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Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets
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Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered
magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-
conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a
phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent
spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m × (u · ∇)m] +
ξ∇2[(u · ∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a
parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as
the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse
domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin
transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of
abrupt two-dimensional textures such as vortices, skyrmions, and merons.
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I. INTRODUCTION

The control of the magnetic state of nanoscale heterostruc-
tures [1] such as magnetic domain walls [2] and vortex cores
[3] by a spin-polarized charge current is attracting increasing
interest as a promising mechanism for innovative memory
devices [4]. Identifying the nature of the torque exerted by the
injected current on the domain wall itself has constituted a
stimulating challenge resulting in the observation of unique
dynamical behaviors [2–6] and raising seminal questions
concerning the transport of itinerant spins in inhomogeneous
magnetic textures [7–13]. The most widely accepted form
of the spin transfer torque exerted by a charge current on a
smoothly varying magnetic texture m(r,t) is [7,8]

T = bJ (u · ∇)m − βbJ m × (u · ∇)m, (1)

where bJ is the adiabatic spin torque, β describes the so-called
nonadiabaticity of the spin torque and u is the direction
of current injection. The nonadiabaticity β is generated by
different mechanisms such as spin relaxation [7,10], spin-orbit
coupling [14], and magnetic texture-induced spin mistracking
[9–11]. In addition to nonadiabaticity, it has been found that the
Gilbert damping α can also be affected (enhanced) by the spin
texture [13]. From the viewpoint of domain wall dynamics,
the longitudinal (in the direction of current injection) velocity
for transverse walls and the transverse (perpendicular to the
direction of current injection) velocity for vortex walls is
controlled by the ratio of β to α [8]. Therefore, experimental
efforts have been expended in accurately determining β and α

for a wide range of magnetic materials and domain wall widths
[2–6]. Experiments have shown that this ratio depends on the
domain wall structure (Bloch, Néel, or vortex) and that vortex
domain walls exhibit a much larger nonadiabaticity (β ≈ 8α to
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10α) [6,15–17] compared to transverse domain walls (β ≈ α)
as summarized in Table I. The authors attribute these large
nonadiabaticities to the narrow character of domain walls in
vortex structures (≈10 nm). As a matter of fact, Tatara et al.
[9], Xiao et al. [11], and Wessely et al. [18] demonstrated that
in abrupt domain walls the itinerant spin cannot adiabatically
follow the local spin texture, resulting in an enhancement of
the nonadiabaticity. Burrowes et al. [19] on the other hand,
tested a very sharp transverse wall of about 1 nm using FePt
nanowires and found that such a narrow domain wall does not
cause a significant increase in the nonadiabaticity.

Theoretical investigations [10,23] have also shown a
damped oscillatory behavior of the nonadiabatic torque when
increasing the domain wall width, which may account for
the nonadiabaticity enhancement for abrupt domain walls.
However, these models are applied to transverse walls only
and do not readily explain the observed differences between
transverse and vortex walls.

The experimental observations [6,15,16,19] indicate that
the nature of the nonadiabatic spin torque exerted on abrupt
magnetization patterns could be related to their dimensionality.
Indeed, whereas a magnetic transverse wall varies along
one direction only (∂xm �= 0, ∂ym = 0), the magnetization
in a vortex structure varies along two directions (∂xm �=
0, ∂ym �= 0). Therefore, one approach to explain the different
nonadiabaticities of abrupt transverse domain walls and vortex
structures is to consider a mechanism that couples both x and
y directions. It has been shown that a transverse spin current
caused by anomalous Hall effect increases the transverse
velocity of vortex cores while leaving the transverse domain
walls essentially unchanged [24]. However, its contribution is
of the order of the damping constant α and thus is insufficient to
explain the results observed in Refs. [6,15,16]. An alternative
mechanism is the diffusion of spin accumulation along the
domain wall. This effect, neglected in the original theory of
Zhang and Li [7], has recently been proposed to be responsible
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TABLE I. Summary of measurements of nonadiabaticity for
different materials. The table entries show values of β(β/α) for vortex
walls (VW), in-plane transverse walls (TW), and out-of-plane Bloch
walls (BW).

