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Low-temperature spin-glass behavior in a diluted dipolar Ising system
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Using Monte Carlo simulations, we study the character of the spin-glass (SG) state of a site-diluted dipolar
Ising model. We consider systems of dipoles randomly placed on a fraction x of all L3 sites of a simple cubic
lattice that point up or down along a given crystalline axis. For x � 0.65 these systems are known to exhibit
an equilibrium spin-glass phase below a temperature Tsg ∝ x. At high dilution and very low temperatures, well
deep in the SG phase, we find spiky distributions of the overlap parameter q that are strongly sample dependent.
We focus on spikes associated with large excitations. From cumulative distributions of q and a pair correlation
function averaged over several thousands of samples we find that, for the system sizes studied, the average width
of spikes, and the fraction of samples with spikes higher than a certain threshold, does not vary appreciably with
L. This is compared with the behavior found for the Sherrington-Kirkpatrick model.
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I. INTRODUCTION

Complex systems are present in life and social sciences,
information systems, and economics [1]. In these systems,
different random distributions of their microscopic constituent
parts give rise to diverse values of some macroscopic
properties [2]. A paradigmatic model in statistical physics
that exhibits complexity is the Sherrington-Kirkpatrick (SK)
model [3], where the couplings between any pair of spins is
randomly fixed to be ferromagnetic (FM) or antiferromagnetic
(AF) regardless of the spin-spin distance. This model has both
quenched spatial-disorder and frustration [4], the two essential
ingredients of spin glasses (SG) [5,6]. Its exact solution [7]
shows the existence of replica symmetry breaking (RSB) [8]:
Different identical replicas of a sample J with the same
couplings may, in the thermodynamic limit, stay trapped in
different states within the set of infinitely many pure states.
These pure states are diverse in the sense that they are sample
dependent. The distribution of the overlap q between states of
a given sample, pJ (q), is found to be a comblike superposition
of infinitely many δ-like spikes. In the macroscopic limit, after
averaging over spatial disorder, the overlap distribution is given
by p(q) = δ(q − qm) + f (q), where f (q) is a nonzero smooth
function for q < qm and zero otherwise.

Whether the RSB picture describes correctly the behavior
of realistic spin glasses, such as dilute metallic alloys or
concentrated insulators [9], is still a matter of debate. The
three-dimensional (3D) Edwards-Anderson model (EA) [10],
in which only nearest-neighbor spins interact, is the simplest
one with the essential ingredients of short-ranged SGs. No
exact solution exists for the EA model, but there is consensus
on the existence of a SG phase based on numerical simula-
tions [11]. The applicability of a RSB scenario to the SG phase
of the EA model is still controversial [12]. In the so-called
droplet picture, the SG phase is described in terms of a unique
state (paired with the one obtained by a global spin inversion)
with excitations that are compact droplets of the inverted
state [13]. According to this scenario, pJ (q) distributions do
not exhibit diversity—in the sense that pJ (q) is independent
of J—and the averaged p(q) becomes a single δ function
δ(q − qm): p(q) is said to be trivial. Some trivial-nontrivial

scenarios, between the droplet and RSB pictures, have also
been proposed [14]. Early MC simulations point to a nontrivial
scenario [15], but it has been found that the asymptotic
behavior for p(q � 0) is only reached at very large sizes even
for toy droplet models [16].

There is growing interest in the study of sample-to-sample
fluctuations of pJ (q) from their average p(q) [17]. Some re-
cently proposed quantities give information on the height [18]
and average width [19] of spikes found in pJ (q). By MC
simulations, these quantities have been found to be nearly
size-independent for the EA model, in contradiction with RSB
predictions. However, these results have been criticized to be
far away from the asymptotic regime [20,21]. Some have
found more useful to study the statistics of the area under
pJ (q) for q < qm [17,20]. The numerical study of SG models
distinct from the SK and EA models has shed some light on
the virtues and weaknesses of these new probes for measuring
diversity [22,23].

