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The layered compound α-RuCl3 is composed of a honeycomb lattice of magnetic Ru3+ ions with the 4d5

electronic state. We have investigated the magnetic properties of α-RuCl3 via magnetization and specific heat
measurements using single crystals. It was observed that α-RuCl3 undergoes a structural phase transition at
Tt � 150 K accompanied by fairly large hysteresis. This structural phase transition is expected to be similar to
that observed in closely related CrCl3. The magnetizations and magnetic susceptibilities are strongly anisotropic,
which mainly arise from the anisotropic g factors, i.e., gab � 2.5 and gc � 0.4 for magnetic fields parallel and
perpendicular to the ab plane, respectively. These g factors and the obtained entropy indicate that the effective
spin of Ru3+ is one-half, which results from the low-spin state. Specific heat data show that magnetic ordering
occurs in four steps at zero magnetic field. The successive magnetic phase transitions should be ascribed to the
competition among exchange interactions. The magnetic phase diagram for H ‖ ab is obtained. We discuss the
strongly anisotropic g factors in α-RuCl3 and deduce that the exchange interaction is strongly XY-like. α-RuCl3

is magnetically described as a three-dimensionally coupled XY-like frustrated magnet on a honeycomb lattice.
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I. INTRODUCTION

It is known that a honeycomb-lattice antiferromagnet
with the nearest-neighbor exchange interaction undergoes a
conventional magnetic ordering even for the spin-1/2 case.
However, when a certain amount of second- and third-neighbor
exchange interactions or a certain amount of anisotropic
exchange interaction exists, the honeycomb-lattice quantum
magnet exhibits an unusual ground state. In the last decade,
spin-1/2 quantum magnets on honeycomb lattices have been
attracting considerable attention from the viewpoints of the
frustrated J1 − J2 model [1–6] and the Kitaev-Heisenberg
model [7–11], both of which can exhibit the spin liquid state
in some parameter range. α-RuCl3 appears to be a spin-1/2
honeycomb-lattice magnet [12–15]. Recently, great interest
has been shown in the magnetic properties of α-RuCl3 [16–19].

α-RuCl3 has a layered structure. The crystal structure
was first reported to be trigonal, P 3112 [12,13], but later it
was found to be monoclinic, C2/m [20], which is the same
as the room-temperature crystal structure of CrCl3 [21,22].
Figures 1(a) and 1(b) show the crystal structure of α-RuCl3.
The crystal structure is composed of RuCl6 octahedra, which
are linked in the ab plane by sharing edges. Magnetic
Ru3+ ions with the 4d5 electronic state form a slightly
distorted honeycomb lattice. It has been reported that α-RuCl3
undergoes magnetic ordering at TN = 13–15.6 K [13–15].
However, little is known about the magnetic properties of
α-RuCl3.

When Ru3+ has the high-spin state, the total angular
momentum and total spin are given by L= 0 and S = 5/2,
respectively; thus the magnetic moment is given by the spin
only. Consequently, the exchange interaction and g factor
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become isotropic. On the other hand, when Ru3+ has the
low-spin state, the orbital and spin states are described by
l = 1 and S = 1/2, respectively. In this case, the magnetic
moment is given by the effective spin-1/2, which is composed
of the orbital angular momentum and true spin. In general,
the exchange interaction and g factor for the effective spin are
fairly anisotropic.

In this paper, we present the results of magnetization and
specific heat measurements on α-RuCl3. It was observed
that the magnetic susceptibilities in α-RuCl3 are strongly
anisotropic, which indicates the low-spin state of Ru3+

together with small entropy. It was found that the magnetic
ordering occurs in multiple steps, which we consider to be due
to competition between exchange interactions. This paper is
organized as follows. Experimental procedure is described in
Sec. II. Experimental results are given in Sec. III. The exchange
interaction, the g factor for the low-spin state of Ru3+ and the
phase diagram are discussed in Sec. IV. Section V is devoted
to a conclusion.

II. EXPERIMENTAL DETAILS

Single crystals of RuCl3 were grown from a melt by
the vertical Bridgman technique. Fine-grained RuCl3 was
dehydrated in a quartz tube at 100 ◦C for three days. The
temperature of the center of the furnace was set at 1100 ◦C and
the quartz tube was moved downward in the furnace at a rate
of 3 mm/h over 80 h. The crystals obtained were black and
had wide surfaces parallel to the ab plane. The crystals were
soft and easily bent like foil.

