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We study the mechanism of decay of a topological (winding-number) excitation due to finite-size effects in a
two-dimensional valence-bond solid state, realized in an S = 1/2 spin model (J − Q model) with six-spin interac-
tions and studied using projector Monte Carlo simulations in the valence bond basis. A topological excitation with
winding number |W | > 0 contains domain walls, which are unstable due to the emergence of long valence bonds in
the wave function, unlike in effective descriptions with the quantum dimer model (which by construction includes
only short bonds). We find that the lifetime of the winding number in imaginary time, which is directly accessible
in the simulations, diverges as a power of the system length L. The energy can be computed within this time (i.e., it
converges toward a “quasieigenvalue” before the winding number decays) and agrees for large L with the domain-
wall energy computed in an open lattice with boundary modifications enforcing a domain wall. Constructing a
simplified two-state model which can be solved in real and imaginary time, and using the imaginary-time behavior
from the simulations as input, we find that the real-time decay rate out of the initial winding sector is exponentially
small in L. Thus, the winding number rapidly becomes a well-defined conserved quantum number for large
systems, supporting the conclusions reached by computing the energy quasieigenvalues. Including Heisenberg
exchange interactions which bring the system to a quantum-critical point separating the valence-bond solid from
an antiferromagnetic ground state (the putative “deconfined” quantum-critical point), we can also converge the
domain-wall energy here and find that it decays as a power law of the system size. Thus, the winding number is
an emergent quantum number also at the critical point, with all winding number sectors becoming degenerate in
the thermodynamic limit. This supports the description of the critical point in terms of a U(1) gauge-field theory.
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I. INTRODUCTION

Systems with topological order are characterized by un-
conventional quantum numbers labeling degenerate ground
states, the number of which depends on boundary conditions.
Except for models where conservation of topological numbers
is ensured by construction, such as Kitaev’s toric code [1,2],
in general a topological quantum number is only emergent in
the limit of infinite system size. For a finite system the lifetime
of a state prepared with a fixed topological number is finite,
and, thus, the levels within the ground-state manifold are split.
One would normally expect the lifetime to be exponentially
long in the system size, as in the case of an ordered state
with a broken discrete symmetry (e.g., an Ising ferromagnet
in a weak transverse field). In practice, e.g., when considering
the design of topologically protected qubits [3–6], the lifetime
due to finite system size then may not play an important role if
the qubit is sufficiently large. It is still useful to investigate
quantitatively the mechanism of these instabilities due to
finite size in various topological states. The emergence of
topological conservation laws is also of interest in descriptions
of quantum matter using simplified Hamiltonians and quantum
field theories where they are conserved by construction, e.g.,
in dimer models and field theories derived from them [7,8].

Topological quantum numbers are often discussed in the
context of quantum spin liquids [9–12] but can also appear in
systems with long-range order. Here we investigate a quantum
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spin S = 1/2 Hamiltonian which has a valence bond (VB)
ordered (spontaneously dimerized) ground state and whose
excitations containing domain walls can be classified by a
winding number (which essentially counts the number of
domain walls in the system). In this case the ground state
of a large system is in one winding number sector and the
other sectors are at higher energy. Our interest here is to
study quantitatively the instabilities of the domain walls and
the topological mechanisms (changes of the winding number)
responsible for their decay in finite systems. This issue is
of particular interest when the VB solid order is weakened
by the introduction of interactions that eventually completely
destroy the order and bring about other phases. In this process
the winding numbers should also become unstable in the
thermodynamic limit. In our studies discussed here, we use the
so-called J − Q model on the square lattice [13,14], where J

is the standard antiferromagnetic Heisenberg exchange and Q

a multispin (here six-spin) interactions favoring VB order.
The singlet sector of the SU(2) invariant spin system

considered here is amenable to a description in the VB
basis [15–18], where a state of an even number of spins N

is a superposition of product states containing N/2 singlet
pairs (VBs), for which we use the notation

(a,b) = (↑a↓b − ↓a↑b)/
√

2. (1)

While the winding number is strictly conserved within a
restricted basis of short VBs (bond lengths < L/4, where L

is the system length, as we will explain in detail below) [19],
with all bond lengths included, as required for the basis to be
complete (whence the basis in fact becomes overcomplete),
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the winding number is no longer conserved, and, thus, domain
walls can decay due to topological fluctuations. We here study
such decay within the imaginary-time dynamics accessible in
projector quantum Monte Carlo (PQMC) simulations in the
VB basis [20,21].