Material β(β/α)

Py (VW) 0.018 (2) [3], 0.04 (8) [6]
0.073 (9) [15], 0.15 (10) [16], 0.15 (9.2) [17]

Py (TW) 0.01 (1.2) [15], 0.02 (1) [20], 0.13 (10) [21]
FePt (BW) 0.06 (1) [19]
CoNi (BW) 0.022 (1) [19]
Pt/Co (BW) 0.35 (2) [22]

for an enhancement of the nonadiabaticity of sharp domain
walls [25].

In this article, we demonstrate both numerically and
analytically that scattering against spin-independent disorder
dramatically increases the nonadiabatic spin torque and can
significantly affect the motion of abrupt domain walls. The
physics of nonadiabaticity in magnetic domain walls involves
two types of mechanisms: (i) the coherent precession of the
spin around the local magnetization and (ii) spin dephasing
and relaxation induced by disorder. In the absence of disorder,
the spin precession around a smoothly varying magnetization
results in a vanishingly small nonadiabaticity [11]. When a
small amount of spin-independent disorder is introduced, the
nonadiabaticity increases due to the enhancement of the spin
dephasing, which we interpret in terms of an effective Elliott-
Yafet spin-flip scattering enabled by the abrupt magnetic tex-
ture. As a consequence, the resulting nonadiabaticity increases
when the domain wall width decreases and when increasing
the strength and the amount of disorder. These features are
demonstrated in Sec. II A using a tight-binding model (weak
disorder regime) and Sec. II B using a drift-diffusion model
(strong disorder regime). In Sec. III, we show that the resulting
nonadiabatic torque significantly affects the current-driven
motion of Bloch walls and vortex cores and may result in
an effective increase of the transverse velocity of vortex walls
by an order of magnitude. A discussion of the relevance of
our study to previous experimental observations is given in
Sec. IV, and Sec. V concludes this article.

II. THEORETICAL MODEL

A. Tight-binding model for disordered ferromagnets

In this section, we present a framework to calculate the local
spin transfer torque for both ballistic and diffusive transport
in magnetic textures. In particular, we consider a single-band
tight-binding model on a two-dimensional square lattice as
implemented in KWANT software [26,27]. Our system can be
described by the Hamiltonian

H =
∑

i

εi ĉ
+
i ĉi − t

∑
〈ij〉

ĉ+
i ĉj − �ex

∑
i

ĉ+
i mi · σ̂ ĉi , (2)

where εi is the onsite energy, t is the hopping parameter, the
sum 〈ij 〉 is over nearest neighbors, mi is a unit vector in
the direction of the local moment at site i, �ex is the strength
of the exchange energy that couples the local moment to the

FIG. 1. (Color online) Sketch of the one-dimensional Bloch wall
implemented on a two-dimensional square lattice as used in the tight-
binding model described in the main text.

itinerant electrons with spin represented by the Pauli matrices
σ̂ . ĉ+

i = (c↑
i ,c

↓
i )+ is the spinor form of the usual fermionic

creation operator. Without loss of generality, we consider a
charge current flowing along the x axis and choose the z axis as
the quantization axis. Our calculations are performed on a one-
dimensional Bloch wall with spin texture as illustrated in Fig. 1
in spherical coordinates given by θ (x) = 2 tan−1(exp[x/�])
and φ = π/2, where � is the domain wall width.

To calculate the transport properties of interest in our
system, we first calculate the nonequilibrium spin density δsi

from the local spin density si for both electrons coming from
the left (L) and right (R), as δsi = sLi − sRi [28]. The local spin
torque Ti is defined as the torque exerted by the nonequilibrium
spin density on the local moment at site i and reads

Ti = �exδsi × mi . (3)

To extract the different torque components, the torque is
rewritten in the form Ti = T i

ad∇xmi + T i
nadmi × ∇xmi where

T i
ad(nad) is the local adiabatic (nonadiabatic) torque component,

from which the local nonadiabaticity parameter (defined as
the ratio of the local nonadiabatic and adiabatic torques, i.e.,
βi = T i

nad/T i
ad) is extracted. In all our calculations, we use the

parameters: system size 401 × 31a2, where a is the lattice
constant, t = 1.0 eV, �ex = 0.8 eV, and transport energy
EF = 7.0 eV.

