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Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment
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Intrinsic diamagnetism of graphene is studied both theoretically and experimentally, to unravel the magnetic
response of chiral massless fermions. Comprehensive formulas predicting the variation of graphene magnetization
with magnetic field and temperature are developed. Graphene magnetization M at low temperatures is particularly
large and M ∝ −√

B, intrinsically different from normal materials. The quantum Berry phase of π and linear
energy dispersion are responsible for this intriguing macroscopic behavior. The temperature dependence of
magnetization is successfully formulated by a Langevin-like function. The de Haas–van Alphen oscillations are
predicted in the case of doping. Correspondingly, experiments at different temperatures are conducted on highly
pure, mass-produced graphene flakes derived from SiC single crystals, which exhibit very strong diamagnetism.
The measured results agree well with the theoretical ones in both magnitude and trend.
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I. INTRODUCTION

Graphene, possessing an ideal two-dimensional honey-
comb lattice, exhibits a number of intriguing properties [1–10]
owing to its peculiar linear dispersive band structure that has
been well studied since its discovery in 2004. The intrinsic
magnetism of this chiral Dirac electron system, however, needs
to be studied further in both theoretical and experimental as-
pects. As graphene is a typical electron system featuring touch-
ing bands at the Dirac point, single-band approaches (e.g.,
Landau-Peierls approach [11,12]) failed to produce the correct
susceptibility. Fukuyama and Kubo [13] took the interband
effect into consideration and obtained a chemical-potential-
dependent diamagnetism. McClure [14] figured out the special
Landau levels (LLs) of graphene in a magnetic field, and
derived the susceptibility at a high-temperature limit. Sharma
[15] took the trigonal wrapping of the Fermi surfaces into
account and made a modification to the previous result. The
recent work of Koshino et al. [16–18] predicts that graphene
should have magnetic responses different from graphite and
graphene multilayers, mainly due to the different crystal sym-
metry and interlayer interactions. Raoux et al. [19] showed the
critical role of the electron Berry phase in graphene’s orbital
magnetism, and derived the zero-temperature susceptibility.
However, a comprehensive relation of magnetization M with
magnetic field B and temperature T , essential for any rigorous
experimental verification, is still not available.

On the other hand, in the experimental aspect, measure-
ments are often limited by either an insufficient amount or
purity of graphene samples. In the former case the response
signal is too weak and has a large uncertainty, while para-
and ferromagnetism are often observed, which are likely to be
due to the 3d-metal impurities in measured graphene, as in the
latter case. Other experiments are focused on the point defects
and zigzag edge related spin ordering of nanoscale graphene
[20–23], not belonging to the scope of an intrinsic property of
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graphene. In this regard, mass-produced, highly pure graphene
of good quality is strongly desired.

Here we investigate graphene magnetization both theoret-
ically and experimentally. An explicit form of magnetization
M with respect to field B and temperature T is derived from
evaluating the grand canonical thermodynamic potential of
chiral Dirac electrons. A nonlinear dependence of diamag-
netism on field and temperature is observed due to the π Berry
phase and the linear dispersion in graphene. Experimental
measurements were conducted on mass-produced, high-purity
graphene samples derived from the thermal decomposition
of SiC crystals, which exhibit strong diamagnetism and can
be levitated above NdFeB permanent magnets [see Fig. 1(a)].
The measured magnetization M varies with field B in a similar
way as predicted by our theoretical model, and is intrinsically
different compared to that of graphite [Fig. 1(c)]. The magnetic
susceptibility of graphene is about two orders of magnitude
larger than normal materials, and is even two to three times
stronger than graphite. These theoretical and experimental
results will be helpful in further studies of the magnetism
of graphenelike and graphene-related materials.