We find that an initial state with domain walls decays to
the ground state with no domain walls through transitional
states with a high density of long VBs. As a result, the
lifetime is only growing with the system size as a power law.
The analytic continuation between imaginary and real time
is very complex for the nonequilibrium situation considered
here, and we cannot translate the imaginary-time behavior
rigorously to real-time evolution, where an isolated system
should thermalize at constant energy instead of decaying to
the ground state. To gain some insights into the relevant
real-time scale corresponding to the power-law divergent
imaginary-time scale of the winding number, we consider an
effective two-state model in combination with the PQMC data.
Based on this approximation an exponentially long lifetime in
real time appears plausible, both in the VB solid phase and
at the critical point separating it from an antiferromagnetic
ground state.

In addition to the lifetime of the winding number, we also
discuss the quasieigenenergies of the winding states in the
VB solid and at the critical point. Comparisons with domain-
wall calculations in boundary-modified systems with forced
domains confirm the domain-wall nature of the states with
nonzero winding number.

In Sec. II we will discuss the winding number in detail
and explain our methods to investigate its fluctuations in
PQMC simulations. Results of such simulations in the VB
solid phase of the J − Q model are presented in Sec. III. In
Sec. IV we introduce the effective two-state model and study
the relationship between imaginary-time decay to the ground
state and transition rates in real time. We consider scaling
in a quantum-critical system and the eventual instability of
the winding number sectors in the antiferromagnetic phase
in Sec. V. In Sec. VI we summarize and further discuss our
results and their implications.

II. DIMERS, VALENCE BONDS, AND WINDING NUMBERS

To more precisely introduce the concepts and mechanisms
to be discussed below, consider first the winding number
W = (wx,wy) of a classical close-packed dimer model on the
square lattice. A dimer connects two nearest-neighbor sites,
one on sublattice A and one on B, with the A and B sites
forming a checkerboard pattern. W can be defined by assigning
a direction (arrow) A → B for each dimer. Superimposing any
such configuration onto a reference configuration with B → A

dimers forming (by convention) horizontal columns, closed
loops form and wx,wy correspond to the x and y currents
normalized by the system length L.

The classical dimer configurations are the basis states of the
quantum dimer model (QDM) [22–24], which in the simplest
case has a diagonal term counting the number of pairs of
parallel bonds and an off-diagonal term which can rotate such
“flippable pairs” by 90◦. The off-diagonal terms being local,
they cannot change W , which, thus, is a good quantum number
of the QDM on a periodic lattice. The Hilbert space consists of

∼L2 winding number sectors. On a nonbipartite lattice, e.g.,
the triangular lattice, or in an extended square-lattice model
including also bonds connecting next-nearest neighbors [25],
some winding numbers mix and the sectors are reduced down
to even and odd ones [19,26], labeled, e.g., by wx,wy = ±1.
On the torus there are thus four sectors of conserved W .

Now consider S = 1/2 spins. Any total spin singlet can
be written as a superposition of tilings with VBs, and if the
system is bipartite one can restrict the bonds to only connect
sites on different sublattices. If the subscripts a and b in Eq. (1)
correspond to the sublattices as a ∈ A, b ∈ B, the sign of each
component of |v〉 = |(a1,b1) · · · (aN/2,bN/2)〉 in the ↑,↓ basis
conforms with Marshall’s sign rule for the ground state of a
bipartite system. Such a state can be expanded in VB states,

|�0〉 =
∑

v

fv|v〉, (2)

with positive-definite expansion coefficients fv (where v

labels the bond configurations, v ∈ {1, . . . ,(N/2)!}, which
map into permutations of the N/2 A sites connected to N/2 B

sites) [16,17]. The VB basis states are nonorthogonal, with
〈v2|v1〉 = 2n12−N/2, n12 being the number of loops in the
transition graph of the VB configurations [16,17].

The insight that many quantum states of spins can, to a
good approximation, be expressed with short VBs motivated
the introduction of the QDM as a class of effective models
to describe some quantum spin systems, spin liquids in
particular [22–24,27–30]. To judge whether the QDM indeed
provides a good description in a given case, one has to consider
the role of long bonds, the nonorthogonality of the VB basis,
and the interactions included in the QDM (for which there is
a systematic scheme [31,32]). In general it is not possible to
rigorously prove the validity of the QDM description other than
by careful comparisons of numerical results when available.