Frustration in the SK and EA models comes from the
competition between randomly distributed FM and AF cou-
plings. However, frustration may also appear in fully occupied
systems with no quenched disorder, such as the Ising model
with pure AF interactions on a FCC lattice [24]. Dipoles
packed in crystalline arrangements have frustration, exhibiting
magnetic order that is strongly dependent on the lattice
structure [25,26]. Some ferroelectrics [27] and magnetic
insulators such as LiHoF4 are known to be well described
by arrays of parallel Ising dipoles that behave as uniaxial
ferromagnets [28]. In dipolar Ising systems (DIS), dilution
put together with the built in geometric frustration results
in SG behavior [29]. LiHoxY 1−xF 4 is one example that
has been extensively studied. Experiments [30] have found
a SG phase for concentration x = 0.16 and a FM phase for
x > xc where xc � 0.25. Recent MC simulations of systems
of classical Ising dipoles placed on a fraction x of the sites
of the LiHoF4 tetragonal lattice have found a SG phase
for all 0 < x � 0.25 for temperatures below a SG transition
temperature Tsg ∝ x [31,32].

Here we study a site-diluted system of L3 dipoles, which are
placed at random on a fraction x of the sites of a simple cubic
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(SC) lattice and point up or down along one of the principal
axis. In the limit of low concentrations details of the lattice are
expected to become irrelevant. Therefore, our model at low
concentrations has direct connection with the experimental and
numerical work mentioned above. In previous MC work [33]
we have calculated the entire diagram of the system and found
a SG phase for 0 < x < xc, where xc � 0.65 with the SG
transition temperature given by Tsg(x) � x. We found from
the following evidence that the SG phase behaves marginally:
(i) the mean values q1 = 〈|q|〉 decrease algebraically with
L; (ii) averaged overlap distributions of q/q1 appear wide
and independent of L; (iii) ξL/L, where ξL is a correlation
length [34], rises with L at constant T but extrapolates
to finite values as 1/L → 0. All of this is consistent with
quasi-long-range order in the SG phase, Neither the droplet
model nor a RSB scenario fit with this marginal behavior.

The main aim of this paper is to study whether diversity
may emerge in this geometrically frustrated model at low
temperatures and high dilution, rather deep in its marginal SG
phase by using the probes for measuring diversity, in the sense
that was specified above. The paper is organized as follows.
In Sec. II we define the model, give details on the parallel
tempered Monte Carlo (TMC) algorithm [35], and define the
quantities we compute. We present results in Sec. III, followed
by concluding remarks in Sec. IV.

II. MODEL, METHOD, AND MEASURED QUANTITIES

A. Models

We consider site-diluted systems of classical Ising spins
on a SC lattice. All spins are parallel and point along the
z axis of the lattice. At each lattice site a spin is placed
with probability x. These spins are coupled solely by dipolar
interactions. The Hamiltonian is given by

H =
∑
〈i,j〉

Tijσiσj , (1)

where the summation runs over all pairs of occupied sites i

and j except i = j , σi = ±1 on any occupied site i,

Tij = εa(a/rij )3
(
1 − 3z2

ij /r2
ij

)
, (2)

where rij is the distance between i and j sites, zij is the z

component of rij , εa is an energy, and a is the SC lattice
constant. In the following, temperatures shall be given in terms
of εa/kB .

Note that Tij values are not distributed at random but depend
only on the orientation of vectors rij on a SC lattice. This is
why DIS exhibit AF order at concentrations x > xc [26,33].
This is to be contrasted with random-axes dipolar models [36],
in which Ising spins point along directions that are chosen at
random, introducing randomness on bond strengths.

In this paper we study DIS with x << xc for which the
details of the lattice structure are not important. Not surpris-
ingly, in the limit of high dilution the behavior of DIS and the
LiHoxY4−xF4 system (a well-known dipolar ferromagnet for
x = 1) have been found to be closely related [32,33].

