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Macroscopic magnetic structures with balanced gain and loss
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We investigate magnetic nanostructures with balanced gain and loss and show that such configurations can
result in a new type of dynamics for magnetization. Using the simplest possible setup consisting of two coupled
ferromagnetic films, one with loss and another one with a balanced amount of gain, we demonstrate the existence of
an exceptional point where both the eigenfrequencies and eigenvectors become degenerate. This point corresponds
to a particular value of the gain and loss parameter α = αc. For α < αc the frequency spectrum is real, indicating
stable dynamics, while for α > αc it is complex, signaling unstable dynamics which is, however, stabilized by
nonlinearity.
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I. INTRODUCTION

Spin dynamics in synthetic magnetic nanostructures has
attracted increasing attention during the last few years [1]
because of the interesting fundamental physics involved and
also because of its important practical applications: magnetic
storage and information processing [2,3], sensing [4], and
creation of tunable high-frequency oscillators [5] are some
of the areas that have benefited from this research activity.
An important step in this endeavor is the realization of new
magnetic nanodevice architectures with additional degrees
of freedom which permit better control of magnetization
dynamics.

Along the same lines, management of classical wave
propagation via synthetic structures has been proven to be
successful, resulting in the creation of new materials with
unexpected properties. Examples of this success include the
realization of metamaterials which exhibit phenomena like
cloaking, negative index of refraction, etc. The operation
frequency for many of these proposals spans a wide range from
optics [6] and microwaves [7] to acoustics [8]. Quite recently, a
new type of synthetic structure which possesses spatiotemporal
reflection symmetry, or parity-time (PT ) symmetry, has
emerged. These structures are implemented using judicious
manipulation of loss and gain mechanisms [9–21]. Their
spectra undergo a transition from real to complex once the
parameter that controls the degree of gain and loss in the system
reaches a critical value [22]. The transition point shows the
characteristic features of an exceptional point (EP), where both
eigenfrequencies and normal modes coalesce. For values of
the gain and loss parameter which are smaller than the critical
value the eigenvectors of the equations of motion are also
eigenvectors of thePT operator, while above the critical value,
they cease to be eigenvectors of the PT operator. The former
domain is termed the exact phase, while the latter is the broken
phase. This terminology is borrowed from the “PT -symmetric
quantum mechanics” community (see the review in [23]). One
should keep in mind, however, that the systems studied in
[9–21] are purely classical, with loss and gain being introduced
on a phenomenological level, and as such, they are quite
different from the PT -symmetric quantum systems envisaged
by Bender and collaborators [23].

The resulting wave structures show several intriguing fea-
tures such as power oscillations [9–13], nonreciprocity of wave
propagation [14–16], unidirectional invisibility [11,17–19],
and coherent perfect absorbers and lasers [20]. Experimental
realizations have been reported in the framework of optics
[10,11,16,17,21] and electronic circuitry [12,15,18], while the
applicability of these ideas has been theoretically demon-
strated in Bose-Einstein condensates [24] and in acoustics [25].

In this paper we propose a class of synthetic mag-
netic nanostructures which utilize natural dissipation (loss)
mechanisms together with judiciously balanced amplification
(gain) processes in order to control magnetization dynamics.
Amplification in such structures can be achieved with the
help of certain external factors such as parametric driving
or spin-transfer torque (see Sec. V), while loss comes from
coupling with the phonons or other degrees of freedom.
As a prototype system we consider two ferromagnetic films
(see Fig. 1), one with loss and the other with an equal
amount of gain, coupled by an exchange or by a dipole-dipole
interaction. The magnetization dynamics is described in terms
of two vector variables, the macroscopic magnetic moments
of each film, whose evolution is given by the nonlinear
Landau-Lifshitz-Gilbert equations. We will demonstrate that
despite the fact that the system is non-Hermitian, if the gain
and loss parameter is below a critical value, the macroscopic
magnetic moments precess about the direction of an effective
magnetic field inside the sample without being amplified or
attenuated. Specifically, below a critical value of the gain
and loss parameter, the eigenfrequencies of the linearized
Landau-Lifshitz-Gilbert equations are real, while above this
critical value, they become complex, leading to dynamical
instabilities that are limited only by nonlinear effects. The
transition point is characterized by an EP degeneracy. Our
proposal reveals a new type of steady-state dynamics which
could be useful for manipulating magnetization switching and
could potentially lead to new device design. Moreover, the
realization of EP degeneracies may be utilized for enhanced
sensitivity in sensing via frequency splitting [26].