II. LANDAU LEVELS IN GRAPHENE

We consider low-energy excitations in graphene, i.e., the π

electrons near the Dirac point occupying the energy levels
between −Ec and Ec, where Ec is the cutoff energy. Ec

is smaller than t , the nearest-neighbor hopping energy. In a
simplest tight-binding model, the band energy ε and the density
of states (DOS) g(ε) can be expressed as [2,24]

ε = �vF k, vF = 3

2
a0t/�. (1)

g(ε) = γ |ε|, γ = 2
A

π

1

(�vF )2
. (2)

Here vF is Fermi velocity, A = 3
√

3
2 a2

0 the area of the unit
cell, and a0 the carbon-carbon bond length. By fitting to
ab initio band structures, we obtain the parameters as follows:
γ ≈ 0.123 (eV)−2 (unit cell)−1, vF ≈ 7.9 × 105 m/s, and
t ≈ 2.44 eV. Reference [4] recommends similar parameters.
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FIG. 1. (Color online) (a) A 10 × 10 × 0.3 mm3 piece of
graphene sample produced from SiC is levitated by 1 mm above
NdFeB magnets. (b) The scanning electron microscope (SEM) image
of the graphene. (c) The magnetization curve of graphene and
graphite (T = 10 K), and typical paramagnetic materials (schematic).
(d) Raman spectra for graphene and graphite samples. The wavelength
of the excitation laser is 532 nm.

When a magnetic field B is applied vertically to the
graphene plane, the levels originally ranging from E(N − 1/2)
to E(N + 1/2) now coalesce into the newly formed N th
Landau level E(N ) with the degeneracy D(B) [4,14], as shown
in Fig. 2. Here

E(N,B) = sgn(N )
√

2e�v2
F B|N |, (3)

D(B) =
∫ E(N+1/2)

E(N−1/2)
γ |ε|dε = γ e�v2

F B. (4)

FIG. 2. (Color online) (a) The band structure (BS) of graphene
near the Fermi level. Electrons filled the energy levels up to the Dirac
point. (b) Unevenly spaced Landau levels (LLs) in magnetic field.
The zeroth Landau level is half filled. The dashed lines show how the
electrons coalesce into the LLs. (c) The density of states (DOS) of
the LLs is in the form of a Dirac comb with uneven energy spacing.

The Landau level number N = −m . . . −1,0,1 . . . + m, where
m = � E2

c

2e�v2
F B

+ 1
2�; �x� represents the floor function and gives

the greatest integer less than or equal to x.
The Landau levels are unevenly spaced and symmetrically

arranged around the zero-energy level at the Dirac point—
much different from a conventional two-dimensional electron
gas where Landau levels are uniformly spaced with a zero point
energy of 1

2 �ω [11]. This is the main feature of graphene’s LLs,
which has been confirmed by its quantum Hall effect [5–8],
and is proved to be a direct effect of the electrons’ Berry phase
of π [1,6,10,25,26]. It should be noted that the N = 0 LL is
shared between the valence and conduction band, and is half
filled for undoped graphene.

III. MAGNETIZATION AT ZERO TEMPERATURE

Since M = − ∂F
∂B

, and F = U − T S, the entropy S makes
no contribution to free energy F at zero temperature T = 0.
The internal energy in the zero and nonzero field is denoted
as U0 and UB , respectively. M refers to the magnetic moment
per unit cell and M = − ∂(UB−U0)

∂B
. We have

U0 =
∫ 0

E(−m−1/2)
εγ |ε|dε = −γ

3

[
2e�v2

F B(m + 1/2)
]3/2

,

(5)

UB = E(0)
D(B)

2
+

−1∑
N=−m

E(N )D(B). (6)

Here m is a very large number (e.g., for Ec = 1 eV and
B = 1 T, m > 1000). Using the power series expansion and
Euler equation, we have(

m + 1

2

)3/2

≈ m3/2 + 3m1/2

4
+ 3m−1/2

32
− m−3/2

128
, (7)

m∑
N=1

√
N = H (−1/2)

m ≈ 2m3/2

3
+ m1/2

2
+ m−1/2

24
− ζ (3/2)

4π
,

(8)

where H
(−1/2)
m represents the mth harmonic number of order

−1/2. The last term of Eq. (8) is in the form of an
Euler-Riemann zeta function, ζ (3/2)

4π
≈ 0.208.