The QDM should provide an excellent approximation for
a VB solid (crystal), where predominantly short VBs form
a regular density pattern. Such ground states are hosted
by many quantum spin models with frustrated exchange
interactions in parts of their parameter spaces [33–37], and
also by models with certain multispin couplings beyond the
pair exchange [13,14,38,39]. One of the latter is the J − Q

model [13], where J is the antiferromagnetic Heisenberg
exchange, which we can write as

HJ = −J

2N∑
b=1

Pi(b)j (b), (3)

where Pij is a singlet projector,

Pij = (1/4 − Si · Sj ), (4)

and b labels the links connecting nearest neighbors i(b),j (b)
on the square lattice with N = L2 sites. For the Q term we use
the six-spin variant [14],

HQ = −Q

2N∑
c=1

Pi(c)j (c)Pk(c)l(c)Pm(c)n(c), (5)

where the cells c contain three nearest-neighbor site pairs
(ij )(kl)(mn) forming 2 × 3 and 3 × 2 plaquettes. The model
H (J,Q) = HJ + HQ has a strongly ordered columnar VB
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solid ground state for large Q/J [40]. We will here first study
H = HQ as a stand-alone model [40] and later tune Q/J to
the critical point at which the VB solid order vanishes and
antiferromagnetic order sets in.

Performing PQMC simulations in the overcomplete bipar-
tite VB basis, we have access to the winding number and our
aim is to study its stability as a function of the system size.
A columnar arrangement of short VBs has winding number
W = (0,0) and any other W corresponds to the presence of
domain walls, as illustrated in Fig. 1. Domain walls have
been studied within QDMs [8], including quantum phase
transitions driven by increasing winding number (density of
domain walls) [7]. Here our motivation differs, but it is useful
to have a VB solid of the QDM as a reference point, where the
winding numbers characterizing states with domain walls are
fully conserved by construction.

In this study we use the imaginary-time Schrödinger
evolution operator

U (τ ) = e−τH , (6)

and apply it in PQMC simulations [41] to an initial state
|�0(wx)〉 with only short (nearest-neighbor) bonds and wind-
ing number (wx,0). A wx �= 0 state is obtained from a perfect
columnar state by shifting an odd number of rows, as illustrated
in Fig. 1 for wx = 1. We have U (τ → ∞)|�0(wx)〉 → |0〉
(neglecting an unimportant normalization), where |0〉 is the
ground state, which is dominated by the wx = 0 sector;
for L → ∞ the probabilities approach P (wx = 0) = 1 and
P (wx = 1) = 0 exponentially with increasing L.

In the program implementation of the above PQMC
approach, we Taylor expand the operator (6) to all con-
tributing orders, as in the stochastic series expansion (SSE)
method [42,43]. Thus, each configuration consists of a series
of n ∝ Nτ operators which are sampled from the two- and
six-spin terms in Eqs. (3) and (5). In the model with J = 0
and Q = 1 that we will study first, there is, thus, a total of
3n singlet projectors acting on the initial state for a term of
order n, while with both J > 0 and Q > 0 there are both two-
and six-spin operators present and the total number of singlet
projectors is between n and 3n.

To see how the presence of long bonds leads to nonconser-
vation of W we discuss a one-dimensional example with eight
spins, illustrated in Fig. 2. The reference configuration used
to define W ∈ {0,1}, which by definition itself has W = 0,
is shown in Fig. 2(a), while Fig. 2(b) shows its transition

(a) (b) (c)

FIG. 1. (Color online) VB configurations with winding number
(0,0) in (a) and (1,0) in (b) and (c), with (c) obtained from (b)
by locally rotating pairs of dimers. Configuration (a) serves as the
reference configuration for defining the winding numbers. These VB
states are all used as initial states in the PQMC simulations discussed
in this paper.

(c)

(d)

(b)

(a)

FIG. 2. (Color online) Illustration of the winding number and its
nonconserved property for an eight-site chain. The open and solid
circles indicate sublattices A and B, respectively, and the lines and
arcs with arrows are the VBs. In (a) the reference configuration for
defining W is shown, and in (b) it has been superimposed with a state
with W = 1. In (c) a singlet projector has acted on the W = 1 state,
at sites 3 and 4 from the left, and in (d) a subsequent action on sites
5 and 6 has lead to a change of the winding number to W = 0 (the
bonds lost in the processes are shown with dashes).

graph with the W = 1 short-bond state. In Fig. 2(c) a singlet
projector has acted on the W = 1 state and reconfigured two
bonds, leading to a new bond of length 1 and one of length 3.
The winding number remains at W = 1. A second operation
in Fig. 2(d) leads to a bond which in a longer chain would have
length 5, but in this L = 8 periodic system has length L − 5 =
3 by definition of the VB basis. Then the winding number
changes to W = 0. This is also in accord with an examination
of the bond pattern, which now has the short bonds shifted
by one lattice spacing relative to those in the original bond
configuration. Quite generally, if the two bonds affected by a
singlet projection span more than half the system length, then
the winding number changes in the process, i.e., the minimum
bond length required for W to not be conserved is L/4 for L

being a multiple of 4. We study also L given by an odd multiple
of 2, for which there are only small, trivial differences from
the above in how the winding numbers change.

