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Magnetic excitations in the spin-spiral state of TbMnO3 and DyMnO3
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We calculate spectra of magnetic excitations in the spin-spiral state of perovskite manganates. The spectra
consist of several branches corresponding to different polarizations and different ways of diffraction from the static
magnetic order. The easy-axis crystal-field anisotropy and the Dzyaloshinski-Moriya anisotropy lead to opening
of gaps in Goldstone modes and to discontinuities in magnon dispersions. Comparing results of the calculation
with available experimental data, we determine values of effective exchange parameters and anisotropies. To
simplify calculations and to get a clearer physical insight into the structure of excitations, we use the σ -model-like
effective-field theory instead of the conventional spin-wave approach to analyze the Heisenberg Hamiltonian and
to derive the spectra.
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I. INTRODUCTION

Terbium and dysprosium manganates, TbMnO3 and
DyMnO3, are the key materials in the family of multiferroic
oxides [1,2]. The properties of TbMnO3 and DyMnO3 are
very similar; to be specific, below we consider TbMnO3.
Similar to the parent compound of the rare-earth manganites
LaMnO3, TbMnO3 has an orthorhombic lattice structure with
lattice constants a ≈ 5.302 Å,b = 5.857 Å, and c = 7.402 Å
[3]. Below we measure components of wave vectors in units
1/a, 1/b, and 1/c, respectively. There are three different
magnetic phase transitions in TbMnO3 upon cooling [4,5]. An
incommensurate collinear spin-density wave with the wave
vector directed along b, Q ≈ π (0,0.28,0), and Mn spins also
aligned along b is stabilized below TN = 42 K. This is the
spin-stripe phase, which is also called the “sinusoidal phase.”
Below TS = 28 K, Mn spins reorient into an incommensurate
spin spiral. The wave vector of the spiral is practically
the same as that in the spin-stripe phase; Mn spins are
confined in the bc plane. Finally, Tb spins order below
T = 7 K. Last but not least, simultaneously with the transition
into the spin-spiral phase, an electric polarization along c
appears at T = TS [1]. The polarization is coupled with
the spin spiral due to the Dzyaloshinski-Moriya interaction
[6,7].

In the present work, we concentrate on magnetic properties
and do not consider ferroelectricity. The major magnetic prop-
erties are related to Mn ions. On the other hand, Tb ions, which
order at the relatively low temperature, play a minor role. In our
analysis, we disregard Tb ions. There are two very important
points concerning the magnetic properties of the rare-earth
manganites: (i) Magnetic excitations in the spin-spiral phase
measured in Ref. [8] are quite unusual. (ii) Even more unusual
is the spin-spiral to spin-stripe phase transition at T = Ts .
The phase transition has been considered phenomenologically
within an effective Landau-Ginzburg theory in Ref. [7].
We believe that the physics behind points (i) and (ii) are
closely related; the unusual excitation spectrum is behind the
unusual phase transition. In the present paper, we address
only the first point, and we calculate magnetic excitations

in the spin-spiral phase. A brute-force spin-wave calculation
of excitations in the spin-spiral phase is certainly possible,
but it is rather technically involved. More importantly, such a
calculation is not physically transparent. For this reason, we
employ a much more transparent and efficient σ -model-like
field theory to find excitations. A similar approach was used
previously for the calculation of magnetic excitations in the
spin-spiral compounds FeSrO3 and FeCaO3 [9]. The field
theory is well justified at small momenta, while close to the
boundary of the magnetic Brillouin zone it can have up to
20–30% inaccuracy. We sacrifice this to get a transparent
description of the most important incommensurate physics
at small momenta. First we calculate magnon dispersions
for a SU(2) symmetric Heisenberg model. Next we consider
the easy-axis crystal-field anisotropy and the Dzyaloshinski-
Moriya anisotropy. The anisotropies influence the static spin
pattern and the magnon spectra. There are two qualitative
anisotropy-induced effects on the magnon spectra: (i) opening
of gaps at zero frequency and (ii) discontinuities of dispersions
due to the diffraction of magnons from the static spin spiral.
Some discontinuities of magnon dispersions in helimag-
nets with anisotropies have been considered previously in
Refs. [10,11].

The structure of the paper is as follows: In Sec. II, we
consider collinear antiferromagnet LaMnO3 and formulate
the field theory. In this case, the spin-wave calculation is
straightforward and we compare it with the field theory. In
Sec. III, we calculate magnetic excitations in the spin-spiral
phase without including anisotropies, and discuss Goldstone
modes. The influence of the single-ion anisotropy on excitation
spectra is considered in Sec. IV. In Sec. V, we consider
the combined influence of the single-ion anisotropy and the
Dzyaloshinski-Moriya anisotropy on excitation spectra. All of
the plots in Secs. III–V are presented at values of parameters
which reproduce the experimental spectra from Ref. [8]. Those
readers who are not interested in details of the calculations can
go directly to Sec. VI, where we summarize the results, refer
to plots showing the calculated dispersions, and present our
conclusions.
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FIG. 1. (Color online) Magnetic structure of LaMnO3, ferromag-
netic ordering in the ab plane, and antiferromagnetic ordering along
the c axis.