Hence we obtain that �U =UB −U0 ≈0.882 γ

3 (e�v2
F B)3/2,

and

M = −∂�U

∂B
= −0.882

γ

2

(
e�v2

F

)3/2 √
B. (9)

Here 0.882 is the numerical approximation of the constant
3ζ (3/2)
2
√

2π
.

The simple relation of M ∝ −√
B at T = 0 suggests an

intrinsically nonlinear diamagnetism of graphene, consistent
with Ref. [19]. To obtain a better understanding, contributions
from each individual LL are analyzed. From Figs. 2(a)
and 2(b), it is seen that for electrons on N �= 0 LLs, the energy
increase and decrease cancel out almost completely, making
these electrons contribute little to the total energy change.
Electrons which condense into the N = 0 LL, with energy
originally ranging from E(−1/2) to 0, provide a net energy
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gain, �UN=0 = 0 − ∫ 0
E(−1/2) εγ |ε|dε = γ

3 (e�v2
F B)3/2. So the

magnetization

MN=0 = −∂�U

∂B
= −γ

2

(
e�v2

F

)3/2 √
B. (10)

Comparing Eq. (10) with Eq. (9), the only difference is that the
prefactor is now 1 instead of 0.882. This suggests that electrons
near the Fermi level which collapse into the zeroth LL make
the dominant contribution to graphene diamagnetism, while
the electrons in all the other LLs provide a small fraction of
paramagnetism.

The existence of the Landau level at E = 0 is a result of
the Berry phase of π [4,6,26], the very reason for the large
diamagnetism of graphene, and the square root relation is a
direct consequence of the linear dispersion band structure.
Additionally, as the Fermi level is kept at zero, the de Haas–van
Alphen oscillations will be substantially suppressed.

IV. MAGNETIZATION AT FINITE TEMPERATURES

For any practical test or application, the T �= 0 case
must be investigated. To this end, following Ghosal [27]
and co-workers’ procedure, we begin with grand canonical
ensembles to study the temperature-dependent magnetization.
The grand canonical thermodynamic potentials without and
with magnetic fields are denoted as 	0 and 	B , respectively:

	0 = −kBT

∫ E(+m+ 1
2 )

E(−m− 1
2 )

γ |ε| ln

[
1 + exp

(
−ε − μ

kBT

)]
dε,

(11)

	B = −kBT D(B)
m∑

n=−m

ln

[
1 + exp

(
−E(N ) − μ

kBT

)]
,

(12)

M = −∂(	B − 	0)

∂B
. (13)

For undoped graphene, the chemical potential μ = 0. Numer-
ical solutions based on Eqs. (11)–(13) are shown in Figs. 3(a)
and 3(c), as a series of markers. To compare with the
experimental measurements, M is put in a proper unit of emu/g
and multiplied by a factor of 1/2. This factor approximately
accounts for the average effect of random orientations of
graphene flakes.

For further convenient use, we try to provide an approximate
solution in an analytical form. As we have obtained the
solution at the low-temperature limit, what we need to do
next is to find a temperature-dependent term. The electrons
occupy the energy levels, obeying Fermi-Dirac statistics. At
the low-field high-temperature limit, the Boltzmann statistic
is a good approximation. When they coalesce into one level,
the induced magnetization produced by the energy change
should be in the form of a Langevin function, just as the
magnetization of paramagnetic ions where the electrons on
degenerate levels go into several split levels, but with different
signs. The uneven space between the Landau levels does not
matter in this case, but at a high-field low-temperature limit,
the effect resulting from the uneven space between Landau
levels cannot be ignored. In this case, an additional modifying

