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Effectiveness of classical spin simulations for describing NMR relaxation of quantum spins
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We investigate the limits of effectiveness of classical spin simulations for predicting free induction decays
(FIDs) measured by solid-state nuclear magnetic resonance on systems of quantum nuclear spins. The specific
limits considered are associated with the range of interaction, the size of individual quantum spins, and the
long-time behavior of the FID signals. We compare FIDs measured or computed for lattices of quantum spins
(mainly spins 1/2) with the FIDs computed for the corresponding lattices of classical spins. Several cases
of excellent quantitative agreement between quantum and classical FIDs are reported along with the cases of
gradually decreasing quality of the agreement. We formulate semiempirical criteria defining the situations, when
classical simulations are expected to accurately reproduce quantum FIDs. Our findings indicate that classical
simulations may be a quantitatively accurate tool of first-principles calculations for a broad class of macroscopic
systems, where individual quantum microscopic degrees of freedom are far from the classical limit.
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I. INTRODUCTION

Predictive calculations of spin-spin relaxation in solid-state
nuclear magnetic resonance (NMR) is a long-standing and
still not fully solved problem [1–15]. Similar problems also
occur in the context of decoherence of solid-state qubits
caused by nuclear spins [15]. Due to the smallness of nuclear
gyromagnetic ratios, the limit of practical interest here is
that of infinite temperature. At infinite temperature, the static
equilibrium properties are trivial, but the dynamic ones are not.
Direct numerical calculations of spin-spin relaxation are often
not feasible, because the computer memory required grows
exponentially with the number of spins in the system. In such
a situation, simulations of classical spin lattices become an
important computational resource.

It is common knowledge in the field of NMR that the
dynamics of classical spins often well represents the behavior
of systems of small quantum spins including even spins 1/2.
This issue was investigated over the years by a number
of authors [16–20]. However, the limits of the accuracy of
classical simulations for the description of quantum spin
relaxation at high temperatures have not yet been established.
The goal of the present article is to investigate these limits as far
as the the range of interaction, the size of individual quantum
spins, and the long-time behavior of spin-spin relaxation is
concerned.

This work was in part motivated by the previous investi-
gations of one of us [21] that have shown that free induction
decays (FIDs) in both classical and quantum spin systems
exhibit generic exponential long-time decay on the time scale
of microscopic spin-spin interaction. Theoretical analysis [21],
numerical simulations [22,23], and experiments [24–27] also
indicate that, normally, the above long-time behavior becomes
dominant after time of the order of characteristic spin-spin
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interaction time, i.e., rather fast. Therefore, we expected that,
if the interaction constants for classical spin simulations are
chosen such that the initial evolutions of the quantum and
classical FIDs are matched, then the agreement between
the two FIDs may last until the onset of the exponential
long-time behavior, and, if so, the two FIDs will not diverge
much afterwards. This expectation is largely confirmed by the
results presented below even for the lattices of spins 1/2 with
relatively few interacting neighbors.

The plan of the rest of the article is the following: Sec. II
contains the formulation of the problem. In Sec. III, we
compare classical spin calculations with the experimental
NMR results for CaF2. In Sec. IV, we compare classical and
quantum calculations for model spin systems. Finally, Sec. V
contains a concluding discussion, which, in particular, includes
semiempirical criteria identifying quantum spin systems for
which classical simulations are expected to produce quantita-
tively accurate FIDs.

II. GENERAL FORMULATION

We consider translationally invariant spin lattices governed
by the Hamiltonian

H =
∑
m<n

J x
mnS

x
mSx

n + J y
mnS

y
mSy

n + J z
mnS

z
mSz

n, (1)

where Sα
m represents either the quantum operator of the αth

(x, y, or z) projection of a quantum spin on the mth lattice
site or the corresponding projection of a vector of length
1 representing a classical spin, and J α

mn are the coupling
constants for the αth projections of the mth and the nth spins.
We use periodic boundary conditions.