Magnetization measurements were performed using a
SQUID magnetometer (Quantum Design MPMS XL) in the
temperature range 1.8 K � T � 100 K in magnetic fields of up
to 7 T. Magnetic fields were applied parallel and perpendicular
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FIG. 1. (Color online) Monoclinic crystal structure (C2/m) of
α-RuCl3 at room temperature (a) viewed perpendicular to the ab

plane and (b) viewed along the b axis. Small purple and large green
spheres are Ru3+ and Cl− ions, respectively. Thin solid lines denote
the chemical unit cells. (c) Trigonal crystal structure (R3̄) of CrCl3 in
the low-temperature phase viewed along the c axis, which is expected
to be the same as the low-temperature crystal structure of α-RuCl3.

to the ab plane. High-field magnetization measurement in a
magnetic field of up to 57.5 T was performed at 4.2 and
1.3 K using an induction method with a multilayer pulse
magnet at the Institute for Solid State Physics, University of
Tokyo. The absolute value of the high-field magnetization was
calibrated with the magnetization measured by the SQUID
magnetometer. The specific heat was measured down to
0.36 K in magnetic fields of up to 9 T using a physical
property measurement system (Quantum Design PPMS) by
the relaxation method.
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FIG. 2. (Color online) Temperature dependence of (a) magnetic
susceptibilities χ = M/H and (b) inverse magnetic susceptibilities in
α-RuCl3 measured at H = 0.1 T for H ‖ ab and H ⊥ ab. The arrow
indicates the structural phase transition temperature Tt.

III. EXPERIMENTAL RESULTS

Figures 2(a) and 2(b) show the temperature dependence
of the magnetic susceptibilities and inverse susceptibilities
measured for a magnetic field H parallel and perpendicular
to the ab plane. The magnetic susceptibility for H ‖ ab plane
is much larger than that for H ⊥ ab plane. The strongly
anisotropic susceptibility is mainly attributed to the strongly
anisotropic g factor, which results from the low-spin state of
Ru3+. The anisotropy of the g factor is discussed in detail in
the next section.

In the inverse susceptibility for H ⊥ ab plane, a discon-
tinuous change is observed at Tt � 150 K. Figure 3 shows
an enlargement of the magnetic susceptibility for H ⊥ ab

plane around Tt. Hysteresis is clearly observed at the transition
temperatures, Tt = 141 and 167 K upon cooling and heating,
respectively. This anomaly in the susceptibility is ascribed
to the structural phase transition. Although we performed
x-ray crystal analysis below Tt, we could not determine the
low-temperature structure because sharp x-ray spots were not
observed owing to the softness of the crystal. In the closely
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FIG. 3. (Color online) Hysteresis in magnetic susceptibility ob-
served around T = 150 K for H ⊥ ab.

related compound CrCl3, a structural phase transition from the
monoclinic structure (C2/m) to the trigonal structure (R3̄)
takes place at Tt � 240 K [22]. Thus it is likely that the
low-temperature structure is the same as the low-temperature
structure of CrCl3, which is shown in Fig. 1(c). It is noted that
the specific heat data show no sharp anomaly at the structural
phase transition temperature Tt � 150 K. We consider that this
is because the relaxation method used in this work is less
sensitive to the first-order phase transition with large latent
heat.

Figure 4 shows the low-temperature magnetic susceptibili-
ties measured for H ‖ ab and H ⊥ ab. Clear anomalies indica-
tive of magnetic phase transitions are observed at T = 13.9
and 7.6 K in both susceptibility data. These phase transitions
are confirmed by performing specific heat measurements as
shown below. Our low-temperature magnetic susceptibilities
are consistent with those reported recently by Sears et al.
[17] and Majumder et al. [18] However, we observed that
for H ⊥ ab, the magnetic susceptibilities in some α-RuCl3
samples decrease at 7.6 K with decreasing temperature in
contrast to the behavior shown in Fig. 4(b).

Figure 5(a) shows the low-temperature magnetic sus-
ceptibility χ = M/H measured at various magnetic fields
for H ‖ ab. Arrows indicate the transition temperatures de-
termined from the specific heat anomaly. These transition
temperatures are close to those giving local maxima or minima
of dχ/dT , as shown in Fig. 5(b). The spike anomaly at 12 K
is due to an instrumental problem. With increasing magnetic
field, the transition temperatures decrease, and for H > 4 T,
the high-temperature transition splits into two transitions.