II. SPIN-WAVE AND FIELD-THEORY CALCULATIONS
OF MAGNETIC EXCITATIONS IN LaMnO3

Magnetic structure as well as magnetic excitations in
LaMnO3 have been determined by neutron scattering [12,13].
In the ab plane, spins of Mn ions are aligned ferromagnetically,
while in the c direction, they are aligned antiferromagnetically;
see Fig. 1. The minimal Heisenberg Hamiltonian describing
the system is [12,13]

H = J1

∑
〈i,j〉c

�Si · �Sj − J2

∑
〈i,j〉ab

�Si · �Sj , (1)

where S = 2 is the spin of the Mn ion, 〈i,j 〉c denotes
nearest neighbors in the c direction, 〈i,j 〉ab denotes nearest

J

Bc

1

FIG. 2. (Color online) Response of spins to the magnetic field �B
applied perpendicular to the staggered magnetization.

neighbors in the ab plane, and J1 and J2 are antiferromagnetic
and ferromagnetic exchange integrals indicated in Fig. 1.
In this work, we use the standard definition of exchange
integrals: each link in (1) is counted only once. Therefore,
our exchange integrals are two times larger than that defined
in Refs. [8,12,13]. We do not include in (1) the single-ion
anisotropy because the goal of the present section is just
to introduce field theory. The spin-wave diagonalization of
the Hamiltonian (1) is straightforward (a combination of
Holstein-Primakoff and Bogoliubov’s transforms). This results
in the following magnon dispersion [12,13]:

Aq = J1 + 2J2(1 − cos qa cos qb), Bq = J1 cos qc,
(2)

ωq = 2S

√
A2

q − B2
q = 2S

√
J 2

1 sin2 qc + 4J1J2(1 − cos qa cos qb) + 4J 2
2 (1 − cos qa cos qb)2.

It is well known that in the long-wavelength limit, q � π ,
any quantum antiferromagnet is equivalent to a nonlinear σ

model written in terms of the unit vector �n describing the
staggered magnetization. The effective Lagrangian of the σ

model reads

L = 1

2
χ⊥ �̇n2 − E(�n), (3)

where χ⊥ is the perpendicular magnetic susceptibility and
E(�n) is the energy of elastic deformation of the spin fabric.
The magnetic susceptibility corresponds to the interaction
Hamiltonian HB = −∑

i
�B · �Si , with magnetic field �B applied

perpendicular to the staggered magnetization; see Fig. 2. A
simple calculation shows that the susceptibility per site is

χ⊥ = 1

4J1
. (4)

The elastic energy corresponding to the Hamiltonian (1) is

E = −S2�nR0( p)�n + const,

R0 = J1

4
cos(2pc) + 2J2 cos pa cos pb, (5)

pa = −i∇a, pb = −i∇b, pc = −i∇c.

Usually E is expanded up to the second order in
momentum, E → �n{ ρab

2 (p2
a + p2

b) + ρc

2 p2
c }�n → ρab

2 [(∇a �n)2 +
(∇b�n)2] + ρc

2 (∇c�n)2, where ρab and ρc are the corresponding

spin stiffnesses. In the present work, we do not expand E in
powers of momentum, instead we use (5) as it is. Note that
the ferromagnetic J2 term in (5) is unambiguous; on the other
hand, the antiferromagnetic J1 term is somewhat ambiguous.
One can write the antiferromagnetic J1 term as it is done in (5)
or, alternatively, as J1 cos(pc). In the long-wavelength limit,
both ways result in the same spin stiffness, J1

4 cos(2pc) →
const − J1p

2
c /2, and J1 cos(pc) → const − J1p

2
c /2. We use

the way of (5) because it leads to the correct magnon dispersion
up to pc = π/2 [see Eq. (7)], and hence allows one to
overstretch the region of validity of the field theory [14].

The minimum of energy (5) defines the ground state which
corresponds to the constant staggered magnetization �n = �n0.
Magnetic excitations above the ground state, �n = �n0 + δ�n,
δ�n ⊥ �n0, are defined by the Euler-Lagrange equation of
Lagrangian (3),

χ⊥δ̈�n = 2S2 [R0( p) − R0(0)] δ�n. (6)

For δ�n = δ�n0e
−iωq t+iq·r , this results in the dispersion

ωq = 2S

√
J 2

1 sin2 qc + 4J1J2(1 − cos qa cos qb). (7)

Compared to the “exact” spin-wave calculation (2), the term
4J 2

2 (1 − cos qa cos qb)2 is missing under the square root. In
the long-wavelength limit, qa,qb � π , this term is quartic in
momenta and therefore it is irrelevant. Moreover, at J2 � J1,
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this term is irrelevant even at qa,qb = π . The inequality J2 �
J1 is certainly not valid for LaMnO3 where J1 ≈ 1.17 and
J2 ≈ 1.66 meV; see Refs. [12,13]. However, we will see that
for TbMnO3, J2 � J1/2.