The structure of this paper is as follows. In Sec. II we
present the mathematical model that describes our system.
It consists of two coupled nonlinear Landau-Lifshitz-Gilbert
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FIG. 1. (Color online) Two coupled ferromagnetic films in the
presence of an external magnetic field which is along the z axis. We
distinguish between two geometries: (a) out-of-plane geometry (the
z axis is perpendicular to the films) and (b) in-plane geometry (the z

axis is parallel to the films).

(LLG) equations. In Sec. III we investigate the out-of-plane
geometry. In Sec. III A we analyze the eigenfrequencies and
the eigenmodes of the linearized LLG equations for different
values of the gain and loss parameter. The dynamics generated
by the PT -symmetric LLG equations and its comparison to
the results from the linearized LLG equations are discussed in
Sec. III B. In Sec. IV we analyze an in-plane (magnetization)
geometry. Finally, in Sec. V we discuss two different physical
mechanisms which allow us to incorporate and manage gain
in a magnetic nanostructure. Our conclusions are given in
Sec. VI.

II. MATHEMATICAL MODELING

We consider two ferromagnetic films n = 1,2 separated
by a nonmagnetic layer. The two geometries that we will
consider here are shown in Fig. 1. In Fig. 1(a), we assume a
uniform external magnetic field �Hext perpendicular to the plane
of the films (out-of-plane geometry), while in Fig. 1(b) the
external field is parallel to the films (in-plane geometry). The
magnetization within each film is uniform and is represented
by a magnetic vector �Mn=1,2. When the magnetic configuration
is away from equilibrium the magnetization precesses around
the instantaneous local effective field �Hn. The latter is
generally a complicated function of �Mn and the external
magnetic field �Hext. For the cases shown in Fig. 1 we have

�Hn = �Hext − 4πN̂ �Mn, (1)

where the demagnetizing tensor N̂ takes the simple form
N̂i,j = δi,3δj,3 for the out-of-plane geometry and N̂i,j =
δi,1δj,1 for the in-plane geometry (i,j = 1,2,3 indicates the
x̂,ŷ,ẑ directions, respectively).

The time evolution of the magnetization dynamics for
this coupled system can be described by a pair of coupled
modified LLG equations:

∂ �M1

∂t
= − γ �M1 × �H1 − γK �M1 × �M2 + α

| �M1|
�M1 × ∂ �M1

∂t
,

∂ �M2

∂t
= − γ �M2 × �H2 − γK �M2 × �M1 − α

| �M2|
�M2 × ∂ �M2

∂t
,

(2)

where γ is the gyromagnetic ratio. The first term on the
right-hand sides of Eqs. (2) describes the interaction of the
magnetization �Mn of each layer with the corresponding local

field �Hn. The second term represents the coupling between the
two ferromagnetic layers. We assume ferromagnetic coupling,
i.e., K > 0. The last term of the first equation describes
dissipation processes and can be introduced in the original
LLG equations by assuming that an effective local friction is
pushing the magnetic moment �M1 towards the direction of
the effective magnetic field acting on that moment. It was
introduced by Gilbert in order to describe dissipation and
can be shown to be equivalent to the term that was proposed
originally by Landau and Lifshitz for the same purpose [1]. The
parameter α is the Gilbert damping term. The last term of the
second equation is similar, but the sign is reversed, reflecting
the possibility of amplification mechanisms. We discuss
experimentally realizable ways to achieve “gain” in Sec. V.