III. RESULTS IN THE STRONGLY ORDERED
VALENCE-BOND SOLID STATE

If the winding number is conserved for L → ∞, which we
expect, then in this limit the projected state U (τ )|�0(wx)〉
should evolve toward the lowest eigenstate with winding
number wx . For finite L, one can expect there to be a
“quasieigenstate” toward which the state evolves before wx

typically decays to lower values (with some fluctuations
possible also to higher wx) and the ground state is obtained.
Sampling the norm 〈�0(wx)|U (τ )U (τ )|�0(wx)〉, we can use
the estimator 〈H 〉 = −〈n〉/(2τ ), in analogy with the SSE
method [42,43]. We classify a PQMC configuration as having
a conserved winding number if propagation with U 2 from both
the left and the right maintains wx in its initial sector after each
step. This way, we can compute the energy in different sectors
and in the ground state for large-enough τ . We have reported
preliminary results for the domain-wall energies in different
winding sectors based on a slightly different procedure [44,45].
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FIG. 3. (Color online) Domain-wall energies per unit length,
normalized to a single domain wall with twist angle φ = π/2. Results
are shown for periodic systems in the sectors wx = 1,2 and for
systems with open-boundary modifications enforcing domain walls.
For the periodic systems the projection time was τ = L/8. The angle
φ indicated is the total twist of the VB order parameter when going
around a periodic system or across an open system.

In Fig. 3 we show results for the quantity

κ(wx,L) = 〈H 〉wx
− 〈H 〉0

4Lwx

, (7)

which can be interpreted as a domain-wall energy per unit
length when converged. We previously computed the domain-
wall energy based on systems with edge modifications favoring
VB ordering in such a way that a single domain wall of the
type in Fig. 1(b) is present or absent [44]. Such a domain wall
can be classified as having a twist angle φ = π [40,46], while
a domain wall between horizontal and vertical VB solids, as in
in Fig. 1(c), has φ = π/2 (and the π wall of course consists of
two separate π/2 walls). In periodic systems the total VB twist
angle is 2πwx . For the open systems we therefore define κ cor-
responding to Eq. (7) by dividing the energy difference of sys-
tems with and without domain walls by 2Lφ/π . As can be seen
in Fig. 3, the results of different calculations give consistent re-
sults for κ when for L → ∞, confirming the above arguments.

Simulations for large periodic systems suffer from ergodic-
ity problems (long equilibration times) due to which the system
may stay for a very long time in the initial wx sector, even at
projection times τ where wx = 0 should dominate (as judged
by the behavior for smaller systems). In the energy calculation
this is an advantage, as it allows us to converge very well to the
wx �= 0 lowest quasieigenstates, in a way similar to measuring
the energy of a metastable state in classical Monte Carlo
simulations. Using τ = L/8 and an initial state with wx = 1,
the calculations for L up to 32 in Fig. 3 showed fluctuating
wx , while runs for larger L typically stayed locked at wx = 1.

The imaginary-time lifetime of the state evolved from
|�0(wx)〉 can be defined, e.g., as the τ at which the probability
of remaining in the initial wx sector is 1/2. However, because
of the aforementioned ergodicity problems this definition is
practically useful only for relatively small system sizes. We
have therefore developed an alternative approach, by using a
long total projection time β = M�τ , writing U (β) as UM (�τ ),
and individually Taylor-expanding each of these factors in the
PQMC simulations. Then we can monitor the winding number

0 1 2 3
 τ

0

0.2

0.4

0.6

0.8

1

P(
w

x=
1)

 L = 8
 L = 16,...,56
 L = 64

FIG. 4. (Color online) The probability of a state projected out of
an initial state with wx = 1 to remain in that winding number sector
at time τ .

in the state propagated from the left and from the right with the
full operator string (i.e., the concatenation of the M individual
strings) and in both cases there will be some time “slice”
τ = i�τ (with i counted from the bra or ket initial state) at
which the winding number changes from, say, wx = 1 to 0.
Once a system has equilibrated and β is large enough (so
the energy has converged), we can measure the probability of
staying in the initial wx sector as a function of τ . This method
has much less severe autocorrelation problems once a decay
to wx = 0 somewhere in the time space has occurred.

