T/p = 3.31 (near the higher-temperature
transition). The unimodal energy distribution is indicative of a continuous transition, while the two peaks in the magnetization distribution
show that this transition is associated with magnetic ordering and breaking of spin-reversal symmetry.

|r+ − r−| only when monopoles are deconfined. In a confined
phase, it instead decays exponentially to zero.

In a finite system, these asymptotic behaviors are observed
only for separations much less than the system size L. Finite-
size effects can be controlled by fixing the ratio |r+ − r−|/L
and observing the scaling with L. Figure 8 shows the ratio
of the monopole distribution function calculated at Rmax,
the largest displacement possible for L3 cubic unit cells (L
even) with periodic boundaries, and at Rmax,z, the maximum
separation along the z direction (|Rmax| = √

3|Rmax,z|). The
ratio approaches unity with increasing system size for all T >

T c<, while it decays to zero below T c<, indicating confinement.
No qualitative difference is seen when crossing the higher-
temperature phase boundary at T c>, demonstrating that the
intermediate phase, in common with the standard Coulomb
phase above T c>, exhibits deconfinement of monopoles.

The form of the effective interaction Um(r) = −T ln Gm(r)
is determined by the approach of Gm(r) to its asymptotic value
for large separation r . Figure 9 shows Um for temperatures
within the intermediate phase and above T c>. In both cases,
the interaction is anisotropic, because the spatial symmetry is
reduced by the applied pressure (and H4s). Up to finite-size
effects, the interaction can be fit to the Coulomb form, ∝1/|r|,
confirming the identification of the intermediate phase as a
Coulomb phase. The effective interaction is stronger parallel
to the pressure axis at both temperatures, with larger anisotropy
at the lower temperature.

B. Neutron-scattering structure factor

The most direct experimental signature of the Coulomb
phase is the presence of “pinch points” in the neutron-
scattering structure factor, which reflect the algebraic (dipolar)
correlations between the spins [9,10]. These features are
clearest in the spin-flip component of polarized neutron-
scattering data with incident polarization along [11̄0] [17].
The corresponding structure factor is

SSF( Q) = η̂μη̂νSμν( Q) , (5)

where Sμν( Q) is the Fourier transform of the two-spin
correlation function 〈Sμ(r)Sν(r ′)〉 and

η̂ = Q × P
| Q||P | (6)

is a unit vector orthogonal to both the wave vector Q and the
incident neutron polarization P .

This structure factor is shown in Fig. 10, for Q in the
(hh�) plane and P along [11̄0]. Pinch points are visible for
all T > T c<, with no qualitative change at T c>, showing that
the dipolar correlations of the Coulomb phase remain until
the lower-temperature transition. In the intermediate phase,
they coexist with Bragg peaks at certain reciprocal-lattice
vectors, indicating ferromagnetic ordering [27]. The diffuse
scattering is completely suppressed in the low-temperature
saturated ferromagnet, and only the Bragg peaks remain.
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FIG. 7. (Color online) Energy and magnetization histograms for L = 8, V4/T = −0.01, and T/p = 6.76. In this case, the transition is
strongly first order, as indicated by the bimodal energy distribution, and occurs directly between the saturated ferromagnet (Mz = ±Msat) and
the paramagnet (Mz = 0). (A small system size is necessary to observe distributions with multiple peaks; for larger L the competing states are
metastable.)
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FIG. 8. (Color online) Ratio of monopole distribution function
Gm evaluated at the maximum displacement in the lattice, Rmax,
and at the maximum displacement along the z direction, Rmax,z.
The curves (from bottom to top) have T/p corresponding to the
dashed lines (from left to right) in the inset, which reproduces the
magnetization curve of Fig. 4. The ratio approaches unity with
increasing system size for all temperatures except the lowest, which is
within the low-temperature confining phase. No qualitative change is
seen across the higher-temperature transition, indicating that the two
higher-temperature phases both exhibit deconfinement of monopoles.
Explicitly, the curves have, from bottom to top, T/p = 3.125 (black),
3.175 (red), 3.226 (orange), 3.279 (yellow), 3.333 (green), 3.390
(light blue), and 3.448 (dark blue). In all cases, V4/T = 0.05 is fixed.
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FIG. 9. (Color online) Effective (dimensionless) interaction
Um(r)/T = − ln Gm(r) between monopoles, for fixed system
size L = 32. For each temperature T , the interaction is plotted
for separations r parallel (‖) and perpendicular (⊥) to the axis
of the applied pressure, and the zero of interaction is chosen as
Um(Rmax) = 0. The lines show least-square fits to the Coulomb form
a − b/|r| in the region 0.1 < |r|/L < 0.4, with different parameters
a and b for each case. There are deviations from the fit at large
separation, because of finite-size effects, and at small separation,
because of lattice-scale effects and because of the finite range of the
additional interactions. (The parameter b is given by b‖ = 0.0057,
b⊥ = 0.0036 for T/p = 3.448; and b‖ = 0.0247, b⊥ = 0.0116 for
T/p = 3.226.)