Figures 6 and 7 show the magnetic field dependence
of magnetization and its field derivative dM/dH measured
at 1.3 K for H ‖ ab and H ⊥ ab, respectively. In both
figures, the upper and lower panels show data taken with
the highest magnetic fields of 57.5 and 14 T, respectively.
The absolute values of the magnetization for H ‖ ab and
H ⊥ ab are considerably different, as observed in the magnetic
susceptibilities. This is ascribed to the strongly anisotropic
g factors. Extrapolating the magnetization curves to higher
fields, we estimate the g factors to be gab = 2.5 ± 0.2 and
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FIG. 4. (Color online) (a) Low-temperature magnetic suscepti-
bilities in α-RuCl3 measured at H = 0.1 T for (a) H ‖ ab and (b)
H ⊥ ab. Arrows indicate the anomalies caused by magnetic phase
transitions.

gc = 0.40 ± 0.03. As shown by arrows in Figs. 6 and 7,
some anomalies in dM/dH indicative of field-induced phase
transitions are observed at H = 1.6,6.2,7.5,7.9, and 9.6 T for
H ‖ ab, and at H = 7.9 and 9.1 T for H ⊥ ab. For H ‖ ab, the
field-induced phase transition occurs in many steps. However,
a distinct transition to saturation is not observed for either
field direction, despite the sufficiently low temperature of
1.3 K. This indicates that the total spin is not conserved.
Because α-RuCl3 is considered to be a localized spin system
at helium temperatures, a strong antisymmetric interaction
such as the Dzyaloshinskii-Moriya (DM) interaction may be
responsible for the smearing of the saturation transition.

Figure 8 shows the temperature dependence of specific
heat C and C/T measured at various magnetic fields for
H ‖ ab. The anomaly in C/T near 14 K is due to the
instrumental problem. Our specific heat data are consistent
with those reported by Majumder et al. [18]. At zero magnetic
field, a sharp peak is observed at TN4 = 7.6 K. Above
7.6 K, three small anomalies are observed at TN3 = 10.4 K,
TN2 = 12.3 K, and TN1 = 13.8 K as indicated by arrows.
We consider that these anomalies arise from magnetic phase
transitions, because they are sharper than those owing to the
short-range spin correlation. The present result shows that the
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FIG. 5. (Color online) Low-temperature magnetic susceptibili-
ties in α-RuCl3 measured at various magnetic fields for H ‖ ab.
The susceptibility data are shifted upward by multiples of 2 × 10−3

emu/mol. Arrows indicate the transition temperatures determined
from the specific heat anomaly. (b) Derivative of χ with respect to
T measured at H = 6 T. Arrows indicate the transition temperatures
determined from the specific heat anomaly, which are close to those
giving local maxima or minima of dχ/dT .

magnetic ordering occurs in four steps. The transitions at TN1

and TN4 are also clearly observed in the magnetic susceptibility
as shown in Fig. 4.

The magnetic specific heat Cmag was evaluated using the
specific heat of nonmagnetic ScCl3, which has a similar
layered crystal structure to RuCl3 [23]. Figure 9 shows the
temperature dependence of Cmag/T and magnetic entropy Smag

at zero magnetic field. Cmag/T has a broad maximum around
85 K, which is interpreted to be caused by the short-range spin
correlation. The magnetic entropy obtained at 140 K (<Tt)
is Smag = 3.8 J/mol K, which is approximately two-third of
R ln 2 = 5.76. This small magnetic entropy is consistent with
the low-spin state of Ru3+ with effective spin 1/2.

As shown in Fig. 8, with increasing magnetic field for
H ‖ ab, the peak heights of the anomalous specific heat
for all the phase transitions decrease and all the transition
temperatures shift gradually towards the low-temperature side.
The lowest transition temperature TN4 decreases rapidly above
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FIG. 6. (Color online) Magnetic field dependence of the magne-
tization M and its field derivative dM/dH measured at 1.3 K for
H ‖ ab in α-RuCl3 for the highest fields of (a) 57.5 and (b) 14 T.
Arrows indicate the transition fields.