The quantity of interest for this study is an infinite
temperature correlation function of the type that characterizes
NMR free induction decay [2,3], namely,

C(t) ≡ 〈Mx(t)Mx(0)〉, (2)
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where the Mx ≡ ∑
n Sx

n is the total x polarization of the
system, and the notation 〈. . . 〉 implies averaging over the
infinite temperature equilibrium fluctuations. When presenting
the results, we always normalize C(t) such that C(0) = 1. For
quantum systems, the above correlation function is calculated
as

C(t) = Tr{Mx(t)Mx(0)} = Tr{eiHtMxe
−iHtMx}, (3)

where the value of � is set to 1. For classical systems, it is
obtained as

C(t) = lim
T →∞

1

T

∫ T

0
Mx(τ )Mx(τ + t)dτ. (4)

In the quantum case, we compute the right-hand side
of Eq. (3) using a direct simulation of the time evolution
of a randomly chosen initial wave function. The method is
explained and rigorously justified in Ref. [28] on the basis of
quantum typicality.

In the classical case, the right-hand side of Eq. (4) is
obtained by the direct simulations of classical spin dynamics
governed by equations

Ṡm = Sm × hm, (5)

where

hm ≡
∑

n

⎛
⎜⎝

J x
mnS

x
n

J
y
mnS

y
n

J z
mnS

z
n

⎞
⎟⎠ (6)

is the local field on the mth lattice site created by the neighbors.
The initial orientations of spins are chosen randomly. The
simulations are based on a 4th-order Runge-Kutta algorithm.
Additional averaging is also performed over many different
realizations of random initial conditions.

The characteristic time scale of spin dynamics in both the
classical and quantum cases can be characterized by the inverse
root-mean-squared value of the local fields hm:

τ =
(∑

n

J x
mn

2〈
Sx

n
2〉 + J y

mn
2〈
Sy

n
2〉 + J z

mn
2〈
Sz

n
2〉)−1/2

. (7)

Whenever we compare quantum and classical lattices, the
interaction constants of the classical Hamiltonian are equal
to the interaction constants of the quantum Hamiltonian
multiplied by factor

√
S(S + 1), where S is the value of

individual quantum spins involved. Such a rescaling implies
that the characteristic times τ are the same in both cases. It
also guarantees that the second moments and hence the initial
evolutions of the quantum and classical correlation functions
are the same.

As far as the long-time behavior of C(t) is concerned,
the previous investigations [21–27] have shown that, in both
classical and quantum systems, it has the generic form

C(t) ∼= e−γ t cos(ωt + φ), (8)

where γ and ω are some constants, typically, of the order of
1/τ , and φ is an oscillation phase. Normally, this behavior
sets in after time of the order of τ . In Ref. [21], the long-time
behavior (8) was linked to the chaotic character of microscopic
spin dynamics governed by Hamiltonian (1).

III. FREE INDUCTION DECAYS IN CaF2

CaF2 is a benchmark material for testing theories of NMR
spin-spin relaxation [1–3]. Classical spin simulations of the
19F FIDs in CaF2 have been done before [15,16,19]. However,
for various reasons such as different focus of investigation
and/or drastic truncation of the range of the magnetic dipolar
interaction, the full quality of the agreement between the
classical simulations and experimental results have not been
fully exposed. Also the comparison of the long-time relaxation
has not been made.

In CaF2, fluorine nuclei form a simple cubic lattice with
lattice period a0 = 2.72 Å. Fluorine has only one stable isotope
19F, which turns out to be magnetic. It has spin 1/2 with
gyromagnetic ratio g = 2.51662 × 108 rad s−1 T−1. Calcium
nuclei are overwhelmingly nonmagnetic, so that their presence
can be neglected. The 19F FID is measured as a relaxation of
the total nuclear magnetization transverse to a strong magnetic
field B0. This relaxation is caused by the magnetic dipolar
interaction between 19F spins. According to a linear response
relation [2,3,28], the FID signal is proportional to the infinite
temperature correlation function C(t).