IV. HIGHER-TEMPERATURE TRANSITION

The previous sections have established that the phase at
T c< < T < T c> is a spin liquid with ferromagnetic order, and
that it is connected to the high- and low-temperature phases by
continuous transitions. In this section and the following, the
critical properties of these two transitions will be addressed
in turn, using analytical arguments supported by numerical
results.

A. Critical theory

Near the transition, at T = T c>, between the paramagnetic
and ferromagnetic Coulomb phases, the magnetization is far
from saturation and so the discrete nature of the spins is
presumably not important. Replacing the discrete spins by
a continuous vector field B(r) [9], the partition function can
be expressed as

Z =
∫

DB δ(∇ · B) exp −
∫

d3r
(

1

2
κ|B|2 − 1

2
αB2

z

)
.

(7)
The coefficient κ is the flux stiffness in directions transverse to
the applied pressure, while α > 0 represents the effect of the
uniaxial pressure, enhancing fluctuations along the z direction.
(Higher-order terms have been omitted.)

Using a Hubbard-Stratonovich field 
 to decouple the
anisotropy term, this can be replaced by

Z ∝
∫

D


∫
DB δ(∇ · B)

× exp −
∫

d3r
(

1

2α

2 + 1

2
κ|B|2 + 1

2

Bz

)
. (8)

The real scalar field 
 has Ising symmetry and provides an
order parameter for the transition, taking a nonzero value in
the ferromagnetic phase. Integrating out B induces dipolar
interactions for 
, giving an effective description that is
equivalent to that of Ising spins with dipolar couplings. A
similar connection between the dipolar correlations in the
Coulomb phase and effective dipolar interactions at a critical
point has been noted in Ref. [28].

The 3D Ising transition with dipolar interactions [29–31] is
at its upper critical dimension, and so shows mean-field critical
exponents with logarithmic corrections. In particular, the
specific-heat, order-parameter, susceptibility, and correlation-
length exponents take the values α = 0, β = 1

2 , γ = 1, and
ν = 1

2 , respectively.
It should be noted that scaling remains isotropic at this

transition, in the sense that all spatial dimensions scale with
the same exponents. For example, the correlation lengths in the
directions parallel and perpendicular to the applied pressure
diverge with the same exponent ν, though with different
(nonuniversal) prefactors. This is in contrast to the anisotropic
scaling at the lower-temperature transition (see Sec. V).