7 T. This can be observed in the field scans of the specific
heat at three temperatures below 4 K, as shown in Fig. 10. The
peak around 7.8 T, indicative of a magnetic phase transition,
is interpreted to be connected to the transition line for TN4 for
H � 7 T. The high-temperature transition TN1 splits into two
transitions above H = 5 T.

The transition data obtained for H ‖ ab are summarized
in Fig. 11. Four ordered phases exist at zero magnetic field
and six ground states exist in magnetic fields. The features of
α-RuCl3 observed in the present measurements are strongly
anisotropic magnetic properties and many ordered phases. In
the next section, we discuss these features.

IV. DISCUSSION

A. Effective exchange model and g factor

In this section, we discuss the strongly anisotropic magnetic
properties and derive an effective model that describes the low-
temperature and low-energy magnetic properties of α-RuCl3 in
accordance with the effective model of Co2+ in an octahedral
environment [24,25]. Because the magnetic entropy obtained
from the specific heat data indicates that the effective spin of
Ru3+ is one-half, it is natural to assume that the five electrons
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FIG. 7. (Color online) Magnetic field dependence of the magne-
tization M and its field derivative dM/dH measured at 1.3 K for
H ⊥ ab in α-RuCl3 with the highest fields of (a) 57.5 and (b) 20 T.
Arrows indicate the transition fields.

in the 4d orbitals of Ru3+ are in the low-spin state owing to
the strong crystalline fields from surrounding Cl− ions.

In the low-spin state, all five electrons in the 4d orbitals
occupy the dε orbital. Because the matrix elements of the

orbital angular momenta lxdε, l
y

dε , and lzdε with respect to the
orbital states φξ , φη, and φζ for the dε orbital are given by
changing the sign of those for the orbital angular momenta
lxp, l

y
p, and lzp with respect to the orbital states φx, φy , and φz

for the p orbital, respectively, we can replace ldε by −l with
l = 1. The spin-orbit coupling of these electrons is expressed
as

Hso =
5∑

i = 1

gμB
2Z

r3
i

(ldε,i · si) = −
5∑

i = 1

gμB
2Z

r3
i

(l i · si). (1)

For the three electrons with up spin, their orbital angular
momenta cancel out,

∑3
i = 1 l i = 0. For the other two electrons

with down spin, their spin si (i = 4 and 5) is expressed using
the total spin S with S = 1/2 as si = − S. For these reasons,
the spin-orbit coupling of Eq. (1) is written as

Hso = gμB
2Z

〈
1

r3

〉
(l · S) = λ(l · S). (2)

The coupling constant λ is positive and its magnitude has been
reported to be λ � 1000 cm−1 [26]. When the p orbital of the
surrounding Cl− is mixed with the 4d orbitals of Ru3+, the
matrix elements of the angular momentum l are reduced. This
effect is expressed by replacing l with kl with 0 < k � 1.

The orbital state of the low-spin state of Ru3+ in an
octahedral environment is triply degenerate. The orbital
degeneracy can be lifted by the spin-orbit coupling and the
trigonal crystalline field, which are written as

H′ = λ′(l · S) + δ[(lz)2 − 2/3], (3)

where λ′ = kλ, and the second term represents the energy of
the trigonal crystalline field. When the RuCl6 octahedron is
trigonally compressed, δ > 0, and when it is elongated, δ < 0.
The orbital triplet splits into three Kramers doublets. Their
eigenvalues are expressed as

El

λ′ = δ

3λ′ + 1

2
(4)
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FIG. 8. (Color online) Low-temperature specific heat C and C/T in α-RuCl3 measured at various magnetic fields for H ‖ ab. The specific
heat data and C/T are shifted upward by multiples of 2 J/mol K and 0.2 J/mol K2, respectively. Arrows show the anomalies indicative of
magnetic phase transitions.
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and

E±
q

λ′ = − δ

6λ′ − 1

4
± 1

2

√(
δ

λ′

)2

− δ

λ′ + 9

4
. (5)

These eigenvalues are shown in Fig. 12 as a function of δ/λ′.
When the temperature T is much lower than λ′ � 1000 cm−1