Some typical results for wx = 1 are shown in Fig. 4, and
the resulting lifetime τ1/2(L), defined as the τ for which the
probability P (wx = 1) of the state to stay in the initial sector
equals 1/2, is graphed in Fig. 5. While this definition of

-1

0

1

ln
(τ

1/
2)

trial state in Fig. 1 (c)
trial state in Fig. 1 (b)

2 3 4
ln (L)

-2

-1

0

ln
(τ

1/
2)

wx=1
wx=2
wx=L/2

(a)

(b)

FIG. 5. (Color online) Lifetime, defined as the projection time
τ = τ1/2 at which P (wx) = 1/2 (based on interpolation of data such
as those in Fig. 4), versus the system size on a log-log scale. Panel
(a) shows the behavior for wx = 1 with two different initial states;
generalizations of those depicted in Figs. 1(b) and 1(c). The lines
show the forms ∼L0.55 and ∼L0.7 drawn through the large-L data
obtained with initial states Figs. 1(b) and 1(c), respectively. In (b) the
lifetimes for wx = 1,2 and L/2 are shown [using initial states of type
Fig. 1(b)], along with the form ∼L0.55 drawn through the large-L
data.

094426-4



EMERGENT TOPOLOGICAL EXCITATIONS IN A TWO- . . . PHYSICAL REVIEW B 91, 094426 (2015)

τ1/2 is not, strictly speaking, based on a bona fide quantum
mechanical expectation value, it nevertheless gives a lifetime
of the same order as the original definition proposed earlier
(and this can also be expected based on formal considerations
of the dynamics generated by operator products [47]). For
the system sizes where we have data available from both
approaches, the original definition gives a somewhat larger
value but similar size dependence. As seen in Fig. 5(a),
after a crossover behavior for small L, the lifetime grows
asymptotically as a power law Lα .

While the power-law behavior appears to be robust to
variations in the initial state, the value of the exponent may
not be. Using two different initial states of the types (b)
and (c) depicted in Fig. 1, two different exponents α are
obtained. The initial states both have wx = 1, but (c) explicitly
implements π/2 domain walls, while the state in (b) has sharp
π domain walls. The π domain walls will split up into π/2
domain walls in the course of imaginary-time projection, and
by implementing them from the outset the initial state is closer
to the eventual wx = 1 quasieigenstate. The range of system
sizes for which the power law can be approximately fitted in
Fig. 5(a) is rather small, and the exponents may still drift for
larger systems. We can therefore not exclude that the exponents
are asymptotically the same, though it also appears reasonable
that state (b) is shorter-lived by a power of L, due to it being
further away from the quasieigenstate because of the wrong
kind of initial doman walls imposed.

In Fig. 5(b) we compare results for wx = 1, wx = 2, and
the extreme case of wx = L/2. In all cases the initial state was
of the type in Fig. 1(b), with only horizontal bonds shifted
to achieve the different winding numbers. The lifetime for
wx > 1 is also defined based on results such as those in
Fig. 4, as the probability of still remaining in the original
winding sector being 1/2. The initial event of decay is almost
always into a state with wx one unit smaller than the initial
value. In Fig. 5(b) we have fitted the results for all wx and
large L to the same power law L0.55, though, again, there
are considerable uncertainties in the exponents and we cannot
conclude positively that they really are the same in all cases.
The prefactor of the power law decreases with increasing wx ,
but, interestingly, even for wx = L/2 it is not that much smaller
than at wx = 1.

0 1 2 3
ln(x)

-15

-10

-5

ln
[P

(x
)]

 L = 32
 L = 40,48,56
 L = 64
W = 0, L=64

FIG. 6. (Color online) Bond-length probability for bonds of
shape (x,0) at projection time τ = τ1/2 for different system sizes
when the starting state has winding number wx = 1 [of the type of
the simple domain-wall state depicted in Fig. 1(b)]. For reference,
results are also shown for the VB solid ground state (W = 0 sector).

2 2.5 3 3.5 4
ln(L)

-15

-10

-5

ln
(P

W
)

 for wx=1, at P(wx=1) = 1/2
 in the ground state

FIG. 7. (Color online) Log-log plot of the total probability of
VBs of length � L/4 in the ground state and in the transient
wx = 1 states at τ1/2 versus the system size, obtained under the same
conditions as the results in Fig. 6. The (red) straight line has slope
−2, while the curve (black) shows the form PW ∝ exp(−aLb) with
b ≈ 0.7.

With only short VBs the lifetime as defined above would
be infinite. With the probability of long bonds decaying
exponentially with the bond length in both the initial and final
states (which we have confirmed), one might naively have
expected an exponentially long lifetime. The reason for the
much shorter lifetime is that long bonds are generated in the
transient states through which the system evolves. Figure 6
shows the bond-length distribution for bonds of “shape” (x,0)
in the simulations with the initial state of type Fig. 1(b) at
the point (in Fig. 4) where the probability P (wx = 1) = 1/2.
The results are compared to those in the VB solid ground state
without domain walls.