B. Numerical results

To determine the critical temperature T c> and find values
of the exponents, it is convenient to identify a quantity whose
scaling dimension vanishes, for which curves with different
L coincide at the transition. While the Binder cumulant of
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FIG. 10. (Color online) Structure factor for (spin-flip) polarized neutron scattering [17] SSF( Q), defined in Eq. (5), for scattering wave
vector Q in the (hh�) plane and incident polarization P along [11̄0]. The first three plots are for temperatures above T c>, the fourth is in the
intermediate phase, T c< < T < T c>, and the last is below T c<. Pinch points, characteristic of the dipolar correlations of the Coulomb phase, are
visible at all temperatures but the lowest. In the intermediate phase, there are also Bragg peaks at certain reciprocal-lattice vectors, indicating
spontaneous magnetization. The system size is L = 16 and all plots have V4/T = 0.05. (Wave vectors are measured in units corresponding to
the conventional cubic unit cell.)

the magnetization provides such a quantity for this ordering
transition, it is difficult to calculate accurately, as a result of the
topological constraints on the magnetization, which suppress
fluctuations of the latter.

We instead consider the quantity L〈M2
z 〉, which, as a result

of the scaling form

〈
M2

z

〉 ≈ L−d+γ /ν

(
L1/ν T − T c>

T c>

)
, (9)

where  is a universal function, is expected to have zero
scaling dimension for this transition. (This quantity is equal,
up to powers of L, to the flux stiffness ϒ , which is not expected
to have vanishing scaling dimension at a transition between
two spin liquids.) As shown in Fig. 11, L〈M2

z 〉 plotted as a
function of T/p indeed has a crossing point for large system
sizes. Using the crossings for successive L values, we estimate
(T/p)c = 3.3509(3) for V4/T = 0.05.

While the observed crossing is consistent with the mean-
field exponents, it is also compatible with the Ising universality
class, which has [32] d − γ /ν = 1.0366(8). We can go

L
M

z2

T p
3.33 3.34 3.35 3.36 3.37

0.4

0.6

0.8

1.0

1.2

1.4

16 18 20

22 24 26

28 30 32

L

FIG. 11. (Color online) Plot of L〈M2
z 〉 vs temperature near the

higher-temperature transition, for various system sizes L. (In each
case V4/T = 0.05 is fixed.) This quantity has vanishing scaling
dimension for the mean-field universality class, consistent with the
crossing point for large L, at (T/p)c> = 3.3509(3).
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ln
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FIG. 12. (Color online) Log-log plot of the temperature deriva-
tive (in arbitrary units) of L〈M2

z 〉, evaluated at T = T c>, vs system size
L. The slope gives the reciprocal of the correlation-length exponent
ν. The (blue) solid line has ν = 1

2 , as expected for the mean-field
universality class, while the (purple) dashed line has the Ising value
ν = 0.63.

some way to excluding this possibility by calculating the
correlation-length exponent ν, which, for the Ising class, takes
the value [32] ν = 0.6298(5). Figure 12 shows the temperature
derivative of L〈M2

z 〉 evaluated at T = T c>, which is expected
to scale as

d

dT
L

〈
M2

z

〉∣∣∣∣
T =T c>

∼ L−d+γ /ν+1+1/ν = L1/ν . (10)

While not conclusive, the results are consistent with Ising-like
criticality for smaller system sizes, crossing over to the true
mean-field universality class for L > 25.

For the available system sizes, there is no evidence of
the expected logarithmic corrections to scaling. We do not
consider this to be strong evidence for their absence, however,
since much larger systems are often required to observe
logarithmic corrections [33].

V. LOWER-TEMPERATURE TRANSITION

The lower-temperature transition, at T = T c<, separates the
ferromagnetic Coulomb phase from a conventional ferromag-
net. Because the magnetization is nonzero on both sides, the
spin-inversion symmetry of the Hamiltonian is immaterial, and
the transition is in the same universality class as the saturation
transition in an applied field [14,22]. This is a Kasteleyn
transition, which exhibits anisotropic scaling in the directions
parallel and perpendicular to the magnetization, with relative
scaling exponent z = 2. The transition is consequently at its
upper critical dimension, and so shows mean-field exponents
with logarithmic corrections [19,22].