FIG. 3. (Color online) (a) Calculated and (b) measured magneti-
zation M as a function of magnetic field B at different temperatures.
(c) Calculated and (d) measured magnetization M as a function of
temperature T in different magnetic fields. Note that in the theoretical
part [(a) and (c)], the numerical results are plotted as a series of
markers, and analytical approximations as continuous lines, while
the experimental results [(b) and (d)] are represented by markers
joined by lines.

factor is needed to merge the differences. Now, starting from
the T = 0 cases, we introduce a modified Langevin function
to account for the variation in magnetization due to the energy
change as influenced by temperature:

M = −0.882
γ

2

(
e�v2

F

)3/2 √
BL

⎛
⎝

√
e�v2

F Bα(T )
√

2kBT

⎞
⎠ . (14)

Here L(x) is the Langevin function defined as L(x) =
coth(x) − 1

x
. L(x) is approximately x/3 when x approaches 0,

and 1 when x goes to infinity. α(T ) = C

C+√
T

with a variable
parameter C gives a slight modification to M . When C is
chosen properly (e.g., C = 45, in units of K1/2), the difference
between the analytical and numerical results can be less than
1%. As seen in Figs. 3(a) and 3(c), the differences between
the approximate functions (lines) and the numerical results
(markers) are negligibly small.

Therefore, in the low-temperature high-field limit, i.e.,
E(1) � kBT , Eq. (14) can be reduced to

M ≈ −0.882
γ

2

(
e�v2

F

)3/2 √
B + 0.882

γ

2
e�v2

F

√
2kBT ,

(15)
while in the high-temperature low-field limit, i.e., E(1) 	
kBT , Eq. (14) reduces to the classical form

M ≈ −0.882
γ

2

(
e�v2

F

)2
B

3
√

2kBT
. (16)
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FIG. 4. (Color online) The calculated magnetic properties of
doped graphene. (a), (c) Dependence of grand potential and
magnetization on the chemical potential at different temperatures.
(b), (d) Dependence of magnetization on magnetic field and
temperature at different doping levels.

We find that the M-B relation at low temperatures is intrinsi-
cally nonlinear, in the form of M ∝ −√

B, while it changes
to a linear dependence on B at high temperatures. For a given
B, it is seen that at low temperatures M ∝ T + const, mainly
due to an increasing entropy with increasing T , and at high
temperatures M ∝ −1/T , implying a decreased energy gain
due to the more diffuse electron distribution.

V. DOPED CASES

Electron and hole doping will give similar results due
to band structure symmetry. For electron doping, μ > 0.
When graphene is slightly doped, e.g., μ < E(1/2), it is
straightforward to predict that the diamagnetism will be
suppressed due to a canceling out of the energy change of the
doping electrons. As seen in Figs. 4(a) and 4(c), temperature
will cause a smearing effect on the system and make the curves
looks smoother with less obvious oscillations.

The de Haas–van Alphen oscillations will appear as the
highest occupied Landau level sweeps through the Fermi
surface as B increases [see Fig. 4(b)]. To show more details
of the oscillations, we focus on the relatively lower field
in the range of 0–1 T. The M-T function for different
doping levels is depicted in Fig. 4(d). It is seen that the
low-temperature magnetization is more sensitive to the doping,
and at the low-temperature limit, the curves tend to be
flatter.

VI. EXPERIMENT

To test the validity of the above predictions, we perform
experimental measurements on the diamagnetism of graphene.

TABLE I. Impurity concentrations.

Element Detection limit Concentrationa

Fe 5.00 × 1015 b

Co 7.00 × 1015

Ni 1.00 × 1016

V 1.00 × 1015

Mn 2.00 × 1015

Ti 5.00 × 1013 2.61 × 1015

Cu 5.00 × 1016

Al 1.00 × 1014

B 1.00 × 1014 1.96 × 1017

O 1.00 × 1017 3.32 × 1018

Si 1.00 × 1017 2.57 × 1019

S 1.00 × 1016

aIn units of atoms/cm3.
bBelow or near the detection limit.

This poses a severe challenge. The susceptibility of graphene
is in the order of 10−5 emu g−1 Oe−1, so mass-produced
graphene (∼10 mg) of high purity (concentrations of 3d-metal
impurities <1ppm) is essential.