For comparison, we study also the SK model: a set of
N = L3 Ising spins σi = ±1 with interaction energies between

TABLE I. Simulation parameters for the SK model. The number
of spins is N = L3, Tmin (Tmax) is the lowest (highest) temperature and
� is the temperature step in our TMC simulations. The number of
MC sweeps for equilibration is t0. Measurements are taken in the time
interval [t0,2t0]. The number of samples with different realizations of
(quenched) disorder is Ns .

L Tmin Tmax � t0 Ns

4 0.16 1.60 0.04 105 105

6 0.16 1.60 0.04 105 1.4 × 105

8 0.16 1.60 0.04 2 × 105 105

any pair of spins at sites i and j given by Jijσiσj with Jij =
±1/

√
N chosen randomly, without bias, for all ij site pairs.

B. Method

For the models described in Sec. II A we have simulated a
large number Ns of independent samples. By a sample, J , we
mean a system with a given quenched distribution of empty
sites for DIS (a quenched distribution of random couplings
Jij for the SK model). The number of samples we average
over is given in Tables I and II. We have tried not to make Ns

smaller with increasing L. This is because statistical errors are
independent of L, because of non-self-averaging. (However,
for DIS with L = 10, we could only do 1.2 × 104 samples.
That took an Intel 8-core Xeon processor E5-2670 some 60
years’ worth of CPU time.)

Thermal averages come from averaging over the time range
[t0,2t0], where t0 is the equilibration time. We further average
over the Ns samples with different realizations of quenched
disorder.

In order to accelerate equilibration at low temperatures in
the glassy phase we use a parallel tempered Monte Carlo
(TMC) algorithm [35]. We apply the TMC algorithm as
follows. We run in parallel a set of n identical replicas of each
sample at different temperatures in the interval [Tmin,Tmax]
with a separation � between neighboring temperatures. Each
replica starts from a completely disordered spin configuration
{σi}. We apply the TMC algorithm to any given sample in
two stages. In the first stage, the n replicas of the sample
J evolve independently for 10 MC Metropolis sweeps [37].
All dipolar fields throughout the system are updated every
time a spin flip is accepted. In the second stage, we give
any pair of replicas evolving at temperatures T and T − �

a chance to exchange states between them following standard

TABLE II. Same as in Table I but for DIS with concentration
x = 0.35. In our TMC runs for DIS we have chosen a temperature
step of �1 for the temperature interval [Tmin,Tm] and a bigger one,
�2, for [Tm,Tmax].

L Tmin Tm Tmax �1 �2 t0 Ns

4 0.05 0.4 1.65 0.025 0.05 5 × 106 2 × 105

6 0.05 0.4 1.65 0.025 0.05 5 × 106 1.1 × 105

8 0.05 0.4 1.65 0.025 0.05 5 × 106 105

10 0.075 0.4 1.65 0.025 0.05 5 × 107 1.2 × 104
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tempering rules which satisfy detailed balance [35]. These
exchanges allow all replicas to diffuse back and forth from
low to high temperatures and reduce equilibration times for
the rough energy landscapes of SGs. We find it helpful to
have the highest temperature Tmax larger than 1.6 × Tsg. We
choose � such that at least 30% of all attempted exchanges
are accepted for all T .

For DIS we use periodic boundary conditions (PBC).
Details of the PBC scheme we use can be found in Ref. [33]. We
let a spin on an occupied site i interact only with spins within
an L × L × L cube centered on i. In spite of the long-range
nature of the dipolar interaction, we do not perform Ewalds’s
summations and exclude any contributions from repeated
copies of the lattices beyond this box. This introduces an error
which was shown for DIS in SC lattices to vanish as L → ∞,
regardless of whether the system is in the paramagnetic, AF,
or SG phase (see Appendix I in Ref. [33]). This result is not
applicable to an inhomogeneous FM phase that may obtain on
other lattices such as in LiHoF4.

C. Measured quantities

Measurements were performed after two averagings: first,
over thermalized states of a given sample and, second, over a
number Ns of different samples.

Given an observable u, we let uJ = 〈u〉T stand for the
thermal average of sample J and u = [uJ ]J for the average
over samples.