The Kasteleyn transition has the distinguishing char-
acteristic that the magnetization is saturated in the low-
temperature phase (in the thermodynamic limit), and decreases
continuously but nonanalytically across the transition [22,34].
The magnetization is plotted in Fig. 13 for large systems near
the lower-temperature transition, showing the development
of a kink as the system size grows and indicating that the

M
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M
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T p
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30 40 50 60L

FIG. 13. (Color online) Magnetization near the lower-
temperature transition at T c<, indicated with a vertical line,
for large system sizes. As L increases, the magnetization approaches
saturation below the transition, and a kink develops at T c< (compare
also Fig. 4, for L = 24). In this case, the MC simulation is run
starting from a state with saturated magnetization, 〈Mz〉 = Msat; the
low temperatures and large system sizes ensure that ergodicity is
broken and the order parameter takes a nonzero value.

departure from saturation magnetization for T < T c< is a
finite-size effect.

Although there is no symmetry breaking at the transition,
the quantity 1 − 〈Mz〉/Msat can be identified as an order pa-
rameter, taking a nonzero value only on the high-temperature
side. The critical theory for the transition [14,22] can be written
using a U(1)-symmetric complex field ψ , in terms of which the
order parameter is given by 1 − 〈Mz〉/Msat ∼ ψ∗ψ . It follows
that the scaling dimension of L(1 − 〈Mz〉/Msat) vanishes [19].
and so a crossing point is expected when this quantity is
plotted for different L. This crossing is shown in Fig. 14,
enabling (T/p) c< = 3.153 02(9) to be found and providing
confirmation of the Kasteleyn universality class.

Previous MC simulations of spin ice in an applied
field [19,22] have shown that logarithmic corrections are
visible for L � 100. In the present case, the further-neighbor

L
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FIG. 14. (Color online) Order parameter for the lower-
temperature transition, 1 − 〈Mz〉/Msat, multiplied by L and plotted
vs temperature for various L (using the same symbols as Fig. 13).
This quantity has vanishing scaling dimension at the Kasteleyn
transition; a crossing is observed at (T/p) c< = 3.153 02(9).
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interactions in the model make the MC simulations more
computationally demanding, and only mean-field behavior is
observed at accessible system sizes.

The Kasteleyn transition occurs when the magnetization
first deviates from saturation, which occurs through the
appearance of strings of spins flipped relative to the fully
polarized state [22]. One can therefore determine the exact
transition temperature by considering the free energy of
a single string, and finding the point where this becomes
negative [21,22]. When V4 = 0, such a string contributes free
energy of �f = 4p − T ln 2 per unit length, where the second
term reflects the entropy associated with the possible paths.
Including the four-spin interaction V4 modifies this to

�f = 4p − T ln(e12V4/T + e11V4/T ) , (11)

because the two possible routes for the string (following
a 〈011〉 chain or otherwise) have different energies. The
Kasteleyn transition occurs when �f = 0, giving (T/p) c< =
3.153 43 for V4/T = 0.05. The discrepancy with the numeri-
cal results, which is small in absolute terms but several times
the estimated statistical error, may result from logarithmic
corrections to the scaling form for 〈Mz〉.

Finally, it should be noted that, while both the higher-
and lower-temperature transitions are at their upper critical
dimensions, and hence have rational exponents, they otherwise
have quite different properties. The Kasteleyn transition has
anisotropic scaling in directions parallel and perpendicular to
the magnetization, while at the higher-temperature transition
the system scales isotropically. A second distinction is that the
magnetization is the critical field for the higher-temperature
transition, while it is related to a bilinear of the critical field ψ

for the Kasteleyn transition.