For the collinear magnetic ground state in LaMnO3,
the spin-wave calculation (2) is very simple and therefore
application of the field theory does not make sense. The
purpose of the present section is just to demonstrate how
the field theory works in the known simple case. Below we
employ the field theory for the spin-spiral states of TbMnO3

and DyMnO3. For a noncollinear state, the field theory is
significantly more technically efficient.

It is instructive to also compare the quantum/thermal
fluctuations obtained within the spin-wave theory and within
the field theory. The fluctuation reduction of the staggered
magnetization within the spin-wave theory is determined by
Bogoliubov’s parameters uq and vq :

u2
q = 1

2

(
Aq/

√
A2

q − B2
q + 1

)
,

v2
q = 1

2

(
Aq/

√
A2

q − B2
q − 1

)
,

(8)

〈nb〉 = 〈Sb〉
S

= 1 − 2

S

∑
q∈MBZ

{
v2

q + (
u2

q + v2
q

)
fq

}

= 1 −
∑

q∈MBZ

{(
2Aq

ωq
− 2

S

)
+ 4Aq

ωq
fq

}
.

Here, fq = (eωq/T − 1)−1 is the Bose thermal occupation
factor. The summation over momentum is performed inside the
magnetic Brillouin zone (MBZ), |qc| � π/2, |qa + qb| � π ,
|qa − qb| � π . The fluctuation reduction within the field
theory is of the following form [9]:

〈nb〉 = 1 −
∑

q∈MBZ

1

χ⊥ωq

(
1

2
+ fq

)
. (9)

At small q, the integrand in (9) is equal to that in (8); this
is true for both thermal fluctuations (proportional to fq) and
for quantum fluctuations. Moreover, at J2 � J1, the thermal
fluctuation contributions in Eqs. (9) and (8) are equal over the
entire MBZ. The large q quantum fluctuation contributions in
Eqs. (9) and (8) are generally different. However, for S = 2,
quantum fluctuations are small anyway, and there is no need
to consider them.

III. MAGNETIC EXCITATIONS IN THE SPIN-SPIRAL
PHASE OF TbMnO3 WITHOUT INCLUDING

ANISOTROPIES

According to Ref. [8], the incommensurate spin structure
in TbMnO3 is due to ab-plane frustrating antiferromagnetic
interaction J3b, shown in Fig. 3; for completeness, we also
introduce J3a . So, in TbMnO3, there is the following addition
to the Hamiltonian (1):

δH = J3b

∑
〈i,j〉b

�Si · �Sj + J3a

∑
〈i,j〉a

�Si · �Sj . (10)

Here, 〈i,j 〉b denotes next-nearest neighbors along the b
direction and 〈i,j 〉a denotes the next-nearest neighbors along

a

J

J

2

2
JJ 3b3a

b

FIG. 3. (Color online) Frustrating ab-plane antiferromagnetic
interactions J3b and J3a in TbMnO3.

the a direction. The spin-elastic energy corresponding to
H + δH is similar to (5),

E = −S2�nR( p)�n + const,

R = J1

4
cos(2pc) + 2J2 cos pa cos pb (11)

−J3b cos(2pb) − J3a cos(2pa).

Below we assume that

J2 < 2J3b, J 2
2 > 4J3aJ3b. (12)

In this case, it is easy to check that the energy (11) is minimum
for the spin-spiral ground state,

�n0 = �e1 cos( Q · r) + �e2 sin( Q · r),
(13)

Q = Qeb, cos Q = J2

2J3b

,

where �e1 and �e2 are two arbitrary orthogonal unit vectors
which define the plane of the spiral. According to Ref. [8], in
TbMnO3, the wave vector is Q ≈ 0.28π , and hence J2/J3b ≈
1.27.

A. In-plane excitations

There are two types of magnetic excitations in the spin-
spiral state: in-plane spin excitation and out-of-plane spin
excitation. The in-plane excitation is described by a phase
ϕ(t,r), ϕ � 1, and results in the following vector �n:

�n = �e1 cos( Q · r + ϕ) + �e2 sin( Q · r + ϕ)

≈ (1 − ϕ2/2)�n0 + ϕ�n1, (14)

�n1 = −�e1 sin( Q · r) + �e2 cos( Q · r).

Substituting this �n in Eqs. (3) and (11), and taking variation
with respect to ϕ, we find the following Euler-Lagrange
equation:

− χ⊥ϕ̈ + 2S2[−ϕ�n0R( p)�n0 + �n1R( p)�n1ϕ] = 0. (15)

Having in mind the plane-wave solution, ϕ ∝ exp(−iωq t +
iq · r), we note that the following relations are valid:

�n1R( p)�n1e
iq·r = 1

2 [R(q + Q) + R(q − Q)]eiq·r ,
(16)

�n0R( p)�n0 = R( Q).