We measure the Edwards-Anderson overlap parameter [10],

q = N−1
∑

j

σ
(1)
j σ

(2)
j , (3)

where σ
(1)
j and σ

(2)
j are the spins on site j of identical replicas

(1) and (2) of a given sample. Clearly, q is a measure of the
spin configuration overlap between configurations of the two
replicas.

For each sample J we compute the overlap probability
distribution pJ (q). The mean overlap distribution p(q) over
all replicas is defined by

p(q) = [pJ (q)]J . (4)

We also measure the mean-square deviations of pJ (q),
from the average p(q),

δp(q)2 = [{pJ (q) − p(q)}2]J . (5)

In order to probe for RSB behavior we focus on overlaps
between states that belong to different basins of attraction.
With that aim, we compute the integrated probability functions
defined by

X
Q

J =
∫ Q

−Q

pJ (q)dq, (6)

�
Q

J =
(∫ Q

−Q

{pJ (q) − p(q)}2dq

)1/2

, (7)

and calculate their corresponding averages XQ and �Q. An
advantage of working with quantities integrated over the
interval q ∈ (−Q,Q) is that statistical errors come smaller.

Given that XQ

J is a (J -dependent) random variable, it makes
sense to explore how this variable is distributed. Following
Ref. [20], we define its cumulative distribution �X

c (z) as the
fraction of samples having X

Q

J < z.
Yucesoy et al. [18] have proposed very recently an observ-

able that is sensitive to spikes in the overlap distributions pJ (q)
of individual samples. They consider the maximum value of
pJ (q) for q ∈ (−Q,Q),

p̃
Q

J = max
{
p

Q

J (q) : |q| < Q
}
, (8)

and count a sample as peaked if p̃
Q

J exceed some specified

value. We compute the cumulative distribution �
p̃
c (z) of p̃

Q

J
as the fraction of samples having p̃

Q

J < z.
In previous papers [19] we have obtained additional

information on the shape and width of spikes from a pair
correlation function. Let fJ (q1,q2) ≡ pJ (q1)pJ (q2),

G
Q

J (q) =
∫ Q

0

∫ Q

0
dq1dq2 δ(q2 − q1 − q)fJ (q1,q2), (9)

and let GQ(q) be the average of G
Q

J (q) over samples. We
compute the normalized function

gQ(q) = GQ(q)/
∫ Q

−Q

GQ(q)dq, (10)

which is the conditional probability density that q = q2 − q1,
given that q1,q2 ∈ (0,Q). Note that gQ(q) is largest at q = 0
and that gQ(q) = gQ(−q), since pJ (q) = pJ (−q). It makes
sense to define the width of gQ(q) as

wQ = 1/gQ(0), (11)

which is a measure of pattern thermal fluctuations for |q| < Q.
An additional interpretation of gQ(q) is possible for suffi-

ciently small T (T � 0.4Tsg, roughly) so individual spikes are
clearly discernible. Assume, in addition, that Q is sufficiently
small so contributions from samples with more than one spike
in the 0 < q < Q range is negligible. Then, (i) finding on
each sample one such spike, if there is one, (ii) calculating
the self-overlap of such spike with a copy of itself shifted
by a distance q, (iii) adding the resulting function of q over
all samples, and (iv) normalizing gives gQ(q). To that extent,
gQ(q) stands for an average over all spikes on the 0 < q < Q

range. In Ref. [19] we have also shown that if the width of
spikes does not vary over different samples, then gQ(q) is, for
large systems, twice as wide as spikes are.