VI. DISCUSSION

This work has studied a nearest-neighbor model of spin
ice with uniaxial distortion, which has a ferromagnetic phase
at low temperature. Analytical arguments were used to
show that an additional four-spin interaction can lead to an
intermediate phase with coexisting ferromagnetic order and
spin-liquid characteristics; the presence of this ferromagnetic
Coulomb phase (FCP) has been established using Monte Carlo
simulations.

Many features of the FCP are expected to occur more
generally in spin liquids, both classical and quantum, with
magnetic order. A clear experimental signature of an ordered
Coulomb phase is the coexistence of Bragg peaks, indicating
magnetic order, with pinch points (see Fig. 10). On the
theoretical side, a defining characteristic of spin-liquid phases
is fractionalized excitations, such as magnetic monopoles
in spin ice and spinons in quantum antiferromagnets; these
remain deconfined across the transition into an ordered spin
liquid (see Fig. 8). Finally, such phase transitions have
conventional order parameters, but their critical properties are
modified by coupling to the soft modes of the spin liquid (see
Sec. IV).

The analysis here, including the Monte Carlo data, has
treated the ice rule (see Sec. II A) as a strict constraint on
configurations of the model. With a nonzero but small density
of monopoles (i.e., defects in this constraint), as in the spin-ice

compounds at low temperature, one expects most of the results
to apply essentially unchanged: While the lower-temperature
transition is immediately replaced by a crossover, this remains
sharp for small monopole density [22]. The FCP is no longer
qualitatively distinct from a conventional ferromagnet, but
there can be a clear regime where the system is effectively
described by a classical spin liquid with a small density of
monopoles [19]. The higher-temperature transition remains,
but is strictly in the Ising universality class at any nonzero
monopole density; as in the case of the cubic dimer model [35],
however, the critical behavior is strongly affected by the
presence of the unconventional critical point at zero monopole
density.
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APPENDIX: QUANTUM MAPPING

In this Appendix, we consider a model of quantum bosons in
two spatial dimensions (2D), which shows closely analogous
behavior to the model of spin ice discussed in the body of the
paper. In fact, using the general mapping between classical sta-
tistical mechanics in 3D and quantum mechanics in 2D, which
has previously been applied to phase transitions from classical
spin-liquid phases [14,36], one expects the universal features
of the phases and transitions to be equivalent in these two
models.

The nearest-neighbor model for spin ice, Hnn, can be
mapped to a system of hard-core lattice bosons, with spin-
reversal symmetry replaced by particle-hole symmetry. The
Coulomb phase of the spin model is equivalent to a super-
fluid [14,22], while the saturated ferromagnet with Mz =
±Msat is equivalent to the vacuum and fully occupied states of
the bosonic model, which spontaneously break particle-hole
symmetry. The strings of flipped spins that proliferate at the
transition (see Sec. II B) map to boson world lines (trajectories
in space and imaginary time).

An equivalent bosonic model to the HamiltonianHnn, dis-
playing infinite-order multicriticality at the transition between
these two phases, is given by [15]

H0 = −t
∑
〈ij〉

(b†i bj + b
†
j bi)

−V
∑
〈ij〉

[(
ni − 1

2

)(
nj − 1

2

)
− 1

4

]
, (A1)

where bi = |0〉i〈1|i and ni = b
†
i bi = |1〉i〈1|i are annihilation

and number operators for hard-core bosons. The first term
represents tunneling t between neighboring sites 〈ij 〉, while the
second is an attractive interaction of strength V > 0 between
nearest-neighbor bosons, written in a manifestly particle-hole-
symmetric form.