In the presence of a strong magnetic field, the full magnetic
dipolar interaction should be truncated to keep only the
terms that are preserved after averaging over the fast Larmor
precession around the direction of the field [1–3]. The resulting
truncated Hamiltonian is conventionally presented in the
Larmor rotating reference frame with the z axis chosen parallel
to the field. It has the general form (1) with the interaction
constants

J z
mn = −2J x

mn = −2J y
mn = g2

�
2(1 − 3 cos2 θmn)

|rmn|3 , (9)

where rmn is the distance vector between the mth and the
nth lattice sites, and θmn is the angle between rmn and the
external magnetic field B0. Different orientations of B0 lead
to different truncated Hamiltonians and hence different FIDs.
We consider three orientations of B0 along the [100], [110],
and [111] crystal directions.

We computed classical correlation functions C(t) according
to formula (4) with T = 200J−1, where J = γ 2

�
2/a3

0 and
with additional averaging over 3.2×105 independent time
evolutions. The discretization time step was δt = 0.05J−1.
In these simulations, each spin interacted with each other with
coupling constants (9), where the vectors rmn were determined
as the shortest vectors connecting two lattice sites given the
periodic boundary conditions.

Our results for an 11×11×11 lattice of classical spins are
compared with the experimental results for the 19F FID in CaF2

in Fig. 1. The above classical results were indistinguishable
from those for the 9×9×9 lattice down to the values of
C(t) ∼ 10−3. Therefore, we conclude that these results are
representative of the infinite-size lattices in the range where
the two sizes agree. On the other hand, the regions where they
disagree are subject to statistical fluctuations and finite-size
effects.

Both the simulated and the experimental FIDs exhibited
the long-time behavior of form (8). The constants ω and γ

extracted by fitting Eq. (8) to either the simulations or the
experiment are compared with each other in Table I.
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FIG. 1. (Color online) 19F FID for CaF2. Red dots: Experimental measurements extracted from Ref. [24]. Blue solid lines: Results of
calculations for 11×11×11 classical spin lattices. Green dashed lines: Results for 9×9×9 classical spin lattices (fully covered by blue lines in
some plots). The external magnetic field is directed along the lattice directions [100], [111], and [110], as indicated on the plots. Upper row:
Linear-scale plots. Lower row: Semilogarithmic plots.

Overall, the agreement between the classical simulations
and the experiment is excellent for the FIDs corresponding to
the [110] and [111] directions of B0. The agreement for the
[100] direction is also good but with a noticeable deviation on
the log-scale plot as far as the long-time tails are concerned.
The accuracy of our numerical simulation is not high enough
to attempt to extract the second mode of relaxation observed
in the experiment [27] due to insufficient statistics.

The latter discrepancy is consistent with larger differences
of analytically computed moments for quantum and classical
FIDs [8,17–19]. It is also a likely consequence of the fact that
the truncated Hamiltonian for B0 along the [100] direction is
such that each spin has only two strongest neighbors, while, for
the four second-ranked neighbors, the coupling is two times
smaller; i.e., the two strongest neighbors stand apart as far
as the dynamic correlations are concerned (see concluding
discussion). For comparison, the truncated Hamiltonian for
B0 along the [111] direction also implies that each spin
has two strongest neighbors, but then it has 12 second-
ranked neighbors with coupling only 8% smaller. The above
situation reflects the fact that magnetic dipole interaction
is a transitional case between short-range and infinite-range
interactions, which means that the short-range aspects of the
interaction can play a noticeable role.

TABLE I. The values of γ and ω obtained by fitting the functional
dependence (8) to the long-time behavior of the experimental and
numerical FIDs presented in Fig. 1.

γ (1/ms) ω (rad/ms)

Experimental Numerical Experimental Numerical

[100] 50 60 151 154
[110] 42 44 103 101
[111] 29 31 66 65

IV. MODEL SPIN SYSTEMS

In this section, we compare correlation functions C(t) for
quantum and classical lattices with nearest-neighbor interac-
tions. The lattices to be considered have different numbers
of nearest neighbors and different quantum spin numbers S.
Similar investigations for correlation functions related to spin
diffusion were made in Ref. [29].