D. Equilibration times

We now explain how we make sure that thermal equi-
librium is reached before we start taking measurements. To
this end, some quantities are next defined. First, a pair of
identical replicas of a given sample are allowed to evolve
independently in time, starting at t = 0 from two uncorrelated
random spin configurations. Let qt be the overlap between
the configurations of the two identical replicas at time t . In
addition, let q2(t) be the average of q2

t over all samples. During
equilibration q2(t) is expected to increase up to its equilibrium
value. Semilog plots of q2(t) versus t displayed in Fig. 1 for
x = 0.35, L = 8,10 and the lowest used temperatures show
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FIG. 1. (Color online) Semilog plots of q̃2(t0,t) and q2 vs time
t (in MC sweeps) for DIS systems with concentration x = 0.35
running at the lowest temperature Tn for the values of L indicated in
the figure. T = 0.075 (T = 0.05) for L = 10 (L = 8). q2 is obtained
from averages of q2 over time, starting at t = 0 from an initial random
spin configuration. Here t0 = 5 × 107 MC sweeps for L = 10, and
5 × 106 MCS for L = 8. Data points at time t stand for an average
over a time interval [t,1.2t] and over 103 samples.

that a stationary value q2 is reached only after some millions
of MC sweeps.

In order to check whether this stationary value q2 is an
equilibrium one, we define a second overlap, q̃t , not between
configurations of pairs of identical replicas at the same time t ,
but between spin configurations of a single replica taken at
two different times t0 and t1 = t0 + t of the same MC run,

q̃t (t0) = N−1
∑

j

σj (t0)σj (t0 + t). (12)

Let q̃2(t0,t) be the average of (̃qt (t0))2 over all samples.
Suppose thermal equilibrium is reached long before time t0 has
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4

p J

0
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p J
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FIG. 2. (Color online) (a) Overlap distributions pJ (q) for DIS
systems with L = 10, x = 0.35 and T = 0.1 for three samples with
different realizations of disorder. For each sample we collect values of
q over 5 × 107 MC sweeps. (b) The same as in (a) but for T = 0.25
for the same sample set. Recall that the transition temperature is
Tsg = 0.35.

elapsed. Then q̃2(t0,t) and q2(t) should tend towards a common
value q2 as t → t0. Plots of q̃2(t0,t) vs t are shown in Fig. 1
for t0 = 5 × 107 MC sweeps (5 × 106 MCS sweeps) for L =
10 (L = 8) for the same values of x and T as for q2(t). Note that
both quantities, q̃2(t0,t) and q2(t), do become approximately
equal when t → t0. In order to obtain equilibrium results, we
have always chosen sufficiently large values of t0 to make sure
that q̃2(t0,t) ≈ q2(t) for t � t0. In our simulations, we let each
system equilibrate for a time t0 and take averages over the time
interval [t0,2t0]. All values of t0 and Ns are given in Table II.

It has recently been shown that equilibration times increase
with the roughness of the free-energy landscape of each
individual sample [38]. Numerous spikes in overlap distri-
butions p

Q

J are the signature of samples that have numerous
minima in their free-energy landscape. Visual inspection of
overlap distributions of samples like the ones shown in Fig. 2
shows fairly symmetric p

Q

J curves even though some of them
have several spikes. Then our stringent equilibration criterion
suggests that nearly all the samples are well equilibrated.

III. RESULTS

A. Overlap distributions

As it has been found for other SG models, it is interesting to
examine individual samples of DIS. In Fig. 2(a) we plot pJ (q)
versus q for different samples at temperature T/Tsg � 0.3. At
this low temperature, some pJ (q) display well-defined spikes
centered on small q values, which seems to vary randomly from
sample to sample. Qualitatively similar distributions have been
observed for the EA and SK models [18,19,39]. It is clear that
these inner peaks (that is, peaks away from q ≈ ±1) come
from overlaps between states that belong to different basins of
attraction. The main aim of this paper is to extract statistical
information for these cross-overlap (CO) spikes situated on the
interval q ∈ (−Q,Q). Similar plots for higher temperatures
[see Fig. 2(b) for T/Tsg � 0.7] show that thermal fluctuations
render individual spikes not clearly discernible. Then, in order
to explore well within the SG phase, we have chosen the lowest
temperature in our TMC simulations to be 0.2Tsg. We report
most of our results for T � 0.4Tsg. We have also chosen a
concentration x = 0.35 which is far below the threshold for the
AF phase. Both low temperatures and low concentrations result
in large equilibrium times t0. In addition, in order to obtain
good sample statistics we need to simulate a large number
Ns of samples for all system sizes studied. All of this has
restricted us to deal with relatively modest system sizes in our
simulations. The simulation parameters are given in Tables I
and II.