[26], i.e., T <100 K, the magnetic property is determined by
the lowest Kramers doublet with E = E−

q . The eigen-states of
the lowest Kramers doublet are expressed as

ψ± = c1| ± 1,∓1/2〉 + c2|0,±1/2〉, (6)

where |ml,mS〉 denotes the state with lz = ml and Sz = mS .
Coefficients c1 and c2 are given by

c1 = 1√
2

√
1 − A√

A2+1
, c2 = − 1√

2

√
1 + A√

A2+1
, (7)
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FIG. 10. (Color online) Field scans of the specific heat in
α-RuCl3 measured at 1.3, 2.4, and 3.5 K for H ‖ ab. Arrows show
the anomalies indicative of magnetic phase transitions.
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FIG. 11. (Color online) Magnetic phase diagram for H ‖ ab. The
circular and triangular symbols are transition points determined
from the temperature and field dependencies of specific heat,
respectively, and the rectangular symbols are those determined from
the magnetization process. Solid and dashed lines are visual guides.

with

A = 2(δ/λ′) − 1

2
√

2
. (8)

Within the lowest Kramers doublet, we have

〈ψ±|Sz|ψ±〉 = ∓ 1
2

(
c2

1 − c2
2

)
,

〈ψ+|S+|ψ−〉 = 〈ψ−|S−|ψ+〉 = c2
2.

(9)

Using these relations, we can replace the true spin S with
S = 1/2 by the spin-1/2 operator s given by

Sx = c2
2s

x, Sy = c2
2s

y, Sz = −(
c2

1 − c2
2

)
sz. (10)

We assume that the exchange interaction between true
spins Si and Sj is described by the Heisenberg model
Hex = J Si · Sj . Substituting Eq. (10) into Hex, we obtain the
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FIG. 12. (Color online) Energy levels of El and E±
q as a function

of δ/λ′.
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TABLE I. Coefficients c1 and c2, exchange constants J ⊥ and J ‖

and g factors g⊥ and g‖ in the special cases of δ/λ′.

δ/λ′ c1 c2 J ⊥ J ‖ g⊥ g‖

0
√

2/3 −1/
√

3 J/9 J/9 2(1 + 2k)/3 2(1 + 2k)/3
1/2 1/

√
2 −1/

√
2 J/4 0 1 + √

2k k

1 1/
√

3 −√
2/3 4J/9 J/9 4(1 + k)/3 2(1 − k)/3

∞ 0 −1 J J 2 2
−∞ 1 0 0 J 0 2(k + 1)

effective model

Heff = J⊥(
sx
i sx

j + s
y

i s
y

j

) + J ‖sz
i s

z
j , (11)

with

J⊥ = c4
2J, J ‖ = (

c2
1 − c2

2

)2
J. (12)

The exchange constants J⊥ and J ‖ in the special cases
are shown in Table I. When the trigonal crystalline field is
absent (δ = 0), the effective exchange interactionHeff becomes
the Heisenberg model, while when δ/λ′ = 1/2, it becomes
the complete XY model. For δ/λ′ → ∞, the orbital angular
momentum is quenched, so that the magnetic moment is given
by the spin only, and Heff again becomes the Heisenberg
model. For δ/λ′ < 0, Heff is Ising-like and becomes the
complete Ising model for δ/λ′ → −∞.

The lowest Kramers doublet splits into two Zeeman levels
when subjected to a magnetic field. The splitting of the Zeeman
levels in Ru3+ has been discussed by many authors [26–28].
The Zeeman term is written as

HZ = −μB(−kl + 2S) · H . (13)

When a magnetic field is applied parallel to the trigonal axis,
the Zeeman energy is expressed as

H‖
Z = −μB〈ψ∓|(−klz + 2Sz)|ψ∓〉H = −g‖μBszH, (14)

with

g‖ = 2
∣∣[(k + 1)c2

1 − c2
2

]∣∣. (15)

Note that the Zeeman levels of ψ− and ψ+ are reversed at
(c2/c1)2 = k + 1. The Zeeman energy for a magnetic field
perpendicular to the trigonal axis is expressed as

H⊥
Z =− 1

2μB〈ψ±| − k(l+ + l−) + 2(S+ + S−)|ψ∓〉H
=−g⊥μBsxH, (16)

with

g⊥ = 2
(
c2

2 −
√

2kc1c2
)
. (17)

Figure 13 shows these g factors as a function of δ/λ′. The g

factors in the special cases are shown in Table I.
The g factors estimated from the high-field magnetization

process are gab = g⊥
exp � 2.5 and gc = g

‖
exp � 0.4. This indicates

that δ/λ′ ∼ 1 in RuCl3. Figure 13(b) shows the behavior of the
g factors in the range of 0 � δ/λ′ � 2, where g‖ changes
rapidly with varying δ/λ′. There are two sets of parameters,
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FIG. 13. (Color online) (a) g factors as a function of δ/λ′. (b)
Enlargement of the g factors between δ/λ′ = 0 and 2. The two
horizontal lines are experimental g factors estimated from the
high-field magnetization process. Open circles and squares represent
two sets of the g factors suitable for α-RuCl3.