For α = 0, Eqs. (2) are invariant with respect to the
interchange �M1 ↔ �M2. Notice that this interchange implies
also an interchange of �H1 ↔ �H2 via Eq. (1). We refer to
this symmetry as the “parity” (P) symmetry. When α �= 0,
the parity symmetry of our system is destroyed. However,
Eqs. (2) are still invariant under a combined parity P and
time reversal T operation. The latter corresponds to a time
inversion t → −t together with a simultaneous change of the
sign of all pseudovectors, i.e., �Mn → − �Mn and �Hn → − �Hn.
This definition of the time-reversal operation is necessary
when magnetic fields, which break the time reversibility in
a Hermitian manner, are present. Finally, we note that all
terms in Eqs. (2) conserve the length of the magnetization
vectors �Mn. This can be easily seen by taking the inner product
of each of the above equations with the respective �Mn. This

yields �Mn
∂ �Mn

∂t
= 1

2
∂ �M2

n

∂t
= 0, indicating that | �Mn| are constants

of motion.
Below, we first analyze the parametric evolution of the

eigenfrequencies and normal modes associated with small
oscillations around the equilibrium configuration as the gain
and loss parameter α increases. To this end, we separate
the magnetization of each film into its equilibrium value,
which is assumed to be the same for both films, �M (0)

n = �M (0),
and its oscillating part �mn, i.e., �Mn = �M (0) + �mn, where
| �mn| � | �M (0)|. Furthermore, the external magnetic field can be
decomposed into its constant value �H (0)

ext and a time-dependent
part �hext, i.e., �Hext = �H (0)

ext + �hext. In Sec. III we focus on the
out-of-plane geometry [see Fig. 1(a)], while in Sec. IV we
briefly discuss the in-plane geometry [see Fig. 1(b)].

III. OUT-OF-PLANE GEOMETRY

A. Linearized LLG equations and parametric
evolution of their normal modes

For the out-of-plane geometry we recall relation (1), which
allows us to connect the external field �Hext to the local
internal field �Hn. Linearizing Eqs. (2) with respect to �mn and,
furthermore, setting �hext = 0, we obtain the following linear
set of equations:

∂ �m1

∂t
= (ωH + ωK )ẑ × �m1 − ωKẑ × �m2 + αẑ × ∂ �m1

∂t
,

∂ �m2

∂t
= (ωH + ωK )ẑ × �m2 − ωKẑ × �m1 − αẑ × ∂ �m2

∂t
, (3)
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where ωK = γK| �M0| and ωH = γ | �H0|. Here | �H0| = | �H (0)
ext | −

4π | �M0| is the constant internal magnetic field, which is
assumed to be the same for both films.

Assuming a harmonic time dependence for the magnetiza-
tion �mn(t) = �mn exp(−iωt), we have

− iω �m1 = (ωH + ωK − iαω)ẑ × �m1 − ωKẑ × �m2,

−iω �m2 = (ωH + ωK + iαω)ẑ × �m2 − ωKẑ × �m1. (4)

Note that, although formally �m1 and �m2 are three-dimensional
vectors, only the transverse (x,y) components appear in a
nontrivial manner. The longitudinal components m1z and m2z

are zero in the linear approximation, as follows from Eqs. (4).
This is a straightforward consequence of the already mentioned
constraint of the strictly conserved length of vectors �M1 and
�M2. Thus, the magnetic vectors have only two independent

components, and if the transverse components are known,
the longitudinal component can be found from the constraint.
When �m1 is treated in the linear approximation, then m1z =
−m2

1/2| �M (0)| (and similarly for m2z). In Sec. III B, where
the exact nonlinear dynamics is treated, we use spherical
coordinates, which makes it manifestly clear that there are
only two independent degrees of freedom (two angles) for
each magnetic moment.

The analysis of Eqs. (4) can be simplified by using the
“center-of-mass” coordinates of the system. We define �� ≡
�m1 − �m2 and �μ ≡ �m1 + �m2. Then Eqs. (4) take the following
form:

[(1 + α2)ω2 − (ωH + 2ωK )2] �� + 2iαω(ωH + ωK ) �μ = 0,

2iαω(ωH + ωK ) �� + [(1 + α2)ω2 − ω2
H ] �μ = 0,

(5)

which allows us to decouple the x and y components of the
center-of-mass coordinates ��, �μ. Thus, the original set of four
coupled equations reduces to two uncoupled sets for the x and
y components, respectively.