Figure 3(a) shows the sample-averaged overlap distribution
p(q) for DIS at T = 0.1. At this low temperature, p(q) exhibits
two large peaks at ±qm with qm ≈ 1 and a relatively flat
plateau with p(0) �= 0 in the region q ∈ (−Q,Q) for, say,
Q ≈ 1/2. The nonzero p(0) value does not change with L

for the system sizes studied. This behavior, known for the SK
and EA models [7,15], is in contradiction with the droplet
picture of SGs, for which p(0) vanishes as L−θ [13].

Plots of (δp)2 versus p are shown for DIS at the same
temperature in Fig. 3(b).

√
(δp)2, a measure of deviations

of pJ (q) from the average p(q), is clearly greater than p

for q ∈ (−1/2,1/2), indicating lack of self-averaging. More
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FIG. 3. (Color online) (a) Plots of the averaged distribution p(q)
vs q for DIS systems with x = 0.35, T = 0.1, and the values of L

shown. (b) Same as in (a), but for (δp)2, the mean-square deviations
of pJ (q)2 away from p(q) over all J samples.

interestingly, (δp)2 does not vary appreciably with L. This is
at odds with the behavior found in MC simulations for the
SK model for which (δp)2 ∝ L for T � 0.5Tsg [33]. Recall
that in the RSB scenario, one expects that pJ (q) exhibits with
many sharp spikes in the region q ∈ (−Q,Q) that become
δ-like functions as L increases, resulting in a diverging (δp)2

for macroscopic systems.

B. Integrated overlap distributions

Here we consider averages of both p and (δp)2 over q ∈
(−Q,Q). This allows us to focus on the contributions of CO
spikes and, in addition, to reduce statistical noise if Q is not
too small. Plots of XQ, the sample-averaged area under CO
spikes, versus T are shown for Q = 1/2 in Figs. 4(a) and 4(b)
for DIS and SK models, respectively. In both cases, XQ is,
as far as we can see, size independent at temperatures well
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FIG. 4. (Color online) (a) Plot of XQ versus T for DIS systems
with x = 0.35, Q = 1/2 and the values of L indicated in the figure.
(b) The same plots for the SK model, with Q = 1/2 and the values
of L shown. In both panels, error bars are smaller than symbol sizes.
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FIG. 5. (Color online) (a) Plot of �Q vs T for DIS systems with
x = 0.35, Q = 1/2 and the values of L indicated in the figure.
(b) Plot of �Q/L1/2 versus T for the SK model, with Q = 1/2.

below Tsg. We obtain quantitatively similar results (not shown)
for Q = 1/4. This is a strong piece of evidence against the
validity of the droplet picture, for which XQ is expected to
vanish as T L−θ [13]. A similar behavior has been found for
the EA model in several MC simulations [15,19]. However, it
has been argued that strong finite-size effects may mask the
asymptotic behavior at the system sizes currently available to
MC simulation [16]. Finally, we note that in Figs. 4(a) and 4(b)
XQ seems to vanish as T → 0 (as was long ago predicted for
the SK model) [40].

Plots of �Q versus T for DIS in Fig. 5(a) show the presence
of finite-size effects. Note that for small sizes, �Q increases as
T decreases only up to T = 0.15 (T = 0.075) for L = 4 (L =
6). We return to this point in Sec. III C. More interestingly,
curves for larger sizes (L � 8) give a strong indication that �Q

does not diverge as L increases. This result is in contradiction
with a RSB scenario and is in sharp contrast with the behavior
exhibited in Fig. 5(b) for the SK model, for which �Q increases
with

√
L at low temperatures. It is worth mentioning that �Q

differs qualitatively from the average X2 ≡ [(XQ

J )2]J when Q

is not very small [19]. X2 has been investigated in detail in
several papers and it is known to be size independent for both
the EA and SK models [17].