Clearly, the transient state with the decaying domain walls
has a dramatically larger fraction of long bonds, which
suggests a way to understand the short lifetime: The projected
state evolves toward the ground state through transitional states
that have a very high fraction of long bonds relative to the
ground state dominated by very short bonds. Note that the
initial state we are using only has short bonds, and by looking
at the metastable domain-wall quasieigenstate we also find
that it is dominated by short bonds, very similar to the ground
state. Our results show the presence of excited states which
differ markedly and which can be components of the initial
state (which they have to be in order to appear as a result
of the PQMC procedure), at least in part because of the
overcompleteness and nonorthogonality of the VB basis. The
total fraction of bonds longer than L/4, i.e., those that can
generate changes in the winding number, is graphed versus the
system size in Fig. 7. It decays as L−2 in the case considered,
while the decay is exponential in the ground state.

IV. EFFECTIVE TWO-STATE MODEL AND
REAL-TIME EVOLUTION

It is not easy to relate our findings above to real-time
evolution, where an isolated system would not decay to its
ground state but go through a thermalization process with
conserved excess energy density ∝ 1/L. Also in this case one
can define a time scale on which states with winding numbers
that differ from the initial one become populated. In principle,
our τ1/2 computed in the previous section should in some way
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(through analytic continuation) be related to this time scale.
While in some cases how to relate real and imaginary-time
evolution is understood [48], in the present case there is no
known way to do this based on numerical imaginary-time data.

To gain some insights into the real-time dynamics corre-
sponding to the power-law increase in the imaginary lifetime
with L, we consider an approximate but illuminating simple
effective two-state model. We consider unperturbed states |↓〉
and |↑〉 corresponding to the wx = 0,1 sectors of the VB solid
for large L, with energies E↓ = −ε and E↑ = ε. To mimic the
decay of a state initially in the higher-energy wx = 1 sector to
wx = 0, we consider a perturbation by an off-diagonal matrix
element x � ε, i.e., the effective Hamiltonian

H2 =
(−ε x

x ε

)
. (8)

Starting with the initial state |ψ(τ )〉 = | ↑〉 we compute the
probability P (↑) = |〈↑ |ψ(τ )〉|2 of the system staying in this
initial state after time evolution using U (τ ) in Eq. (6). Defining
the lifetime by P = 1/2 as in the preceding section gives the
exact result

e−2τ
√

ε2+x2 = r
√

1 + r2 − r2

√
1 + r2 + 1

, (9)

where r = x/ε. To leading order in r this becomes

e−2τε = x

2ε
. (10)

Using the scaling behaviors found using the PQMC simula-
tions, ε ∼ L and τ1/2 ∼ Lα , we must then have

x ∼ Le−L1+α

. (11)

Going to real time, we instead (but equivalently) solve for
P (↓), obtaining

P (↓) = x2

x2 + ε2
sin(t

√
ε2 + x2). (12)

Here the oscillatory behavior clearly differs from what one
would obtain in an infinite many-body system, where the
initial state decays into many other states and no periodicity
is expected for a thermalizing system in the thermodynamic
limit. Nevertheless, one can define a rate of depletion of the
initial state as the maximum P (↓) divided by the time taken
to reach this maximum. This gives the rate (for small x/ε)
v = 2x2/(πε), which, with Eq. (11) and ε ∼ L, becomes

v ∼ Le−2L1+α

. (13)

While the approximation of the evolution of the quantum
many-body state by just a two-level system, where the
two levels represent entire sectors of states (blocks in the
Hamiltonian matrix), cannot be expected to be quantitatively
accurate, the above simple calculation nevertheless illustrates
how the imaginary-time behavior can qualitatively differ from
the corresponding real-time dynamics. The exponential decay
rate obtained above is most likely correct, though details such
as the power α in Eq. (13) may not necessarily be accurate.
It would be interesting to investigate this issue further by
considering more sophisticated models with more than two
states.

V. RESULTS AT THE CRITICAL POINT

Our studies of the lifetime of the winding number in
the preceding sections, and the associated convergence of
excited energies with system size to values consistent with the
domain-wall energy per unit length, show unambiguously that
the winding number is an emergent conserved quantity in the
VB solid state. This in itself is perhaps not surprising, but our
calculations have demonstrated the nature of the mechanism
causing the winding transitions (topological fluctuations) and
quantified the lifetime. An important question now is how
the mechanism of winding number decay evolves as one
approaches a critical point at which the VB solid order
vanishes. Such a critical point can be reached in the J − Q

model. In the present variant with six-spin Q interaction (5) the
critical value of the ratio q = Q/(J + Q) is qc ≈ 0.600 [14].