The eigenvalues and the normal modes can be found
by solving the 2 × 2 secular equation for one of these
components. The eigenfrequencies are given by

ω1,2 =
ωH + ωK ±

√
ω2

K − α2ωH (ωH + 2ωK )

1 + α2
. (6)

The limiting case of α = 0 results in two eigenfrequencies:
(a) ω1 = ωH , associated with the “soft” mode (frequency
approaches zero when | �H0| → 0), with �m1 = �m2, and (b)
ω2 = ωH + 2ωK , associated with the “hard” mode, with
�m1 = − �m2. As the gain and loss parameter α increases, the
two eigenfrequencies approach one another (see Fig. 2), and
at some critical value α = αcr they coalesce and bifurcate into
the complex plane. Using Eq. (6) we calculate the critical
frequency ωcr and the critical value of the gain and loss
parameter to be

αcr = ωK√
ωH (ωH + 2ωK )

, ωcr = ωH (ωH + 2ωK )

ωH + ωK

. (7)

Near the phase-transition point αcr, the eigenfrequencies
display the characteristic behavior of an exceptional point

FIG. 2. (Color online) (top) Parametric evolution of the eigen-
frequencies of the PT -symmetric ferromagnetic dimer shown in
Fig. 1(a). The parameters used are such that ωK = 0.4ωH . (bottom)
The same as in (a), but now for the magnitude of the ratio between
the y components of the normal modes and their associated phase
difference. The same behavior also holds for the x components.

|ω| ∝ √
α − αcr. This behavior can be exploited in sensing

technologies since it enhances the sensitivity of frequency
splitting detection (for an optics proposal see Ref. [26]).

Next, we evaluate the normal modes of the ferromagnetic
dimer. Using Eqs. (5) and (6) we first evaluate ��, �μ and from
there extract the original variables �mn. This yields

⎛
⎜⎜⎜⎜⎝

m
(l)
1x

m
(l)
1y

m
(l)
2x

m
(l)
2y

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α(ωH +ωK )±i
√

ω2
K−α2ωH (ωH +2ωK )

(1+iα)ωK

i

[
α(ωH +ωK )±i

√
ω2

K−α2ωH (ωH +2ωK )
]

(1+iα)ωK

−i

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

where the subindexes x,y refer to the x,y components of the
magnetization vectors and the superindex l = 1,2 refers to
the normal mode corresponding to the plus and minus signs
on the right-hand side of Eq. (8), respectively. PT -symmetry
considerations require that in the exact phase, in contrast to
the broken one, these vectors are also eigenvectors of the
PT operator. In other words, the ratio of the magnitudes

of the relevant components R(l)
x ≡ |m

(l)
1x

m
(l)
2x

|,R(l)
y ≡ |m

(l)
1y

m
(l)
2y

| in the

exact phase is unity, indicating that the magnitude of the
magnetization eigenvectors is the same in both the loss side
and the gain side of the dimer. As α becomes larger than
αcr, the magnitudes of the magnetization in the loss and the
gain sides become unequal, indicating that the magnetization
eigenmodes reside on either the gain side or the lossy side
of the dimer. This behavior can be seen nicely in Fig. 2
(bottom), where we plot R(l=1,2)

y as well as the relative phase
difference �ψ (l=1,2)

y between the y components of the l = 1,2
modes. We see that for α = 0 the phase difference assumes the
values �ψ (l=1)

y = 0 and �ψ (l=2)
y = π , indicating symmetric

( �m1 = �m2, corresponding to the soft mode) and antisymmetric
( �m1 = − �m2, corresponding to the hard mode) combinations.
At α = αcr we have a degeneracy of the eigenvectors.
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FIG. 3. (Color online) Time dependence of the polar angle 
1(t)
associated with the magnetization vector of lossy film. The initial
conditions in all cases are 
1(t = 0) = 0 = �1(t = 0) and 
2(t =
0) = 0.05,�2(t = 0) = π/2 while ωK = 0.4ωH . The results of the
exact dynamics equation (2) are indicated with red circles, while
the dynamics generated by the linearized equations (3) are indicated
with a black line. (a) Exact phase for α = 0.85αcr. (b) Dynamics at
the exceptional point, i.e., α = αcr. (c) Broken phase with α = 1.1αcr.
Time is measured in units of inverse ωH .