Hence, Eq. (15) results in the following spectrum of the in-
plane excitation:

ω(in)
q = 2S

√
J1[2R( Q) − R(q + Q) − R(q − Q)]. (17)
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As one should expect, ω
(in)
q = 0 for q = 0. This is the

Goldstone sliding mode.

B. Out-of-plane excitations

The out-of-plane excitation h(t,r), h � 1, results in the
following vector �n:

�n =
√

1 − h2 �n0 + h�e3 ≈ (1 − h2/2)�n0 + h�e3, (18)

where �e3 = [�e1 × �e2] is a unit vector perpendicular to the
plane of spiral. Substituting (18) in Eqs. (3) and (11), and
performing variation with respect to h, we get the following
Euler-Lagrange equation:

− χ⊥ḧ + 2S2[−h�n0R( p)�n0 + �e3R( p)�e3h] = 0. (19)

The plane-wave solution, h = h0 exp(−iωq t + iq · r), gives
the following spectrum of the out-of-plane excitation:

ω(out)
q = 2S

√
2J1[R( Q) − R(q)]. (20)

The dispersion has two zeros (Goldstone modes) ω
(out)
q = 0 for

q = ± Q.
Altogether the spectrum has three Goldstone modes corre-

sponding to three possible global rotations of the spin spiral.
The in-plane sliding mode with q = 0 corresponds to the
rotation around �e3. The two out-of-plane zero-energy modes,
h1 = ei Q·r , h2 = e−i Q·r , can be combined as

h+ = h1 + h2 ∝ cos Q · r,
(21)

h− = h1 − h2 ∝ sin Q · r.

Now we see that h+ corresponds to the global spin rotation
of �n0 in Eq. (13) by a small angle α around �e2, h = n03 =
n01 sin α, and h− corresponds to the global rotation around �e1,
h = n03 = n02 sin α.

C. Comparison with experiment

Dispersions of two branches (17) and (20) have been
derived without inclusion of anisotropies. The anisotropies,
which we consider later, significantly modify the dispersions
at small momenta. However, close to boundaries of MBZ,
where excitation energies are sufficiently high, the influence
of anisotropies is relatively small. Therefore, to estimate values
of the exchange integrals, we calculate ω

(out)
q at some points at

the boundary of MBZ. According to Eq. (20),

q =
(

0,Q,
π

2

)
, ω(out)

q = 2SJ1,

q = (π,Q,0), ω(out)
q = 5.1S

√
J1J3b, (22)

q = (0,π,0), ω(out)
q = 6.5S

√
J1J3b.

Comparing this with the data presented in Figs. 8 and 10 from
Ref. [8], we find approximate values of the exchange integrals,

J1 ≈ 0.9 meV, J2 ≈ 0.38 meV,
(23)

J3b ≈ 0.3 meV, J3a = 0.1 meV, Q = 0.28π.

Note that J2 follows from Eq. (13) as soon as J3b is determined.
There are no data to determine J3a . Rather arbitrarily we take
J3a = 0.1 meV, which satisfies the inequality (12). The values
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FIG. 4. (Color online) The in-plane magnon dispersion without
inclusion of anisotropies. (a) The dispersion is shown for q =
(0,qb,0). (b),(c) Branches of the in-plane dispersion as they are seen
in neutron scattering, shifted by ± Q, ωin(q ± Q). (b) q = (0,qb,0).
(c) q = Q + δq, where δq is directed along a and c.

of J2, J3b, and J3a presented in (23) are probably slightly
larger than the real ones (∼20%) because of the inaccuracy
of the field theory close to the boundary of MBZ. The values
of exchange integrals in Eq. (23) reasonably agree with that
derived in Ref. [8] (we remind the reader that our integrals are
larger by a factor of two due to the different definition).

The in-plane dispersion (17) has a minimum at q = 0.
The dispersion for q = (0,qb,0) is shown in Fig. 4(a). The
in-plane excitation shown in Fig. 4(a) cannot be seen directly
in neutron scattering since the corresponding n field (14) con-
tains an additional oscillating factor cos( Q · r) or sin( Q · r).
Therefore, in a scattering measurement, the in-plane mode is
seen as two shifted branches ωin(q ± Q) with half intensity
each. These branches are shown in Figs. 4(b) and 4(c), along
three different directions. Note that there is a crossing in
Fig. 4(c) at qa = ±2Q.