(δ/λ′,k) = (0.77, 0.95) and (1.18, 0.83), that satisfy the g

factors observed for α-RuCl3. In the present experiment, it
is difficult to evaluate which set of parameters is realized for
RuCl3. The exchange anisotropy is given as J ‖/J⊥ = 0.099
and 0.37 for δ/λ′ = 0.77 and 1.18, respectively. Hence the
exchange interaction between effective spins is strongly XY-
like in α-RuCl3. From the above discussion, we can conclude
that the strongly anisotropic magnetic properties observed in
α-RuCl3 arise from the trigonal crystalline field, which is close
to the spin-orbit coupling, δ/λ′ � 1. When uniaxial pressure is
applied parallel to the trigonal axis, that is, normal to the ab

plane, the coefficient δ of the trigonal crystalline field will
increase because the magnitude of the trigonal compression
of the RuCl6 octahedron is increased by the uniaxial pressure.
If δ/λ′ = 0.77 at ambient pressure, gc will decrease under the
uniaxial pressure, while if δ/λ′ = 1.18, gc will increase. Thus
magnetization measurements under the uniaxial pressure will
be useful in determining the parameter δ/λ′.

B. Successive magnetic phase transitions

As shown in the phase diagram of Fig. 11, α-RuCl3
undergoes four magnetic phase transitions at zero magnetic
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field. If the frustration is absent, then a single magnetic phase
transition will occur because the honeycomb lattice is bipartite.
Hence it is considered that the successive phase transitions
arise from the frustration effect owing to the competing
interactions.

Recently, Sears et al. [17] investigated the spin structure
below TN4 = 7.6 K at zero magnetic field by neutron diffrac-
tion. They reported that the so-called zigzag-type order is
realized below TN4. They discussed the ground state from the
viewpoint of the competition between the Heisenberg term
J Si · Sj and the Kitaev term −KS

γ

i S
γ

j , where γ corresponds
to the direction of the bond connecting Si and Sj . A possible
origin of the Kitaev term is discussed in Appendix. However,
it appears difficult to derive the successive phase transitions
within the nearest neighbor interactions.

In MnBr2, MnI2, and NiBr2, which have the similar layered
crystal structure to α-RuCl3, two magnetic phase transitions
have been observed at zero magnetic field [29–32]. Their
successive phase transitions have been explained theoretically
in terms of the competition among the exchange interactions
up to the third neighbor and the interlayer exchange interaction
[33,34].

When MX6 octahedra centered by magnetic ions M form
a honeycomb or triangular lattice by sharing their edges, the
nearest-neighbor exchange bond angle M-X-M is close to
90◦. In α-RuCl3, the nearest-neighbor exchange bond angle
Ru–Cl–Ru is approximately 96◦. When the bond angle is close
to 90◦, the exchange tends to be ferromagnetic or weak, even if
it is antiferromagnetic [35]. Actually, in closely related CrCl3,
a ferromagnetic ordering is realized in the honeycomb lattice
[36,37]. The second- and third-neighbor exchange interactions
J2 and J3 in α-RuCl3 are considered to be the same order of
magnitude as the nearest-neighbor exchange interaction J1, as
observed in MnBr2, MnI2, and NiBr2.

The classical ground state for the J1 − J2 − J3 Heisenberg
and XY model was theoretically investigated by Rastelli
et al. [38] and Fouet et al. [39]. They showed that zigzag
ordering emerges when J2/J1 > 1/2 and J3/J1 > 1/2 for an-
tiferromagnetic J1 (>0) and when J2/J1 < 1/2 and J3/J1 < 0
for ferromagnetic J1 (<0). Thus zigzag ordering is possible
in a realistic parameter range. Therefore we infer that the
successive phase transitions and zigzag magnetic ordering
observed in α-RuCl3 are attributed to the competition among
the exchange interactions up to the third neighbor and
the interlayer exchange interaction. However, a theoretical
description of the successive phase transitions is an open
problem.