B. Nonlinear time evolution

The PT -symmetric nature of the dimer is also encoded
in the time evolution of the magnetization vectors and the
realization of new types of steady states. The precession
dynamics is better represented in spherical coordinates, i.e.,
switching to the angular variables 
1,2 and �1,2,

Mnx = M0 sin(
n) cos(�n),

Mny = M0 sin(
n) sin(�n),

Mnz = M0 cos(
n). (9)

These variables are particularly convenient for studying the
dynamics because they unveil the fact that there are only
two (and not three) independent dynamical variables for
each magnetic moment. Specifically, we concentrate on the
temporal evolution of the polar angles 
n(t) with respect to the
direction of the internal magnetic fields �Hn (z direction). These
polar angles are related to the z components of the magnetic
moments. The dynamics of the transverse components is less
interesting (just a rapid precession), and it is encoded in the
azimuthal angle �n.

In the case of a single film, where only dissipative
mechanisms are taken into account, 
n decreases due to energy
losses, so that the magnetization vectors align with the ẑ

direction. Conversely, in the presence of only amplification
mechanisms, the magnetization of a single film is driven away
from the ẑ direction.

In the case of PT -symmetric configurations, where a
dissipative and an amplified film are coupled together, the
resulting dynamics depends on the value of the gain and loss
parameter α. Below we present exact numerical solutions of
Eqs. (2) for various cases.

When α < αcr [exact phase, see Figs. 3(a) and 4(a)], despite
the fact that the dimer is non-Hermitian, the polar angles

n oscillate around the initial misalignment from the ẑ axis
without being amplified or attenuated, indicating the existence

FIG. 4. (Color online) Time dependence of the polar angle 
2(t)
associated with the magnetization vector of “gain” film. The initial
conditions and parameters are the same as the ones used in Fig. 3.
Time is measured in units of inverse ωH .

of a new type of steady state. In this domain the linearized
equations (3) describe well the exact dynamics (2).

In the broken phase α > αcr [see Figs. 3(c) and 4(c)], the
evolution generated by the linearized equations (3) indicates
an exponential growth of 
n [black lines in Figs. 3(c) and 4(c)]
which is associated with the fact that the eigenfrequencies are
acquiring an imaginary part. In other words, in this domain,
the linear solution is unstable, and the linear approximation
is inadequate to describe the dynamics. This exponential
growth is eventually suppressed by nonlinear effects which
are inherent in the original LLG equations (2). A (numerically
exact) solution of the nonlinear problem for 
1 as a function
of time is shown in Fig. 3(c) by red circles [a similar behavior
is observed for 
2; see Fig. 4(c)]. This solution corresponds
to the initial conditions 
1(t = 0) = 0 = �1(t = 0),
2(t =
0) = 0.05, and �2(t = 0) = π/2, and it is periodic in time. We
have checked that the period slightly depends on the choice of
the initial conditions. In all cases, however, we find a stable
periodic solution with no sign of any “runaway” effects.

Similar behavior is observed at the transition point cor-
responding to α = αcr, with the alteration that the linearized
equations (3) lead to a linear growth of the polar angles 
n

[see Figs. 3(b) and 4(b)]. This behavior is a consequence of
the EP degeneracy, which results in defective eigenmodes.
The particular solution in Figs. 3(b) and 4(b) corresponds to
the initial conditions 
1(t = 0) = 0 = �1(t = 0) and 
2(t =
0) = 0.05,�2(t = 0) = π/2. We conclude therefore that the
linear approximation, which is applicable only in the case for
which 
n � 1, fails to describe the actual dynamics when
α = αcr.

Finally, we point out that we have checked numerically that
the behavior of the angular variables 
1,2 as discussed above
and shown in Figs. 3 and 4 is typical and it is qualitatively the
same for other choices of initial conditions.