C. Pair correlation functions

Data points for the pair correlation function gQ for Q =
1/2 are shown in Figs. 6(a) and 6(b) for the SK model at
T = 0.2 and DIS at T = 0.075, respectively. Note that these
temperatures are such as T/Tsg � 0.2 in both cases. We find
curves that are rather pointed with widths clearly smaller than
Q. We obtain similar results for Q = 1/4. Data for DIS in
Fig. 6(b) do not exhibit any significant size dependence. In
contrast, gQ curves for SK in Fig. 6(a) become sharper as
L increases. This result for the SK model is as expected
for a RSB scenario. In the RSB solution, pJ (q) is made of
several cross-overlap spikes that for small values of q become
δ functions in the macroscopic limit and densely fill the interval
q ∈ (−Q,Q). In striking contrast, our result for DIS suggest
that the number of SG states do not grow with L at finite low
temperatures.
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FIG. 6. (Color online) (a) Plots of gQ vs q for the SK model at
T = 0.2 with Q = 1/2 and the values of L shown. (b) Same plot as
for (a) but for DIS systems with x = 0.35 at T = 0.075. (c) Same
plot as for (b) but for T = 0.125.

Some people have argued that comparing data for different
models (EA and SK) at the same value of T/Tsg is not
meaningful. They find it more appropriate to make such a
comparison at temperatures for which XQ values are the
same [21]. We follow this recipe and compare the data shown
in Fig. 6(c) for DIS at T = 0.125 and in Fig. 6(a) for the
SK model at T = 0.2. Apart from the fact that gQ becomes
narrower as T decreases, we do not notice any qualitative
difference.

It is interesting to note that spikes, even though they have
nonzero widths w at finite T , may not be discerned in pJ (q)
distributions of very small systems. Note that the minimum
appreciable value of q for systems of N spins is given by
�q = 2/N . Thus, finite-size effects are expected to come at
very low T when w � �q. This seems to be the case for
the data shown in Figs. 5(a) and 7(a) for L = 4 (L = 6) and
T � 0.15 (T � 0.075).

Plots of wQ versus T are shown in Figs. 7(a) and 7(b) for
DIS and the SK model, respectively. wQ appear in Fig. 7(a)
to be size independent at least for L � 8. This points to finite
widths for CO spikes in the L → ∞ limit for low (but finite)
temperature. On the other hand, wQ values for the SK model
displayed in Fig. 7(b) appear to vanish as 1/L1/2 as L increases
at least for T � 0.4, in agreement with the RSB picture.
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FIG. 7. (Color online) (a) Plots of wQ vs q for DIS systems with
x = 0.35 for Q = 1/2 and the values of L shown. (b) Plots of L1/2wQ

vs q for (a) but for the SK model, Q = 1/2 and the values of L shown.
In both panels all error bars are smaller than symbol sizes.

D. Cumulative distributions

As interesting as they could be, pair correlation functions
(PCFs) do only give information on how spiky sample
distributions pJ (q) are in the (−Q,Q) region. However, PCFs
do not give any information about the height of spikes located
there. Following seminal work by Yucesoy et al. [18], we
study here �

p̃
c (z), the fraction of samples without any spike in

(−Q,Q) with height larger than z. Plots of �
p̃
c versus z for DIS

at T = 0.1 are shown in Fig. 8(a). They give a strong indication
that �

p̃
c reach a size-independent shape for L � 8 for a wide

range of values of z. In order to check for the robustness of
our �

p̃
c (z) values, we have grouped all available samples in

K ensembles of 103 samples each, calculated �
p̃
c for each

ensemble k = 1, . . . ,K , and obtained the standard deviation
(SD) of the K resulting values. Tiny vertical bars in Figs. 8
and 9 stand for such SDs. Plots in Fig. 8(a) are to be compared
with the ones displayed in Fig. 8(b) for the SK model. Note in
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FIG. 8. (Color online) (a) Plot of the cumulative distribution
�{p̃Q