Figure 2 shows ballistic calculations of the spatial distri-
bution of the adiabatic and nonadiabatic spin transfer torques
for different current spin polarizations of the ferromagnet for
a domain wall width of 8a. In our calculations, we tune the
current spin polarization P = (G↑ − G↓)/(G↑ + G↓), G↑(↓)

being the conductance for spin-up (spin-down) channel at the
Fermi level, by shifting the onsite energy of the system. The
nonadiabatic torque, which strongly depends on the current
spin polarization, has been normalized by the nonadiabaticity
at the center of the wall (βmax) and shows an oscillating be-
havior, which we attribute to the precession of the propagating
states around the local moments in the form ei(k↑−k↓)·x , where
k↑(↓) is the wave vector in the transport direction [34]. As
shown in Fig. 3(a), the average nonadiabaticity defined as the
average over space of the local nonadiabaticity, β = ∑

i βi/L

with L being the length of the system, is related to the domain
wall width by β = β0 exp (−�/λL), where λL depends on
the current spin polarization and controls the length scale for
which the adiabatic approximation holds [11].

We model spin-conserving impurity scattering through the
addition of a random potential Vi to the constant onsite energy
ε0 as εi = ε0 + Vi such that Vi ∈ [−0.5Vimp,0.5Vimp]. To
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FIG. 2. (Color online) Spatial distribution of the adiabatic and
nonadiabatic torque for different current spin polarization. (a) P =
−1.0, (b) P = −0.56, and (c) P = −0.36. The adiabatic torque
remains essentially constant, while the nonadiabatic torque shows
strong depends on the current spin polarization.

calculate the transport properties of our system, we calculate
the statistical average over a thousand different disorder con-
figurations. For the range of impurities considered, the mean-
free path is much larger than the domain wall width, which
corresponds to realistic experimental situations. Figures 3(a)
and 3(b) show that in the presence of spin-conserving impurity
scattering, the nonadiabaticity is significantly increased as
compared to the ballistic case and follows the empirical law
β̃ = β̃0 exp (−�/λ̃L[1 − �/λ∗

L]), where λ∗
L and λ̃L depend on

both the impurity strength and current spin polarization.
This result shows that (i) spin mistracking is the dominant

mechanism in disorder-free systems and is only significant
in weak ferromagnets and abrupt spin textures, which is
consistent with Xiao et al. [11]. (ii) In the presence of
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FIG. 3. (Color online) (a) Nonadiabaticity parameter as a func-
tion of the domain wall width in the absence (red) and presence of
spin-conserving impurity scattering (black) of strength Vimp = 0.1eV;
(b) Non-adiabaticity parameter as a function of spin-conserving
impurity scattering strength for a domain wall width of 8a. In these
calculations, we set the polarization to P = −0.56. In the absence
of disorder, the nonadiabaticity is governed by spin mistracking
while it is dominated by dephasing when introducing disorder in
the structure. The fitted parameters are β̃0 = 2.92, β0 = 8.9 × 10−3,
β∗

0 = 4.27 × 10−6, β1 = 2.87 × 10−4, β2 = 5.24 × 10−2, λL = 0.97,
λ̃L = 0.64, and λ∗

L = 25.

spin-conserving impurity scattering, the nonadiabaticity is
enhanced by two to three orders of magnitude even in the
absence of explicit spin-flip scattering. Such an enhancement
can be attributed to the onset of spin relaxation due to the
combined effect of momentum scattering and magnetic
textures. Indeed, a magnetic texture induces a mixing of the
spin states in the rotating frame of the magnetization. This
spin mixing is, for instance, the physical ground of ballistic
domain wall resistance [29]. In other words, a magnetic
texture mixes the spin projections as spin-orbit coupling
does. The introduction of spin-conserving disorder relaxes
the linear momentum, and results in an Elliott-Yafet-type
spin relaxation [30]. Therefore, disorder-induced momentum
relaxation coupled with domain-wall-induced spin mixing
results in the onset of spin relaxation. Since this spin relaxation
has been recently shown to enhance the domain wall resistance
[31], it is reasonable that it also induces an enhancement of
the nonadiabaticity [see Ref. [9], Eq. (10)]. This demonstrates
the seminal role played by disorder and momentum scattering
on spin transfer torque in abrupt magnetic textures.

To further explore this mechanism, we address the nature of
the nonadiabaticity in the diffusive regime in which disorder
is treated incoherently. In this regime, the amount and strength
of the disorder must be such that the mean-free path is
smaller than the system size. However, modeling such a system
using a quantum mechanical tight-binding model requires a
large system size as well as averaging over a large number
of disorder configurations and is therefore computationally
demanding. Therefore, the nonadiabaticity in this regime is
modeled following a semiclassical drift-diffusion approach.