In the theory of deconfined quantum-criticality [49], there
are two relevant diverging length scales upon approaching the
critical point at q = qc. In addition to the standard correlation
length ξ ∼ (q − qc)−ν , which can be defined, e.g., using the
distance dependence of spin-spin or VB-VB correlations, there
is a larger length scale ξVB characterizing the thickness of
domain walls inside the VB solid, with ξVB ∼ (q − qc)−ν ′

and
ν ′ > ν [46]. The presence of two intrinsic physical length
scales in the system makes the finite-size scaling of κ very
interesting, with dramatic crossovers predicted [49]. Studying
κ in detail upon approaching the critical point within the
J − Q model is an interesting problem, which, however, is
beyond the scope of the present study. We here just consider the
winding number conservation and associated critical domain-
wall energy as a function of the system size at the critical
point. Critical domain walls have previously been studied in the
classical dimer model as well as in spin-liquid wave functions
defined using short VBs [50,51]. In those cases the winding
number is conserved by construction.

Figure 8 shows the excitation energy (critical domain-wall
energy) per unit length at q = 0.6, which is within error bars of
the best known value of qc for this model [14]. PQMC results
for wx = 1, computed in the manner discussed in Sec. III,
are shown versus 1/L for three different cases of β(L) = aL.
For reference, results deep inside the VB solid phase (q = 1)
are also shown here. They converge to a nonzero constant
as L → ∞, with two choises of β(L) seen to produce the
same result. At qc, going from β = L/8 to L/4, we can see
a clear decrease in the energy, while upon further reducing
the temperature to β = 3L/8 there are no significant changes
for any L within the error bars (which now are large for large
systems, making calculations at still higher β prohibitively
expensive). The results shown were obtained with an initial
state of the type in Fig. 1(b), but converged results from the
type-(c) state are the same within error bars.

Interestingly, a very good power-law behavior is seen at
qc, κ ∼ L−b with b ≈ 1.8, which corresponds to the (quasi-)
eigenenergy E0(wx = 1) ∼ L1−b ≈ L−0.8. The lowest singlet
energy in the J − Q model at qc scales as 1/L [52], as expected
for a critical point with dynamic exponent z = 1. Thus, the
critical domain-wall energy is only slightly above the lowest
singlet (and it should be noted here again that the momentum
of all the states we are computing here is 0, as in the ground
state).

094426-6



EMERGENT TOPOLOGICAL EXCITATIONS IN A TWO- . . . PHYSICAL REVIEW B 91, 094426 (2015)

The domain-wall energy per unit length of a VB solid can
be expressed as

κ = K

�
, (14)

where K is a stiffness constant describing the energy cost of
a twist of the VB order parameter and � is the width of the
region over which this twist is distributed. In the theory of
deconfined quantum-criticality [49], the VB stiffness in the
thermodynamic limit scales as K ∼ ξ−1 ∼ (q − qc)−ν upon
approaching the critical point, while � must saturate at the
domain-wall thickness discussed above. Thus, in systems with
domain walls imposed through winding numbers, one can
expect that

κ ∼ 1

ξ

1

ξVB
∼ (q − qc)ν

′+ν . (15)

In standard finite-size scaling procedures at a critical
point [53], to relate the behavior of a quantity in the thermody-
namic limit as a critical point is approached to the behavior as
a function of the system size exactly at the critical point, one
simply replaces the correlation length by the system length L.
In the present case, we can argue that it is ξVB that should be
replaced by L, since this length scale is the one reaching L

first when qc is approached for finite L. We then obtain

κ(qc) ∼ L−(1+ν/ν ′), (16)

and, therefore, with the exponent b defined in the analysis of
our results above (shown in Fig. 8) we have b = 1 + ν/ν ′.
Thus, we have extracted a rather precise estimate of the
exponent ratio ν/ν ′ ≈ 0.80 ± 0.01, where the error bar is one
standard deviation of the slope of the fitted line in Fig. 8 (and
we estimate that the error due to very small deviations of q =

0.01 0.1
1/L

0.01

0.1

1

κ

q=1.0 (VBS),  β=L/8
q=1.0 (VBS),  β=3L/16
q=0.6 (critical),  β=L/8
q=0.6 (critical),  β=L/4
q=0.6 (critical),  β=3L/8

FIG. 8. (Color online) VB domain-wall energy per unit length as
a function of the inverse system size graphed on a log-log scale.
In the case of the strongly ordered VB solid (q = 1), the energy
computed with two different inverse temperatures β(L) converges
to the same nonzero value as L → ∞, while at the critical point
(q = 0.6 ≈ qc) convergence of the energy for all L with increasing β

is demonstrated (the same also holds true at q = 1 if still larger β is
used). The converged energy decays as a power-law form ∼L−b. The
fitted line shown here has slope b = 1.80 ± 0.01.