The out-of-plane excitation (18) and (20) can be seen in
inelastic neutron scattering as it is. The dispersion (20) is
plotted in Fig. 5 for three different directions.
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FIG. 5. (Color online) Out-of-plane magnon dispersion without
inclusion of anisotropies. (a) q = (0,qb,0). (b) q = Q + δq, where
δq is directed along a and c.
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FIG. 6. (Color online) The �e1 (blue dashed line) and the �e2 (black
solid line) components of the ground-state spin polarization �N0 vs
Q · r/2π . To stress the effect of the crystal-field anisotropy, this
figure is plotted for the unphysically large crystal field D = 0.7 meV
(ϕ0 = 0.5).

IV. EXCITATION SPECTRA INCLUDING THE
CRYSTAL-FIELD ANISOTROPY ALONG THE b AXIS

Different anisotropies influence the magnon spectra in
different ways. In this section, we consider only the crystal-
field anisotropy along the b axis. The corresponding correction
to the elastic energy (11) is

Hcf = −DS2
b = −DS2n2

b, (24)

where D > 0 is the strength of the crystal field. While in the
present work we consider only the spin-spiral phase, the sign
of D (“easy-axis” anisotropy) is dictated by the spin-stripe
phase, where spin is directed along b. We assume that D is
sufficiently small and therefore consider only the effects linear
in D. Dispersion plots presented below correspond to

D = 0.125 meV, (25)

which is approximately consistent with the neutron-scattering
data [8]. The crystal field (25) is somewhat smaller than D =
0.165 meV in LaMnO3; see Ref. [12]. The crystal field (24)
results in two static effects: (i) The plane of the spin spiral
must include the axis b. So, while in Eq. (13) vectors e1 and
e2 are arbitrary orthogonal unit vectors, now we take

e2 = eb, e1 ⊥ eb. (26)

(ii) The spin spiral gets an additional static position-dependent
phase ϕst (r). So (13) is replaced by

�N0 = �e1 cos( Q · r + ϕst ) + �e2 sin( Q · r + ϕst )

= cos ϕst �n0 + sin ϕst �n1. (27)

A. Static deformation of the spin spiral

Minimization of energy E + Hcf , given by Eqs. (11) and
(24), results in the following equation for ϕst :

[−ϕst �n0R( p)�n0 + �n1R( p)�n1ϕst ] = −D sin(2 Q · r). (28)

The solution of this equation is

ϕst (r) = ϕ0 sin(2 Q · r),

ϕ0 = − D

R(3 Q) − R( Q)
= D

8J3b sin2(2Q) sin2 Q
. (29)

The solution (29) is illustrated in Fig. 6, which displays both
components of the ground-state polarization �N0 for the greatly

enhanced value of the crystal field. Naturally the easy-axis
crystal-field anisotropy (24) tends to align the spin with the
b axis, deforming the simple helix which exists without the
anisotropy. As is evident from Fig. 6, the deformation is
different from the simple elliptic one. It is instructive to
calculate Fourier components of the ground-state polarization,

A(1)
n ∝

∫
( �N0 · �e1) cos(n Q · r)d2r,

A(2)
n ∝

∫
( �N0 · �e2) sin(n Q · r)d2r.

Both Fourier components are nonzero only if n = 2k + 1,
where k is an integer,

A(1)
n = Jk(ϕ0) + (−1)k+1Jk+1(ϕ0),

(30)
A(2)

n = Jk(ϕ0) − (−1)k+1Jk+1(ϕ0),

where Jk(ϕ0) is a Bessel function. At the physical value
of D given by Eq. (25), the deformation amplitude is
small, ϕ0 = 0.09, and hence (A(1)

1 )2 = 0.91, (A(1)
3 )2 = 0.002,

(A(2)
1 )2 = 1.09, (A(2)

3 )2 = 0.002. The elastic neutron-scattering
intensities ∝A2 look like that for an elliptic deformation, but
the actual spin pattern is not elliptic, as is evident from Fig. 6
which is plotted for ϕ0 = 0.5. Note that here we consider only
the zero-temperature case. At a nonzero temperature, the spin
pattern is different from that shown in Fig. 6. Ultimately, the
pattern transforms to the spin stripe at T = TS . The spin pattern
at a nonzero temperature and the transition to the stripe will
be addressed separately [15].

The physical anisotropy is relatively small, ϕ0 = 0.09;
nevertheless, we will show below that it results in a significant
spin-wave gap.

The spiral phase 
 = Q · r + ϕ0 sin(2 Q · r) has a zero
mode corresponding to the shift r → r + δr ,

ϕ(r) ∝ ∂
(r)

∂( Q · r)
=

{
1 − 2D cos(2 Q · r)

R(3 Q) − R( Q)

}
. (31)

This is the Goldstone sliding mode which remains gapless
even in the presence of anisotropy, ω

(in)
q=0 = 0.