B. Drift-diffusion model

We now investigate the role of spin diffusion within a drift-
diffusion model, which in principle applies in the limit of
strong disorder and strictly speaking is valid for domain wall
widths larger than the electron mean-free path. The itinerant
electrons evolving in magnetic textures are described by the
one-electron Hamiltonian

Ĥ = p̂2

2m
+ �exσ̂ · m(r,t), (4)

where m = cos φ sin θex + sin φ sin θey + cos θez is the time-
and position-dependent magnetization direction (|m| = 1), p̂
is the momentum, σ̂ is the Pauli matrix, and �ex is the exchange
coupling energy. The itinerant electron spin operator satisfies
the generalized spin continuity equation

∂t σ̂ + ∇ · Ĵ = 1

i�
[σ̂ ,H] − �̂re(σ̂ ,m), (5)

where Ĵ is the spin current operator, �̂re represents spin
relaxation and dephasing due to scattering against spin-orbit-
coupled, magnetic, and nonmagnetic impurities. The drift-
diffusion equation for spin dynamics has been derived using
quantum kinetics [32] and generalized random matrix theory
[33] from which the spin accumulation s = 〈σ̂ 〉 in the diffusive
regime satisfies the equation

∂ts = −∇ · J − 1
τex

s × m − �re(s,m), (6)
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where τex = �/2�ex is the spin precession time (≈10−15 s to
10−14 s), J = 〈Ĵ 〉 is the spin current density tensor such that
J = −D∇ ⊗ s, where D is the diffusion constant and �re =
〈�̂re〉. In systems such as disordered ferromagnetic metallic
nanowires, the local momentum scattering tends to counteract
the influence of the external electric field resulting in an
additional diffusion term in both charge and spin currents [33].

The dynamics of the magnetization and that of the itinerant
spins are considered to be decoupled since the dynamics of
conduction electrons is fast compared to that of magnetization.
As a result, the spin density can be written in the form s =
nsm + δs, where ns (δs) is the (nonequilibrium) equilibrium
spin density (ns ≈ 10−2Ms). Similarly, the spin current density
takes the form J = J0 + δJ . J0 = −bJ u ⊗ m is the adia-
batic spin current density, where bJ = μBPG0E/e, P is the
spin polarization, μB is the Bohr magneton, G0 is the electrical
conductivity in the absence of magnetic texture, u is the
direction of injected current. δJ = −D∇δs is the nonadiabatic
spin current density, which arises from carrier diffusion. Using
the relaxation time approximation, �re is given by

�re(s,m) = 1

τsf
δs + 1

τφ

m × (δs × m), (7)

where τsf is the phenomenological spin-flip relaxation time
(≈10−13 s to 10−12 s) and τφ is the spin dephasing time.

Note that Eq. (7) differs from Ref. [7] by the presence of
a dephasing term (∝ 1/τφ), which arises from the destructive
interference of nonequilibrium precessing spins with different
wave vector directions. Microscopic investigations of spin
dephasing at the interface between a normal metal and a strong
ferromagnet using realistic Fermi surfaces have shown that
this effect destroys the transverse component of itinerant spins
within a few monolayers [34]. In bulk disordered ferromagnets,
recent derivations using quantum Boltzmann equation [35] or
generalized random matrix theory [36] have demonstrated that
the interplay between spin precession and impurity scattering
introduces a spin dephasing. The presence of spin dephasing,
has an important implication in terms of spin torque definition.
Indeed, the torque T is defined as the amount of spin current
absorbed by the local magnetization less the spin density lost
to the environment. Therefore from Eq. (6), we obtain

T = −∇ · J− 1

τsf
δs = 1

τex
δs × m + 1

τφ

m × (δs × m). (8)

In the following, we use this definition to express the
spin torque up to the third order in spatial gradient of the
magnetization.

1. Spin transfer torque from drift diffusion

In the framework of the above representation, the
drift-diffusion equation for the nonequilibrium spin density is
given by

−D∇2δs + 1

τex
δs × m + 1

τφ

m × (δs × m) + 1

τsf
δs

= bJ ∇xm − ∂t δs − ns∂tm + Dns∇2m. (9)

The right-hand side (RHS) of Eq. (9) acts as a source of
itinerant spin dynamics within the spin texture for current

applied along the x direction. We solve Eq. (9) for the steady-
state (∂tδs = ∂tm = 0) solution of the nonequilibrium spin
density from which the torque can be calculated using Eq. (8).