2 2.5 3 3.5 4
-2

-1

0

1

2

ln
(τ

1/
2)

 wx=1     (α=1.2)
 wx=L/2 (α=0.75)

ln (L)

FIG. 9. (Color online) Size dependence of the imaginary-time
lifetime at qc of states with winding numbers wx = 1 and wx =
L/2, using initial states of the type in Fig. 4(b) and its wx > 1
generalization. The lines drawn through the large-L points have slopes
α = 1.2 and α = 0.75 for wx = 1 and wx = L/2, respectively.

0.6 from the true qc is smaller than the quoted statistical error).
The only other estimate of this exponent ratio that we are aware
of is ν ′/ν = 1.20 ± 0.05, or ν/ν ′ = 0.83 ± 0.04, from an anal-
ysis of the emergent U(1) symmetry of the VB order param-
eter [14]. It is gratifying that these two estimates obtained in
completely different ways are fully consistent with each other.

Now consider the lifetime in imaginary time, calculated as
in Sec. III. Figure 9 shows results for wx = 1 as well as the
extreme case of wx = L/2. We find τ1/2 ∼ L1.2 for wx = 1 and
τ1/2 ∼ L0.75 for wx = L/2 (with error bars on the exponents of
about 10%). In the effective real-time model, with the critical
domain-wall energy scaling as EW − EW−1 ∼ κL ∼ L1−b,
the form (13) of the decay rate derived in the VBS (where
the energy difference scales as L) becomes

v ∼ Le−2L1−b+α

. (17)

At wx = 1 the exponent 1 − b + α remains positive with the
values of α and b obtained above, and, thus, the transition
rate out of the original wx sector in real time is exponentially
small. It is interesting that for wx = L/2 our results suggest
1 − b + α ≈ 0 (within estimated error bars) and if this
exponent indeed vanishes, and if the two-state model is to
be taken seriously (which perhaps is asking too much of it in
this extreme case), then the high-winding states would actually
have a shorter than exponentially long lifetime at the critical
point.

Going to coupling ratio q < qc, entering the antiferro-
magnetic state of the J − Q model, the winding number
sectors should become completely unstable. Indeed, here the
energy above the ground state computed with different β = aL

quickly decays to 0 and, unlike the results at qc in Fig. 8, it is
not possible to discern any converged functional form.

VI. SUMMARY AND DISCUSSION

We have demonstrated a mechanism of decay of do-
main walls in a VB solid state of a quantum spin system
through fluctuations of the topological winding number which
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effectively counts the number of domain walls in a system. The
mechanism requires the wave function to contain VBs of length
proportional to the system size, which is explicitly excluded
in an effective description of VB solids with a QDM. The
domain walls become stable in the thermodynamic limit, or,
in other words, the winding number is an emergent conserved
quantum number. The lifetime in imaginary time scales as
a power of the system size and we have argued, based on
a simple two-state model for two winding sectors, that this
translates into an exponentially small transition rate out of an
initial winding-number sector in real time.

At a critical point separating the VB solid and an anti-
ferromagnetic ground state (the putative deconfined quantum-
critical point [49]), we have also found stable winding numbers
in the thermodynamic limit and a power-law decay of the
excitation energy with the system size. The energy decay
exponent contains information on the spectrum of the effective
U (1) gauge-field model describing this phase transition, and
our quantitative results from the power-law scaling, along
with exponents obtained previously for other quantities [14],
lend support to the CP1 field theory of deconfined quantum-
criticality [49]. It would be interesting to study in detail the
domain-wall energy in the whole range of states between the
maximally ordered VB solid and the critical point to make
further quantitative comparisons with the theory.

It would be interesting to investigate the consequences
of long VBs in spin liquid phases as well (noting that the
critical point we have consider corresponds to an algebraic spin
liquid at an isolated point). To our knowledge, the expected
quasidegenerate topological multiplet has never been observed
in SU(2)-invariant Z2 spin-liquid candidate Hamiltonians

[54–57] (which are amenable to VB descriptions and whose
topological numbers should be similar to the even-odd winding
discussed in Ref. [19]). This could be due to the splitting
being relatively large, perhaps still exponentially small but
with a large prefactor, or there could be some crossover from
a different form when the system size is still relatively small
and the effects of longer VBs could be significant. It should
be noted here that, because of the overcompleteness of the
VB basis, to fix the winding number of an initial state it must
overlap with states also outside the subspace of the topological
multiplet of a gapped spin liquid. Some of these states may also
have an enhanced fraction of long VBs, as we found here in the
transitional states out of simple short-bond domain-wall states.
Spin liquids in frustrated spin models cannot be investigated
with the PQMC methods we have used here, due to sign
problems, but it may be possible to study this issue with
exact diagonalization techniques based on VBs [58], though
the limitation in system size may make it difficult to clearly
observe the effects of long bonds.
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