B. In-plane excitations

According to the discussion in the previous paragraph, the
in-plane excitation remains gapless even with the anisotropy.
The only qualitatively visible effect of the anisotropy is
discontinuity of the dispersion due to diffraction of magnons
from the static spin spiral. The dispersion is discontinuous at
qb = Q and qb = π − Q. To find the in-plane excitation with
nonzero energy ϕ(t,r), we represent the vector �n similar to
(14),

�n = �e1 cos( Q · r + ϕst + ϕ) + �e2 sin( Q · r + ϕst + ϕ)

≈
(

1 − ϕ2

2

)
�N0 + ϕ �N1, (32)

�N1 = −�e1 sin( Q · r + ϕst ) + �e2 cos( Q · r + ϕst ).

The corresponding Euler-Lagrange equation is

−χ⊥ϕ̈ + 2S2[−ϕ �N0R( p) �N0 + �N1R( p) �N1ϕ]

+2DS2ϕ cos(2 Q · r) = 0. (33)
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It is easy to check that the zero-frequency sliding mode solution
(31) satisfies this equation.

The spin spiral in combination with the crystal-field
anisotropy (24) generates the effective scattering “potential”
with momentum �q = 2 Q. As usual, the scattering is most
pronounced when the “resonance” condition, ω

(in)
q = ω

(in)
q±2 Q ,

is fulfilled. The condition is fulfilled at q = q⊥ + Q =
(qa,Q,qc) and at q = q⊥ + πb − Q = (qa,π − Q,qc). At
these planes, the magnon spectrum becomes discontinuous.
Equation (33), which describes magnon diffraction, is similar
to the Schrodinger equation for the electron band structure.
The only difference is that the Schrodinger equation contains
the electron energy, while Eq. (33) contains ω2. The solution
of Eq. (33) is obvious from this analogy,

(
(in)

q

)2 = 1

2

[(
ω(in)

q

)2 + (
ω

(in)
q±2 Q

)2]

±
√

1

4

[(
ω

(in)
q

)2 − (
ω

(in)
q±2 Q

)2]2 + M2
q . (34)

The sign ± before the square root and the sign ± in q ±
2 Q depend on the momentum qb. The choice of the signs
must correspond to the standard band theory convention. The
mixing matrix element Mq is different for qb ≈ Q and for
qb ≈ π − Q. How does one find values of the matrix element?
Let us, for example, take q = (qa,Q,qc). Here the solution
of Eq. (33) must be of the following form: ϕ ∝ eiqaa+iqccψb,
where ψb = cos(Qb) or ψb = sin(Qb). Substitution of these
two solutions in Eq. (33) allows one to find corresponding
frequencies ((in)

q )2. On the other hand, according to (34), the
frequencies are ((in)

q )2 = (ω(in)
q )2 ± Mq . By comparing, we

find the value of the matrix element. This calculation gives the
following results:

qb ≈ Q :

Mq = 4DJ1S
2

{
3

2
+ R(qa,0,qc) − R(qa,2Q,qc)

R(3 Q) − R( Q)

}
,

qb ≈ π − Q :

Mq = 4DJ1S
2

{
3

2
+ R(qa,π,qc) − R(qa,π − 2Q,qc)

R(3 Q) − R( Q)

}
.

(35)

The in-plane dispersion 
(in)
q for q = (0,qb,0) is shown

in Fig. 7(a). Discontinuities of the dispersion due to the
diffraction of magnons from the static spin spiral are clearly
seen. We already pointed out that the in-plane excitation cannot
be seen directly in neutron scattering since the corresponding
n field (14) contains an additional oscillating factor cos( Q · r)
or sin( Q · r). Therefore, in a scattering measurement, the
in-plane mode is seen as two shifted branches in(q ± Q)
with half intensity each. These branches for three different
momentum directions are shown in Figs. 7(b) and 7(c).

C. Out-of-plane excitations

There are two anisotropy-induced effects on the out-of-
plane excitations: (i) opening of the gap at zero frequency
and (ii) discontinuity of the dispersion due to diffraction of
magnons from the static spin spiral. Without an anisotropy,
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FIG. 7. (Color online) The in-plane magnon dispersion including
the easy-axis anisotropy. (a) The dispersion is shown for q = (0,qb,0).
(b),(c) Branches of the in-plane dispersion as they are seen in neutron
scattering, shifted by ± Q, ωin(q ± Q). (b) q = (0,qb,0). (c) q =
Q + δq, where δq is directed along a and c.

there are two out-of-plane Goldstone modes with q = ± Q
corresponding to linear combinations of rotations around �e1

and �e2; see Eq. (21). The anisotropy (24) does not respect
rotations around �e1, but it does respect rotations around �e2 =
�eb. Therefore, we expect one gapless and one gapped out-of-
plane mode.

For out-of plane fluctuations, we have

�n =
√

1 − h2 �N0 + h�e3, (36)

and the corresponding Euler-Lagrange equation is

−χ⊥ḧ + 2S2[−h �N0R( p) �N0 + �e3R( p)�e3h]

−S2D[1 − cos(2 Q · r + 2ϕst )]h = 0. (37)

Expanding this equation up to the first order in D, we get

− χ⊥ḧ + 2S2[R( p) − R( Q)]h = S2D[1 − 2 cos(2 Q · r)]h.