In systems with wide and smoothly varying spin textures
such that the domain wall width (radius of vortex core) W

and the spin diffusion length λsf = √
Dτsf satisfies W 2 � λ2

sf ,
the first term in the left-hand side (LHS) of Eq. (9) can be
neglected and in this case, the itinerant nonequilibrium spin
density reduces to [7,8]

δs ≈ bJ τ̃ex [ξ∇xm + m × ∇xm] , (10)

where ξ = β0 + χ , β0 = τex/τsf , χ = τex/τφ and τ̃ex =
τex/(1 + ξ 2).

However, for abrupt spin textures or vortex structure for
which W 2 ∼ λ2

sf , the first term in the LHS of Eq. (9) can no
longer be neglected. Before we present the complete analytical
results, we first attempt to give some insight of the impact of
the diffusion term [first term in LHS of Eq. (9)] on the spin
torque.

Let us start with a more general consideration of vector
representation in space. Since the unit vectors in the direction
of (m, ∇xm, m × ∇xm) form a basis in three dimensions, any
vector in space can be written as linear combination of these
basis vectors. Therefore, without loss of generality, we can
write the first term in the LHS of Eq. (9) in the form [37]

− D∇2δs = D
W 2

[Gδs + Ba∇xm + Bnm × ∇xm] , (11)

where G, Ba and Bn are spatially and spin-texture-dependent
scalars. Inserting Eq. (11) into Eq. (9) we obtain

1

τex
δs × m + 1

τφ

m × (δs × m) + 1

τsf

(
1 + G λ2

sf

W 2

)
δs

=
(

bJ − Ba

D
W 2

)
∇xm − Bn

D
W 2

m × ∇xm. (12)

We have made no assumption in arriving at Eq. (12), which is
a general steady-state solution of Eq. (9). Moreover, its form
depicts a very simple but instructive aspect of abrupt spin
textures compared to wide and smoothly varying textures or
homogeneous ferromagnets.

First, in the LHS of Eq. (12), the third term represents
a spatially dependent renormalization of the spin diffusion
length λeff given by

1

λ2
eff

= 1

λ2
sf

(
1 + G(r)

λ2
sf

W 2

)
. (13)

This renormalization, which is due to spin diffusion, is as
expected strongest at the domain wall center and reduces
outwardly as represented by the coefficient G as in the case of
Bloch wall and vortex structure (see Sec. III).

Second, the renormalization of the spin diffusion length (the
effective spin diffusion length is reduced within the domain
wall for abrupt textures), results in an effective enhancement
of the nonadiabaticity of the texture represented at first-order
approximation as

βeff = β0

(
1 + G(r)

λ2
sf

W 2

)
. (14)
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The complete picture of the effect of spin diffusion can be
obtained after solving for the nonequilibrium spin density from
Eq. (12) and using Eq. (8) to obtain the torque. Without going
into much details of the analytics, the spin torque is given by

T = (η̃bJ − ηdiff)∇xm − (β̃bJ + βdiff)m × ∇xm, (15)

where η̃ = (1 + χξ )/(1 + ξ 2) and β̃ = β0/(1 + ξ 2) are the
adiabatic and nonadiabatic torque in the absence of spin
diffusion respectively [this represents the spin torque obtained
from the spin density given by Eq. (10)]. The contribution of
spin diffusion to the adiabatic and nonadiabatic torques are
ηdiff and βdiff respectively given as

ηdiff = D
W 2

[η̃Ba + β̃Bn] and βdiff = D
W 2

[η̃Bn − β̃Ba]. (16)

Notice that spin diffusion reduces (enhances) the adiabatic
(nonadiabatic) torque, and hence enhances the nonadiabaticity
parameter.

Therefore, it appears clear that the standard torque can be
significantly modified by effects due to spin diffusion, which
only becomes dominant over ballistic spin mistracking for
abrupt spin textures or vortex structures. In particular, for long
spin precession lengths (in the case of weak ferromagnets) or
abrupt spin textures (strong anisotropy or vortex structure),
there is an enhancement of nonadiabaticity as the spin
dephasing is not strong enough to compensate the mistracking
due to the spin precession.

In the following section we combine fully numerical and
analytical treatment of the domain wall velocity for a Bloch
wall and a vortex structure to uncover the importance of
corrections due to spin diffusion. Our numerical treatment
entails (i) solving Eq. (9) using COMSOL MULTIPHYSICS

software, (ii) calculating the spin torque and its components
using the torque definition in Eq. (8), (iii) calculating the
velocities of the domain wall using Thiele’s formalism for
spin textures [39].