In Fig. 2, we present correlation functions C(t) for
a classical spin chain and for quantum spin chains with
S = 1/2, 1, and 5/2. All chains consist of 12 spins except
the spin-5/2 chain which consists of 9 spins. For the classical
Hamiltonian, we take the nearest-neighbor coupling constants
J z

mn = 0.82 and J x
mn = J

y
mn = −0.41, while for the quantum

Hamiltonians we divide the above values by
√

S(S + 1). As
explained in Sec. II, this is done to match the characteristic
time scales and the initial behavior for quantum and classical
lattices.

We first notice in Fig. 2 a significant difference between
the classical correlation function and the correlation function
for the spin-1/2 chain. The latter function is rather unusual,
because it does not exhibit clear long-time behavior of form (8).
Instead, its long-time behavior appears to be a modification
of Eq. (8) that relaxes not to zero but rather to a nonzero
“baseline” that itself is slowly approaching zero, possibly,
exponentially. We have checked that this behavior is not
a finite-size effect by obtaining the same behavior in the
same time range for a chain of 24 spins 1/2. This appears
to be a transitional case anticipated in Ref. [21], when two
long-time relaxation modes, oscillatory and monotonic, decay
with nearly the same exponential rate γ and hence coexist.
The above behavior may also be a peculiar manifestation of
the integrability of spin-1/2 chains with the nearest-neighbor
interaction. However, other examples of integrable spin-1/2
chains considered in Ref. [21] exhibited the generic long-time
behavior of form (8).
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FIG. 2. (Color online) Correlation functions C(t) for spin chains
with nearest-neighbor interactions. Black dots, classical spins; blue
thick solid lines, spins 1/2; green dashed lines, spins 1; and red
thin solid lines, spins 5/2. The first three chains consist of 12 spins.
The last one consists of 9 spins. Coupling constants for classical
spins are J x

mn = J y
mn = −0.41 and J z

mn = 0.82. Coupling constants
for quantum spins are rescaled as described in the text. (a) Linear-scale
plot. (b) Semilogarithmic plot.

At the same time, we observe in Fig. 2 that the correlation
function for the spin-1 chain is already quite close to the
correlation function for classical spins, while, for the spin-5/2
chain, the agreement with the classical result is excellent.

In Fig. 3, we compare FIDs for two-dimensional 5×5
square lattices of spins 1/2 and classical spins. We considered
two classical spin Hamiltonians with the nearest-neighbor
coupling constants either J x

mn = J
y
mn = −0.41, J z

mn = 0.82, or
J x

mn = 0, J y
mn = −1, J z

mn = 1. For the corresponding quantum
lattices the constants are rescaled as before. We notice that the
agreement between the correlation functions for the quantum
and classical lattices is as good as for 19F FID in CaF2 with
the [100] direction of magnetic field.

V. CONCLUDING DISCUSSION

As mentioned in the introduction, the relevance of classical
spin simulations for describing quantum spin dynamics at high
temperatures has been appreciated for a long time. However,
this relevance was generally believed to be “semiquantita-
tive” [19]. In the present article, we have shown that, for certain
class of quantum spin lattices, classical simulations give
quantitatively accurate results. The empirical requirements
for the overall quantitative agreement on linear-scale plots
(i.e., excluding exponentially vanishing long-time behavior
dominating on the semilogarithmic plots) appear to be the
following:

(i) The system should be translationally invariant, and
the correlation functions of interest should decay on the
fastest natural time scale of the system τ given by Eq. (7).
(For some correlation functions decaying on the time scale
slower than τ—for example, FID in the presence of exchange
narrowing [3]—the quantitative agreement may also be good,

0 1 2 3 4
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0.005
0.010

0.050
0.100

0.500
1.000

t

C
t

FIG. 3. (Color online) Correlation functions C(t) for 5×5 square spin lattices with nearest-neighbor interactions. Black dots, classical spins;
blue solid lines, spins 1/2. Coupling constants for classical spins are (a), (b) J x

mn = J y
mn = −0.41 and J z

mn = 0.82; (c), (d) J x
mn = 0, J y

mn = −1,
and J z

mn = 1. Coupling constants for quantum spins are rescaled as described in the text. (a), (c) Linear-scale plots. (b), (d) Semilogarithmic
plots.
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but the present article contains no numerical investigations of
such cases.)