V. CONCLUSION

We have presented the results of magnetization and spe-
cific heat measurements on the honeycomb-lattice magnet
α-RuCl3. This compound undergoes a first-order structural
phase transition at Tt = 154 ± 13 K. The structural phase
transition is expected to be a transition from the mon-
oclinic room-temperature structure (C2/m) to a trigonal
structure by analogy with that observed in closely related
CrCl3 [22].

The magnetic susceptibility and magnetization are strongly
anisotropic, i.e., these quantities for H ‖ ab are much larger

than those for H ⊥ ab. This is ascribed to the strongly
anisotropic g-factor characteristic of the low-spin state of
Ru3+ with the 4d5 electronic state. We discussed the effec-
tive exchange interaction and g factor taking the spin-orbit
coupling and trigonal crystalline field into consideration. We
demonstrated that the strongly anisotropic magnetic properties
observed in α-RuCl3 occur when the magnitudes of the
spin-orbit coupling and trigonal crystalline field are close
to each other, i.e., δ/λ′ � 1, and that the effective exchange
interaction is strongly XY-like in α-RuCl3.

It was found from the specific heat and magnetization
measurements that α-RuCl3 undergoes four magnetic phase
transitions at zero magnetic field and five field-induced
transitions at T = 0. We presented the magnetic field versus
temperature phase diagram for H ‖ ab in Fig. 11. We suggest
that these successive phase transitions are attributed to the
competition among the nearest-, second-, and third-neighbor
exchange interactions.
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APPENDIX : POSSIBLE ORIGIN OF THE KITAEV TERM

Here, we give a possible origin of the Kitaev term. As
discussed above, the dominant exchange interaction between
magnetic moments is the spin-1/2 XXZ model expressed by
Eq. (11), which is isotropic in the ab plane. We consider the
Dzyaloshinskii-Moriya (DM) interaction D · [s1 × s2] with
the D vector parallel to the bond vector r12 = r2 − r1. This
condition is allowed when the space group is P 3112. In this
case, there is a twofold axis passing two neighboring spins,
which leads to D ‖ r12 [40]. The interaction between the
nearest-neighbor spins s1 and s2 is expressed as

H12 = J⊥(
sx

1 sx
2 + s

y

1 s
y

2

) + J ‖sz
1s

z
2 + D · [s1×s2] , (A1)

where the z axis is chosen to be normal to the honeycomb
lattice. When the XXZ-type exchange interaction is antifer-
romagnetic, the stable classical spin configuration is a canted
antiferromagnetic state as illustrated in Fig. 14. The canting

FIG. 14. (Color online) Classical configuration of spins si and sj

and coordinate systems. The y direction is chosen to be parallel to
the bond vector r12 and D.
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angle θ is given by

tan 2θ = 2D

J⊥ + J ‖ . (A2)

Here, we define the local coordinates x ′yz′ − O and
x ′′yz′′ − O as shown in Fig. 14, i.e., the x ′ and x ′′ axes are
taken to be parallel and antiparallel to the spins s1 and s2,
respectively. The y axis is parallel to the bond vector and
D. The spin operators sx

1,2 and sz
1,2 in the original coordinate

system are expressed as

sx
1 = sx ′

1 cos θ − sz′
1 sin θ, sz

1 = sx ′
1 sin θ + sz′

1 cos θ,

sx
2 = sx ′′

2 cos θ + sz′′
2 sin θ, sz

2 = −sx ′′
2 sin θ + sz′′

2 cos θ. (A3)

Substituting Eq. (A3) into Eq. (A1), we obtain

H12 = (J⊥ + K)
(
sx ′

1 sx ′′
2 + s

y

1 s
y

2

)
+ (J ‖ + K)sz′

1 sz′′
2 − Ks

y

1 s
y

2 , (A4)

with

K = 2D sin θ cos θ − (J⊥ + J ‖) sin2 θ. (A5)

Because the y axis is parallel to the bond vector r12, which has
three directions in the crystal depending on the configuration of
s1 and s2, Eq. (A4) is equivalent to the spin-1/2 Kitaev-XXZ
model. As described above, the DM interaction can be the
origin of the Kitaev term.
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