Graphene samples prepared by chemical vapor deposition
(CVD), reduced graphene oxide, or mechanical exfoliation
of highly oriented pyrolytic graphite are not suitable, so mass-
produced graphene derived from a SiC single crystal is a better
choice. A high vacuum (∼10−4 Pa), high growth temperature
(>1500 ◦C), all-graphite environment (high-purity graphite
crucible, induction heated), and a long enough growing time
(∼8h) are employed to make sure the graphene sample is
extremely pure and composed of randomly stacked, weakly
coupled layers. More details can be consulted elsewhere in
our previous work [28].

The technique of secondary ion mass spectrometry (SIMS)
is capable of detecting impurity elements at <0.1ppm (part per
million) concentration. For our graphene sample, the detected
concentrations of 3d metals (Fe, Co, Ni, V, Mn, Ti, Cu) are
less than 1 ppm, and B ∼ 0.001%, O ∼ 0.01%, Si ∼ 0.1%,
as seen in Table I. Here the concentration of carbon atoms is
2.0 × 1022 atoms/cm3.

Figures 1(b) and 1(d) show the scanning electron micro-
scope image and Raman spectrum of our graphene sample
derived from a 6H-SiC single crystal, respectively. Graphene
sheets of the size of several microns are obtained. The small
D peak in the Raman spectrum indicates a good quality of
graphene, with few defects and disorders. The sharp and
symmetric 2D peak and its high intensity ratio to the G peak
(I2D/IG) suggest the presence of single-layer or few-layer
graphene with weak interlayer coupling [29,30]. In addition,
the levitation shown in Fig. 1(a) due to the strong diamagnetism
of the graphene thus obtained demonstrated that it can meet
our demands.

The magnetizations are measured in a physical property
measurement system. The M(B) and M(T ) curves are shown
in Figs. 3(b) and 3(d). They agree well with the theoretical
ones in shapes, trends, and main characters. We can see the
magnetization and susceptibility reach about −0.5 emu g−1

and −1 × 10−5 emu g−1 Oe−1, respectively, under a moderate
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field (∼4T) at room temperature and are almost doubled at
50 K. The field-dependent magnetism exhibits a nearly linear
relation at high temperatures and switches to a square root
relation as the temperature decreases, confirming the validity
of Eqs. (15) and (16). The predicted values are a little higher
than experiments but still acceptable.

Considering that the theoretical results are the largest
possible diamagnetism one can get in ideal conditions, the
agreement between theory and experiment is quite satisfying.
In the theoretical aspect, the Landau level broadening (intro-
duced by temperature and defects) is not accounted for in
this model, leading to an overestimation of the diamagnetism.
In the experimental aspect, slight doping [14,19] and defect-
introduced localized states [31,32] can result in a sharp
decrease in diamagnetism. Any possible magnetic impurities,
point defects, or zigzag edges in graphene can introduce para-
or ferromagnetism, partially canceling out the diamagnetism
[20–23].

It should be noted that the M(B) curves of graphene share
some similarities to those of type-II superconductors [33]. One
may tend to mistakenly assign the observed diamagnetism as
evidence of superconductivity. It is strongly recommended that
great care be taken when measuring weak magnetic signals and
subtracting the diamagnetic background of graphene-related
materials.

VII. CONCLUSION

The diamagnetism of graphene is about two orders of
magnitude larger than normal materials, and has interesting
magnetic field and temperature dependences. The approximate
analytical forms of graphene magnetization at both the quan-
tum (low T , strong B) and classical (high T , weak B) regimes
are theoretically obtained and experimentally confirmed. The
nonlinear field dependence in the former case suggests that
graphene diamagnetism is a phenomenon of chiral Dirac
electrons and a macroscopic consequence of the π quantum
Berry phase. Note the model presented here is not constrained
to specific materials, and would be generally applicable to
other massless chiral fermion systems.
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