IV. IN-PLANE GEOMETRY

For completeness we also analyze the in-plane geometry
shown in Fig. 1(b). Following the same program as above,
we can linearize the LLG equations (under the condition
�hext = 0) and study the dynamics of magnetization vectors
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FIG. 5. (Color online) In an in-plane geometry [Fig. 1(b)] for
ωK = 0.4ωH and ωM = 0.4ωH , (a) the parametric evolution of
eigenfrequencies vs the gain-loss parameter α and the temporal
evolution of 
1(t) in (b) the exact phase with α = 0.85αcr, (c) EP
with α = αcr, and (d) the broken phase with α = 1.1αcr. The initial
conditions and lines and symbols are the same as in Fig. 3. Time is
measured in units of inverse ωH .

�mn. For this geometry the equations for �mn differ from Eq. (3)
by an additional term ωMmnxŷ on the right-hand side where
ωM = 4πγM0:

d �m1

dt
= (ωH + ωK )ẑ × �m1 − ωKẑ × �m2

+ωMm1x ŷ + αẑ × d �m1

dt
,

d �m2

dt
= (ωH + ωK )ẑ × �m2 − ωKẑ × �m1

+ωMm2x ŷ − αẑ × d �m2

dt
. (10)

These equations enable one to calculate the normal modes
of the system as well as the linear dynamics. We have also
obtained a solution of the full nonlinear problem for the in-
plane geometry. Some representative results are reported in
Fig. 5, showing a behavior qualitatively similar to that for the
out-of-plane configuration.

V. REALIZATION OF GAIN IN
FERROMAGNETIC LAYERS

In this section we would like to point out two possible ways
to achieve amplification (gain) of the magnetic oscillations in
ferromagnets.

A. Parametric driving

Let us first recall the phenomenon of the parametric
resonance of a harmonic oscillator [27]. Consider an oscillator
whose eigenfrequency is modulated in time so that the equation
of motion is

ẍ(t) + ω2
0 [1 + η cos(2ω0t)] x(t) = 0 (η � 1). (11)

The approximate solution of this equation is

x(t) = a(t) sin(ω0t) + b(t) cos(ω0t), (12)

where the slowly varying amplitudes a(t),b(t) grow exponen-
tially with time, with an increment (ηω0/4) = λ � ω0. Thus,

FIG. 6. (Color online) The temporal behavior of the magnetiza-
tion m2

x + m2
y of a dissipative (black line) and an amplified (red)

ferromagnet where gain is introduced via parametric driving. The
driving parameters in the last case are such that the amplification
increment has equal magnitude but opposite sign with respect to
the lossy ferromagnet. The dashed lines are drawn in order to
guide the eye and indicate that the ratios in these two cases are
the same. The time is measured in units of inverse ωH .

the parametrically driven oscillator exhibits an instability
(gain). The equilibrium solution x(t) = 0 of Eq. (11) is
unstable; that is, an infinitesimal deviation from equilibrium
results in exponential growth. This growth, on top of rapid
oscillations with frequency ω0, can be modeled by the equation

ẍ(t) − 2λẋ(t) + ω2
0x(t) = 0. (13)

This exponential growth exp(λt) is eventually limited by
nonlinear effects.

A similar phenomenon occurs for a magnetic moment
driven by an appropriate external magnetic field. Consider
the in-plane geometry with the external field

�Hext = [
H

(0)
ext + hext(t)

]
ẑ (14)

in the ẑ direction (in the plane of the film), where the weak,
time-dependent component can be written as H

(0)
ext ηf (t). The

geometry when the dc and ac external fields are parallel to
one another is known as longitudinal (or parallel) pumping.
Such pumping can lead to the excitation of spin waves, with
a wavelength smaller than the size of the sample [28]. We,
however, are interested only in the uniform magnetization of
the entire sample.

Since �hext is in the same direction as H
(0)
ext (which is also

in the direction of the equilibrium magnetization �M0), it
cannot cause the ordinary precession of the magnetic moment
about the ẑ direction. Rather, it can cause an instability via a
mechanism analogous to the parametric driving of a harmonic
oscillator (see Fig. 6). Indeed, neglecting for the moment the
losses, the linearized Landau-Lifshitz equations read

ṁx = −ωH [1 + ηf (t)] my,

ṁy = ωH [1 + ηf (t)] mx + ωMmx, (15)

where ωH = γH0, ωM = 4πγM0. (Recall that in this geome-
try the internal field H0 = H