(ii) The accuracy of the classical spin simulations to
reproduce quantum correlation functions improves as the
number of interacting neighbors increases. This is natural to
expect given that the classical method is a mean-field approach.

For spin-1/2 lattices, each spin should have at least 4
strongly interacting neighbors. In the case of magnetic dipolar
or similar kinds of interaction involving varying coupling con-
stants, the effective number of strongly interacting neighbors
neff can be defined using the participation ratio of the neighbors
in mean-squared fluctuations of the local field:

neff =
(∑

n

〈
h2

mn

〉)2

∑
n

〈
h2

mn

〉2 =
[ ∑

n

(
J x

mn
2 + J

y
mn

2 + J z
mn

2
)]2

∑
n

(
J x

mn
2 + J

y
mn

2 + J z
mn

2)2 . (10)

Here 〈h2
mn〉 is the contributions of the nth spin to the

mean-squared local field fluctuations experienced by the mth
spin. For 19F FIDs in CaF2 the values of neff are 4.9, 9.1,
and 22.2 for the [100], [110], and [111] magnetic field
directions, respectively. For the lattices with nearest-neighbor
interactions, the above formula just gives the number of the
nearest neighbors. Thus, the threshold neff = 4 is based on
the satisfactory quantitative agreement for the square lattices
and for 19F FID in CaF2 with magnetic field along the [100]
direction.

For lattices of spins S with S � 1, two strong neighbors
should be sufficient. This judgment is made on the basis of the
results presented in Fig. 2. It is also consistent with findings
of Ref. [5]. In this case, the effectiveness of the proposed
method to reproduce experimentally observable nuclear spin
correlations is restricted to cases where quadrupolar coupling
is suppressed due to symmetry reasons as is the case for lattices
of cubic symmetry.

As far as the long-time behavior of correlation functions
is concerned, then classical simulations can also be used to
accurately predict the constants of this behavior for spin-1/2
systems with neff � 9. (See the calculations of 19F FIDs
in CaF2 for [110] and [111] directions of magnetic field.)
However, in examples with neff � 5 noticeable discrepancies
remain, which increase with decreasing neff , and become

particularly dramatic for the FID in the spin-1/2 chain
presented in Fig. 2.

In a broader context, the correspondence between classical
and quantum spin dynamics touches on the important phe-
nomenon of chaos. Classical chaos is defined as exponential
sensitivity to small perturbations of phase-space trajectories.
Classical spin lattices are generically chaotic [30–32]. In
contrast, quantum spin systems do not have phase-space
trajectories. It has recently been shown by us that nonintegrable
lattices of spins 1/2 exhibit power-law rather than exponential
sensitivity to small perturbations [33]. The difference can
be observed in the behavior of NMR magic echoes (also
known as Loschmidt echoes). In this case the exponential
sensitivity emerges with the increase of the values of quantum
spins [34]. It, therefore, appears that the unifying aspect
of classical and quantum chaos that leads to the quanti-
tative agreement between classical and quantum relaxation
described in the present article is the ergodicity of the
underlying dynamics rather than the exponential sensitivity
of the system to small perturbations. Ergodicity is compatible
with both exponential and power-law sensitivities to small
perturbations.

In this article we did not consider disordered lattices and
hence avoided dealing with the issues of glassy dynamics and
many-body quantum localization, both of which can suppress
ergodicity. Comparison of classical and quantum relaxation in
the presence of disorder remains an interesting issue, which
requires further investigation.

Finally, we speculate that microscopic classical simulations
are likely to be quantitatively accurate not only for doing
first-principles calculations of NMR free induction decays in
solids but also for a broader class of quantum problems, where
individual quantum microscopic degrees of freedom are far
from the classical limit.
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