(38)

It is easy to check that at q = Q, this equation has a gapless
solution,


(+)
Q = 0, h+ ∝ cos( Q · r), (39)

and a gapped solution,


(−)
Q =

√
8S2J1D, h− ∝ sin( Q · r). (40)

Here, the nomenclature h± corresponds to that in Eq. (21). In
the solutions (39) and (40), we neglect higher harmonics terms
which have small amplitudes ∼D/J1. Thus, the spectrum at
q = Q agrees with our expectations.

Equation (38) contains the effective scattering “potential”
with momentum �q = 2 Q. Therefore, the spectrum must be
discontinuous at points where ω

(out)
q = ω

(out)
q±2 Q . The solution

of (38) is similar to (34); the mixing matrix element, Mq =
4J1S

2D, is even simpler than that for the in-plane mode.
The out-of-plane dispersion q for q = (0,qb,0) is plotted

094417-6
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FIG. 8. (Color online) The out-of-plane magnon dispersion with
inclusion of the crystal-field anisotropy (24). (a) The dispersion for
q = (0,qb,0). (b) The same as (a), but including the shadow bands,
indicated by dashed magenta lines. (c),(d) q = (0,qb,0.1π ) and q =
(0.1π,qb,0), respectively. (e),(f) The dispersion along a and c for
qb = Q − 0 and qb = Q + 0, respectively.

in Fig. 8(a). The most remarkable property of Fig. 8(a) is the
domelike shape similar to that observed in cuprates [16]. It
is worth noting that as always in band structured systems,
there are shadow bands. Therefore, the neutron-scattering
intensity does not vanish immediately at discontinuities of the
dispersion. The shadow bands are shown in Fig. 8(b) by dashed
magenta lines. The intensity in shadow bands diminishes very
quickly when moving away from the discontinuity points.
To further illustrate discontinuities, we present the dispersion
for q = (0,qb,0.1π ) in Fig. 8(c) and for q = (0.1π,qb,0) in
Fig. 8(d). The dispersion in Fig. 8(d) is discontinuous at
qb = Q, qb = Q ± qa , and qb = π − Q. In Figs. 8(e) and
8(f), we present the dispersion along a and c for qb = Q − 0
and qb = Q + 0, respectively. For dispersions plotted in
Figs. 8(c)–8(f), we do not show the corresponding shadow
bands.

V. EXCITATION SPECTRA INCLUDING BOTH THE
CRYSTAL-FIELD ANISOTROPY AND THE
DZYALOSHINSKI-MORIYA ANISOTROPY

The effective Dzyaloshinski-Moriya (DM) interaction be-
tween the ferroelectric polarization �P and spins is of the
following form [6,7]:

HDM ∝ �P · [�e12 × (�S1 × �S2)], (41)

where �S1 and �S2 are spins at the nearest sites and �e12 is a unit
vector directed from site 1 to site 2. Here we consider the

case of zero external magnetic field when the polarization �P is
directed along the c axis [1]. The vector �e12 is directed along
the b axis and hence the interaction (41) puts the spin spiral in
the bc plane,

e2 = eb, e1 = ec. (42)

Equation (41) can be rewritten in terms of the unit vector �n
describing the magnetization staggered in the c direction,

HDM = DS2[�n × ∇b�n]a → const + DQS2n2
a, (43)

where D > 0 is the constant of the DM interaction. So,
in these notations, the DM interaction is equivalent to the
easy-plane crystal-field anisotropy with the coefficient in
the effective crystal field proportional to the wave vector of the
spin spiral. Equation (43) represents a backaction of the spin-
spiral-induced ferroelectric polarization on the spin system.
The coefficientD is related to the ferroelectric polarization and
therefore it is strongly temperature dependent. In particular,
D = 0 in the spin-stripe phase at T > TS . However, here we
consider the system deep in the spin-spiral phase, T � TS ,
and for numerical estimates we use

D = 0.20 meV. (44)

This value of D follows from the neutron-scattering data [8].

A. In-plane excitations

The DM anisotropy obviously does not influence the
in-plane spin fluctuations. Therefore, the in-plane excitation
spectra derived in Sec. IV are fully valid in this case. In
Fig. 9, we present magnetic excitation spectra including both
the crystal-field anisotropy and the Dzyaloshinski-Moriya
anisotropy. Figures 9(a) and 9(b) are identical to Figs. 8(b)
and 8(c).