(0)
ext ). We do not pursue a detailed

analysis of Eq. (15) and note only that for the case ωM 
 ωH

the second equation in (15) reduces to ṁy = ωMmx , which,
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FIG. 7. A beam of spin-polarized electrons impinges on a
ferromagnetic layer (FM) with magnetic moment �M .

after taking a time derivative and substituting ṁx from the
first equation in (15), yields m̈y = −ωH ωM [1 + ηf (t)]my . For
f (t) = cos(2ω0t), with ω0 = √

ωHωM , this coincides with
Eq. (11) for the parametrically driven oscillator. Thus, a
magnetic moment, parametrically driven with an ac magnetic
field, parallel to the constant field Eq. (14), exhibits an
instability, i.e., an exponential growth of the precession angle

 about the ẑ direction, limited only by nonlinearity. Such an
instability is modeled by reversing the sign of the attenuation
term in the Landau-Lifshitz (Gilbert) equation.

Finally, the analysis can be extended to include a decay
term into the Landau-Lifshitz equations in a way similar to the
inclusion of weak friction in Eq. (11) for the oscillator [27]
(see Fig. 6).

B. Spin-transfer torque

A different mechanism for achieving amplification of the
magnetic moment precession is based on the spin-transfer
phenomenon (see Ref. [29] for a pedagogical review). When
spin-polarized electrons are scattered on a ferromagnetic
layer, they generally transfer some angular momentum to the
layer, thus inducing a torque �N on the magnetic moment
�M (see Fig. 7). (Spin polarization is usually achieved by

passing current through another ferromagnetic layer, a “spin
polarizer,” not shown in the figure.) Two conditions should be
satisfied for the spin transfer to take place: First, the scattering
amplitudes must be spin dependent, i.e., must be different
for spin-up (parallel to �M) and spin-down electrons (such
a difference is provided by the exchange splitting between
the minority and majority spin bands in the ferromagnet).
Second, the polarization direction of the incident spins �S
should not be strictly parallel to the direction of �M . The
angular momentum, transmitted to the ferromagnetic layer
by the stream of polarized electrons, affects the dynamics
of the magnetic moment �M . The effect is described by
an amplification term in the Landau-Lifshitz equation. This
term has the same form as the damping term but with an
opposite sign (the resulting equation is referred to as the
Landau-Lifshitz-Gilbert-Slonczewski equation).

It is interesting to note that spin transfer can occur even
in the case of total reflection, provided that the reflection

FIG. 8. (Color online) Spin-polarized electrons (up-pointing ar-
row) impinge on the ferromagnetic layer and are reflected back
(down-pointing arrow). Spin angular momentum (but no electric
current) is flowing into the layer, creating gain. The red layer indicates
the gain ferromagnet, while the green layer indicates the lossy
ferromagnet.

amplitudes for up and down spins, rup = exp(iφup) and
rdown = exp(iφdown), have different phases [see Eq. (14) in
Ref. [29]]. Although the “transmitted” wave in this case is
purely evanescent, so that no charge current can flow into the
layer, the angular momentum transmitted to the layer is not
zero [29,30]. This might provide the most practical way for
producing gain in a PT -symmetric magnetic structure (see
Fig. 8). Again, as in Fig. 7, we do not show explicitly the setup
which produces the spin-polarized current that impinges on
the lower film (gain) of our PT -symmetric device. One can
find the full setup in Ref. [30].

VI. CONCLUSIONS

In conclusion, we have introduced the notion of PT
symmetry in magnetic nanostructures. Using two coupled
ferromagnetic layers, one with loss and another with an equal
amount of gain, we demonstrated the emergence of a new type
of steady-state dynamics in which the polar angle, although
not a constant of motion, is bounded and neither attenuates (as
in the case of losses) nor amplifies (as in the case of gain).
This non-Hermitian steady state can be reached for values
of the gain and loss parameter α that are below a critical
value αcr. At α = αcr the system experiences an exceptional-
point degeneracy where both eigenvalues and eigenvectors of
the linearized LLG equations are simultaneously degenerate.
It will be interesting to extend this study to the case of
spin waves (magnons) and to investigate the possibility of
observing phenomena such as magnonic coherent perfect
absorbers/lasing, invisibility, etc. [19,20].
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