J } versus x for DIS systems with x = 0.35, for Q = 1/2,
T = 0.1 and the values of L indicated in the figure, where p̃

Q

J
is the maximum value of pJ (q) over the interval −Q � q � Q.
(b) The same plot as in (a) but for the SK model, for Q = 1/2,
T = 0.16 and the values of L shown.
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FIG. 9. (Color online) (a) Plot of the cumulative distribution
�{XQ

J } versus x for DIS systems with x = 0.35 for T = 0.1 and
the values of L indicated in the figure. (b) The same plots as in (a)
but for the SK model for T = 0.16.

Fig. 8(b) that, at least for z � 0.5, �
p̃
c (z) clearly decreases as

L increases, indicating a proliferation of high spikes for larger
sizes. This is as expected for the RSB picture, for which CO
spikes become δ-like functions in the thermodynamic limit.

Finally, we report results on how the random variable X
Q

J
is distributed. Previous MC simulations have found a similar
behavior for the EA and SK models when dealing with the
cumulative distribution �X

c (z) of quantity z = X
Q

J [18,20].
The mean-field theory of the SK model offers precise predic-
tions on �X

c (z) and their moments [17]. In particular, �X
c (z)

is found to follow a power law for small z. For small values of
Q [41], �X

c (z) ∝ zy , where y stands here for XQ. Some people
have found it useful to study the median of the cumulative
distribution, which is predicted to reach a nonzero value in the
thermodynamic limit in the RSB picture but vanishes for the
droplet model. Log-log plots of �X

c versus X for DIS displayed
in Fig. 9(a) show curves with power-law behavior for small z.
Data do not show any significant deviation for sizes L � 8. The
median (marked by the crossings points of the curves with the
horizontal dotted line in the figure) decreases as L increases
reaching a nonzero value. The counterpart plots for the SK
model are shown in Fig. 9(b). In agreement with previous
MC work on the SK model [20,23], we find strong finite-size
effects. However, curves seem to converge to some limiting
curve as L increases [20]. Note that, in contrast with DIS, the
median of �X

c increases as L increases. All our results for �X
c

for both the SK model and DIS are not in contradiction with a
RSB scenario.

IV. CONCLUSIONS AND DISCUSSION

By tempered Monte Carlo calculations, we have studied
the low-temperature behavior of a diluted system of classical
dipoles placed on a SC lattice. These dipoles are Ising spins
randomly placed on a fraction x of all lattice sites and point
up or down along a common crystalline axis.

Previous MC studies [19] for this model have provided
strong evidence for the existence of a SG phase for x � 0.65
with a SG transition temperature Tsg(x) � x. The SG phase
was then found to have quasi-long-range order, as in the 2D-
XY model [42]. Neither the droplet model nor a RSB scenario
fit with this marginal behavior. Despite the existence of this soft
SG order, we find in our simulations spiky overlap distributions
pJ (q) that are strongly sample dependent, as previously found
in simulations for the EA and the SK models [18,19,39].

We have studied the statistics of pJ (q) for q ∈ (−Q,Q)
using some recently proposed observables [18–20]. We find
that p(q) and δp(q) (as well as their integrated counterparts
XQ and �Q) do not vary appreciably with L.

From a suitable defined pair correlation function [19] we
compute an averaged width wQ that appears to remain finite
as L increases. Complementary to this result, we find that
the fraction of samples with spikes higher than a certain
threshold does not vary appreciably with L. All of this points
to finite width for CO spikes in the L → ∞ limit at low
temperatures.

Our results are in clear contradiction with droplet model
predictions. On the other hand, a direct comparison of our data
with MC data obtained for the SK model shows that crucial
RSB predictions are also at odds with some of our results.
It is noteworthy that the findings enumerated above for DIS
are strikingly similar to the ones found in previous MC work
for the EA model [18–20,23], though finite-size effects have
been reported to be strong for the EA model for the available
systems sizes in MC simulations.
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