III. CURRENT-INDUCED DOMAIN WALL MOTION

We study the influence of the spin diffusion on two typical
magnetization patterns: a Bloch wall and a vortex structure
with magnetization profile as shown in Fig. 4. In both cases, the
magnetization dynamics is governed by the Landau-Lifshitz-
Gilbert-Slonczewski (LLGS) equation

∂tm = −γ m × Heff + αm × ∂tm + T, (17)

where γ is the gyromatic ratio, α is the Gilbert damping
constant, T is the spin transfer torque. Heff is the effective
field given by

Heff = 2A∇2m + [Hz + (Hk + Hdz) cos θ ]ez

+Hdx cos φ sin φex + Hdy sin φ sin θey, (18)

where A is the exchange constant, Hz is the external applied
field along the z axis, Hk is the uniaxial anisotropy field,
and Hdi(i = x,y,z) are the demagnetizing field along the i

axis whose relative strength depends on the dimensions of the
nanowire and satisfies the relation

∑
i Hdi = −4πMs , where

Ms is the saturation magnetization of the ferromagnet.

FIG. 4. (Color online) Spatial profile of the y (a), (c) and z
components (b), (d) of the magnetization of a typical Bloch wall
(a), (b) and vortex core (c), (d).

A. Transverse wall

We focus on the case of perpendicularly magnetized
systems, as the case of in-plane magnetized systems produces
similar results. In a perpendicularly magnetized nanowire,
a one-dimensional Bloch wall is described by θ (x) =
2 tan−1(e(x−X)/�),φ = φ(t), where X and � are the wall center
and width respectively. Figures 4(a) and 4(b) show the y and z
components, respectively, of the magnetization of the wall. To
calculate the geometric scalars G, Ba,Bn, and B, we proceed
by gradient expansion method, which entails starting with the
zeroth-order solution of Eq. (10) for δs to get

− D∇2δs = D
�2

[
ξ (3 sin2 θ − 1)∇xm + cos 2θm × ∇xm

]
.

(19)

Next, Eq. (19) is rewritten in the form of Eq. (11) and
comparing coefficients of the basis vectors with Eq. (11)
we obtain G = ξ (3 sin2 θ − 1), Ba = bJ τ̃ex(1 − ξ )G, Bn =
bJ τ̃ex(G + cos 2θ ) and B = 0.

The dynamics of the domain wall is given by the coupled
differential equations

∂τX = �

sin θ
[αγHθ + γHφ + T · eθ − αT · eφ], (20)

∂τφ = 1

sin θ
[αγHφ − γHθ + T · eφ + αT · eθ ], (21)

where τ = t/(1 + α2), eφ = cos φey − sin φex , eθ = cos
φ cos θex + sin φ cos θey − sin θez, Hθ,φ = Heff · eθ,φ , and T
is the total spin transfer torque calculated from Eq. (15).

In the absence of external applied field, at the lowest order,
we obtain the average velocity of the domain wall below the
Walker breakdown (∂τφ = 0) as

v<
x ≈ − β̃

α

(
1 + 1

3
β∗[1 − 2ξ ]

λ2
sf

�2

)
bJ , (22)

where β∗ = η̃ − β̃ξ .
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FIG. 5. (Color online) Normalized velocity of a one-dimensional Bloch wall, below v<
x (a) and above Walker breakdown v>

x (b). Numerical
and analytic results are shown with dotted and solid lines respectively. The parameters used are α = 0.005 and β0 = 0.01, χ = 0.2. (c)
Spin-mistracking nonadiabaticity as a function of the transverse spin diffusion length λex for decreasing domain wall widths, calculated based
on Ref. [11].

Above the Walker breakdown (∂τφ �= 0), the average
velocity of the domain wall is given by

v>
x ≈ −bJ

1+α2

(
η̃+αβ̃−1

3
β̃[η∗ − αβ∗[1 − 2ξ ] + 2ξ η̃]

λ2
sf

�2

)
,

(23)

where η∗ = η̃ξ + β̃.
The additional nonadiabaticity given by the second term in

the RHS of Eq. (22) is governed by the ratio λ2
sf/�

2, and since
the velocity of the domain wall is governed by the nonadiabatic
torque below the Walker breakdown, spin diffusion only
significantly affects the longitudinal wall velocity below the
Walker breakdown by enhancing the effective nonadiabaticity
[cf. Eq. (14)].