Because H0 conserves particle number, the Hilbert space
can be divided into sectors of fixed density ρ = 〈ni〉; let
Egs(ρ) be the ground-state energy in each. For t > V , the
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FIG. 15. (Color online) Ground-state energy Egs, in the Hilbert-
space sector with N particles, for hard-core bosons with particle-hole
symmetry, Eq. (A1). Results were obtained using exact diagonaliza-
tion on a 4 × 4 square lattice with periodic boundary conditions.
The main figure shows Egs(N ), for the labeled values of N , vs
nearest-neighbor attraction V , both in units of the tunneling strength
t . The model has an RK point at V = t , at which Egs is independent
of N . For V < t the ground state of the system occurs for half
filling, N = 8. For V > t there are two generate ground states, with
boson density 0 and 1 (N = 0 and N = 16 respectively), which
spontaneously break particle-hole symmetry. The insets show Egs

vs N for fixed values of V/t , indicated by the arrows.

overall ground state occurs in the sector with ρ = 1
2 , and the

system is a particle-hole-symmetric superfluid. For t < V , Egs

is instead minimized by either the vacuum, ρ = 0, or the fully
occupied state, ρ = 1. At t = V , the model has a Rokhsar-
Kivelson (RK) point [37], at which H0 can be written as a
projector,

H0 = 1

2
t
∑
〈ij〉

(|1〉i |0〉j − |0〉i |1〉j )(〈1|i〈0|j − 〈0|i〈1|j ) ,

(A2)
and the ground state in each sector, an equal-amplitude
superposition of all configurations [15], has Egs(ρ) = 0. As
illustrated in Fig. 15, which shows results of exact diagonal-
ization (ED) on a small system, this leads to a transition with
identical properties to the ordering transition of spin ice under
uniaxial pressure, with F (Mz) replaced by Egs(ρ). (The exact
equivalence is established by noting that the transfer matrix
for the classical problem can be written as a projector at the
transition [21].)

Following similar logic to Sec. II C, one expects that quartic
interactions between bosons should open up an intermediate
phase with density changing continuously between ρ = 1

2 and
ρ = 0 or 1. The precise form required is again unclear from
these general arguments, but ED results, shown in Fig. 16,
indicate that it suffices to add a (particle-hole-symmetrized)
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FIG. 16. (Color online) Ground-state energy Egs(N ) vs nearest-
neighbor attraction V , as in Fig. 15, with an additional four-body
repulsion V4 = 0.3t , Eq. (A3). As in the case with V4 = 0, the ground
state is at half filling for V � t and has density either 0 or 1 for V � t .
In between, there is a regime where the minimum of Egs crosses over
between the extremes, stepping through each intermediate density
in turn. In the thermodynamic limit, this is expected to become a
phase with continuously varying density, separated from small- and
large-V/t phases by continuous quantum phase transitions.

four-body repulsion

H4b = V4

∑
ijkl∈�

(
ni − 1

2

)(
nj − 1

2

)(
nk − 1

2

)(
nl − 1

2

)
,

(A3)
where the sum is over sites ijkl around a square plaquette.

In this case, there are two continuous transitions, with
density changing from 〈ni〉 = 1

2 to 0 < |〈ni〉 − 1
2 | < 1

2 and
then to |〈ni〉 − 1

2 | = 1
2 , as V/t is increased. (The nature

of the transitions is clear even for the small system sizes
accessible in ED, because the order parameter commutes with
the Hamiltonian.) The transition into the vacuum or fully
occupied (vacuum of holes) state is described by the standard
critical theory for the vacuum transition of bosons [38], while
the transition at lower V/t involves spontaneous breaking of
particle-hole symmetry within the superfluid, and is described
by the critical theory of Sec. IV A. In cases where the total
particle number is fixed, the latter transition would lead to
phase separation into regions with differing densities.

The additional interaction H4s in the classical spin model,
defined in Eq. (3), may be viewed as the equivalent of H4b.
To see this, recall that strings of flipped spins are equivalent to
bosons, and that these occur at low density near the transition
to saturation (bosonic vacuum). Two strings passing through a
tetrahedron t change its total spin from + 4√

3
ẑ to − 4√

3
ẑ, and so

the interactionH4s (with V4 > 0) amounts to an energy penalty
when four strings are in close proximity (passing through two
tetrahedra on opposite sides of the same hexagon).
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