B. Out-of-plane excitations

We remind the reader that even with the crystal-field
anisotropy but without the DM anisotropy, one of the out-
of-plane excitation modes remains gapless; see Eqs. (39) and
(40). The most notable effect of the DM anisotropy is the
opening of a gap in the remaining gapless mode. Including the
anisotropy, Eq. (38) is modified as

−χ⊥ḧ + 2S2[R( p) − R( Q)]h

= S2 {D[1 − 2 cos(2 Q · r)] + DQ} h. (45)

At q = Q, this equation has two gapped solutions,


(+)
Q ≈

√
4S2J1DQ, h+ ∝ cos( Q · r),

(46)


(−)
Q ≈

√
4S2J1(2D + DQ), h− ∝ sin( Q · r),

which are analogous to (39) and (40). In the h± solutions, we
neglect higher harmonics terms which have small amplitudes
∼D/J1.

Similarly to Eq. (38), Eq. (45) contains the effective
scattering “potential” with momentum �q = 2 Q. Hence the
spectrum is discontinuous at points where ω

(out)
q = ω

(out)
q±2 Q . In

Figs. 9(c), 9(d), and 9(f), we plot the dispersion for different
directions. To avoid confusion, we do not show shadow bands.

094417-7



ALEXANDER I. MILSTEIN AND OLEG P. SUSHKOV PHYSICAL REVIEW B 91, 094417 (2015)

−1 −0.5 0 0.5 10

2

4

6

8

en
er

gy
 (m

eV
)

bq /π

(a)

−1 −0.5 0 0.50

2

4

6

8

qa/π cq /π

(b)

−1 −0.5 0 0.5 1q
0

2

4

6

8

en
er

gy
 (m

eV
)

b/π

(c)

Ωq
(out)

q =q =0a c

−1 −0.5 0 0.50

2

4

6

8

qa/π cq /π

(d)q =Q-0b

Ω
(out)
q

−1 −0.5 0 0.50

2

4

6

8

qa/π cq /π

(e)q =Q+0b

Ω(out)
q

FIG. 9. (Color online) Magnon dispersions with inclusion of
both the crystal-field anisotropy (24) and the Dzyaloshinski-Moriya
anisotropy, given by (41) and (43). (a),(b) Branches of the in-
plane dispersion in(q ± Q), which are identical to Figs. 7(b) and
7(c). (c)–(e) The out-of-plane magnon dispersion. (c) q = (0,qb,0).
(d),(e) The dispersion along a and c for qb = Q − 0 and qb = Q + 0,
respectively.

VI. CONCLUSIONS

We have calculated spectra of magnetic excitations in
the spin-spiral state of perovskite manganates TbMnO3 and
DyMnO3. As a starting point, we use the frustrated Heisenberg
Hamiltonian H + δH suggested in Refs. [8,12,13] and deter-
mined by Eqs. (1) and (10). We also account for the easy-axis
crystal-field anisotropy (24) and the Dzyaloshinski-Moriya
anisotropy, given by (41) and (43). In the present work, we
do not consider a relaxation, and hence a line broadening is
not included in the analysis.

To simplify calculations and to get a physical insight
into the structure of magnetic excitations, we employ a

σ -model-like field theory instead of the spin-wave theory.
At small momenta, i.e., in the region of the most important
and complex incommensurate physics, the field theory is fully
equivalent to the spin-wave theory. On the other hand, close to
the boundary of the magnetic Brillouin zone, the field theory
underestimates the magnon frequency by about 20% compared
to the spin-wave theory. Values of parameters which reproduce
the measured dispersion in TbMnO3 [8] are listed in Eqs. (23),
(25), and (44). Exchange integrals in Eq. (23) are consistent
with that in Ref. [8] but with different definitions (factor of 2).

There are in-plane excitations (spin oscillates in the plane
of the spin spiral) and out-of-plane excitations (spin oscillates
perpendicular to the plane of the spin spiral). Dispersions of
the in-plane and the out-of-plane excitations without including
the crystal-field and Dzyaloshinski-Moriya anisotropies are
presented in Figs. 4 and 5. All of the dispersions are Goldstone
ones; the energy is zero at the wave vector equal to the wave
vector of the spin spiral.

Inclusion of the easy-axis crystal-field anisotropy leads to
the following two effects: (i) opening of the gap in one of
the Goldstone modes and (ii) discontinuity of the dispersion
due to the diffraction of magnons from the static spin spiral.
Dispersions of the in-plane and the out-of-plane excitations
including the crystal-field anisotropy but without including
the Dzyaloshinski-Moriya interaction are presented in Figs. 7
and 8. There are always shadow bands, shown by the dashed
magenta lines in Fig. 8(b). Therefore, in a neutron-scattering
experiment, any dispersion discontinuity is observed as a
relatively sharp but still continuous disappearance of intensity
in the shadow region away from the major dispersion.

Further inclusion of the Dzyaloshinski-Moriya interaction
opens a gap in both out-of-plane modes. As expected, the in-
plane sliding mode remains gapless in spite of the anisotropies.
Dispersions of the in-plane and the out-of-plane excitations
with both the crystal-field anisotropy and the Dzyaloshinski-
Moriya interaction are presented in Fig. 9. These curves agree
reasonably well with the experimental data from Ref. [8].
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