Figures 5(a) and 5(b) display analytical and numerical
results of the velocities of a Bloch wall as a function of
the domain wall width �. The velocities are normalized to
the case without spin diffusion (wide and smoothly varying
texture). Below the Walker breakdown [Fig. 5(a)], the velocity
is moderately affected by the domain wall width. For example,
when � = 5 nm, the normalized velocity increases by about
a factor of 2 for λex = 0.8 nm (equivalent to NiFe with �ex ≈
0.5 eV, see also Ref. [38]). Above the Walker breakdown
[Fig. 5(b)], the velocity is simply not affected by the domain
wall width (less than 1%). As can be seen from the numerical
calculations for λex = 0.5 nm, they are in very good agreement
with our analytical predictions.

To assess the importance of the spin diffusion mechanism
compared to the ballistic spin mistracking mechanism, we
numerically calculated the nonadiabaticity caused by this latter
mechanism based on Ref. [11]. The nonadiabaticity parameter
evaluated numerically is defined as the ratio between the
nonadiabatic torque and the adiabatic torque at the center of
the wall. From Fig. 5(c), we see that the estimated contribution
of the ballistic spin mistracking to the nonadiabaticity remains
very limited and since most of the ferromagnetic materials
used in experiments are strong ferromagnets (λex < 0.8 nm),
this torque has a sizable influence for abrupt domain walls only.

B. Vortex structure

In a two-dimensional magnetic stripe, a vortex structure can
be described by θ (x,y) = 2 tan−1(r/r0) for r =

√
x2 + y2 �

r0, θ = π/2 for r0 < r � R, and φ = Arg(x,y) + π/2, where

r0 (R) is the inner (outer) radius of the vortex core. Figures 4(c)
and 4(d) show the y and z components of the magnetization.
As in the case for the Bloch wall, we calculate the geometric
scalars G, Ba , and Bn by gradient expansion method to obtain

− D∇2δs = D
r2

0

2r2
0

r2
sin2 θ [ξ∇xm + m × ∇xm] , (24)

and the geometric scalars G = 2r2
0

r2 ξ sin2 θ , Ba = bJ τ̃ex(1 −
ξ )G and Bn = bJ τ̃ex(1 − ξ )G/ξ .

To extract the velocities, we use Thiele’s description in
which Eq. (17) can be expressed in the form of the sum of
forces exerted on the wall [39]. By multiplying Eq. (17) on
the left by m× and projecting the obtained equation on −∂im
one obtains

−
∫

�

[∂tm · (α∂im + m × ∂im)]

=
∫

�

[∂im · γ Heff + T · (m × ∂im)] , (25)

for i = x,y. The integral
∫
�

d� runs over the volume � of
the magnetic stripe.

In the absence of external applied field, after some algebra,
the longitudinal and transverse velocities of the vortex core are
given by

vx = − bJ

1 + α2

[
η̃ + αβ̃ − Rβ̃(η∗ − αβ∗)

λ2
sf

r2
0

]
, (26)

vy = bJ

1 + α2

[
β̃ − αη̃ + Rβ̃(β∗ + αη∗)

λ2
sf

r2
0

]
, (27)

where R is a geometric factor given by R = [17/3 −
r2

0 /R2]/[1 + ln(R/r0)].
Figures 6(a) and 6(b) display the transverse and longitudinal

velocities of the vortex core as a function of the core radius r0.
While the longitudinal velocity is not significantly affected, the
transverse velocity is dramatically enhanced in the presence
of spin diffusion. For r0 = 5 nm, the transverse velocity can
be increased by a factor of 10 for a transverse spin diffusion
length λex = 0.8 nm. This key result shows that spin diffusion
cannot be neglected for vortex spin textures, in contrast to
previous belief where only much more abrupt spin structures
were considered to lead to an enhanced β. This indicates that
the traditional way to extract β must be reconsidered and
that a more in-depth analysis of the velocities needs to be
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FIG. 6. (Color online) Normalized transverse vy (a) and longitudinal vx (b) velocities of the vortex core. (c) Polar angle of the vortex core
as a function of the core radius. Numerical and analytic results are shown with dotted and solid lines respectively. The parameters used are
R = 150 nm, α = 0.005, β0 = 0.01, and χ = 0.2.

performed. This can be phenomenologically understood as
the renormalization of the effective spin diffusion length as
itinerant electrons move across the vortex core represented by

λeff = λsf

/√√√√1 + 8ξr4
0(

r2 + r2
0

)2

λ2
sf

r2
0

. (28)

This shows that as itinerant electrons flow across the vortex
core, their effective spin diffusion length reduces by a factor of√

1 + 8ξλ2
sf/r2

0 which represents an equivalent enhancement
of the nonadiabaticity parameter. As can be seen from they
for λex = 0.5 nm, the numerical calculations are in very
good agreement with our analytical predictions. It should
be noted however that the analytical treatment does not
include higher-order terms, which are taken into account in
the numerical calculations, resulting in the slight deviation at
very short core radius.

Another way to extract the nonadiabaticity parameter is to
estimate the polar angle tan−1(vy/vx) acquired by the vortex
core after current injection [16]. As shown in Fig. 6(c), the
polar angle is dramatically enhanced at small core sizes due
to the transverse spin diffusion. Therefore, for vortex cores,
the transverse spin diffusion provides a sizable contribution
to the nonadiabaticity.

IV. DISCUSSION

Up to now, only spin-flip and ballistic mistracking were
known to be responsible for the nonadiabatic torque. In
Sec. II A, we show that in a disordered system even in the
absence of explicit spin flip, spin dephasing induced by weak
disorder dramatically enhances the nonadiabaticity parameter.
This is interpreted in terms of an Elliott-Yafet-type relaxation
where the magnetic texture plays the role of spin-orbit
coupling. Increasing the amount of disorder (or reducing
the width of the domain wall) results in an increase of the
nonadiabaticity. In the case of strong disorder, the system is
dragged towards the diffusive regime (i.e., the mean-free path
becomes smaller than the system size). However, as mentioned
in Sec. II A, modeling such a regime using a quantum mechan-
ical tight-binding model is computationally demanding and
we adopt a semiclassical drift-diffusion approach to explore
this regime. Analytical expressions of the nonadiabaticity are
derived in the diffusive limit and we explicitly show that the
spin diffusion length is enhanced by the conjunction of spin
diffusion and sharp magnetic texture [see Eq. (13)], resulting

in a larger nonadiabaticity parameter [see Eq. (14)], which is
consistent with the results from the tight-binding model. Our
calculations [see Figs. 6(b) and 6(c)] are consistent with the
large nonadiabaticities measured in Refs. [6,15,16] for vortex
cores in NiFe. In these structures the transverse spin diffusion
length is about λex ≈ 0.8 nm [34,38] and the radius r0 ≈ 5 nm,
which yields effective velocities about 10 times larger than in
the absence of spin diffusion. Although the length scale for
which our model lies within the borderline regime of validity
of the drift-diffusion formalism, our calculations provide a
consistent explanation of the enhancement of the nonadia-
baticity parameter and hence domain wall velocity between the
mistracking-dominated (clean) and spin-diffusion-dominated
regimes (strong disorder). Finally, in magnetic wires with
strong perpendicular magnetic anisotropy, such as Co/Ni, FePt
or Co/Pt [19,22], the domain wall width is quite small (∼5 nm)
and therefore one would expect the nonadiabaticity to be quite
large. Nonetheless, these materials are strong ferromagnets and
therefore the mistracking between the itinerant spin and the
magnetic texture is quite weak, resulting in a weak correction
to the nonadiabaticity (β ∼ α).

V. CONCLUSION

The role of diffusion of spin accumulation in current-
induced domain wall motion has been studied theoretically
using both a tight-binding model and a drift-diffusion ap-
proach. In particular, we consider an abrupt Bloch wall and
a vortex structure and investigate how spin diffusion affects
the nonadiabaticity parameter and hence the velocity of the
wall. Our results show that while spin diffusion only has a
moderate effect on the longitudinal velocity of a Bloch wall,
it significantly enhances the transverse velocity of the vortex
core up to an order of magnitude. We show that for abrupt
spin textures, the diffusion of spin accumulation produces
a supplementary spatially dependent torque, which depends
on the topology of the texture and is proportional to the
square of the ratio of the effective spin diffusion length and
the domain wall width. Our results uncover the significant
difference between a transverse wall and a vortex core: in the
latter, the abrupt texture results in a stronger renormalization
(reduction) of the effective spin diffusion length resulting in a
stronger enhancement of the nonadiabaticity parameter.
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