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Nonlinear bond-operator theory and 1/d expansion for coupled-dimer magnets.
II. Antiferromagnetic phase and quantum phase transition
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We extend to magnetically ordered phases a recently developed expansion in 1/d for coupled-dimer Heisenberg
magnets, where d is the number of space dimensions. This extension utilizes generalized bond operators describing
spin excitations on top of a reference state involving triplet condensates. We explicitly consider a model of dimers
on a hypercubic lattice which displays, in addition to the paramagnetic singlet phase, a collinear antiferromagnetic
phase for which we calculate static and dynamic observables at zero temperature. In particular, we show that the
1/d expansion smoothly connects the paramagnetic and antiferromagnetic phases and produces sensible results
at and near the quantum phase transition point. Among others, we determine the dispersion and spectral-weight
distribution of the amplitude (i.e., Higgs) mode of the ordered phase. In the limit of vanishing intradimer coupling,
we connect our approach to spin-wave theory.
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I. INTRODUCTION

Systematic expansions for many-body systems play an
important role in theoretical physics because (i) they allow
one to make controlled statements in certain well-defined
limits in parameter space, and (ii) they may be extrapolated
to cover a large part of parameter space if sufficiently high
orders are used. However, identifying a suitable expansion
parameter in systems with strong interactions, such as spin
systems, is a nontrivial problem. Frequently used expansions
utilize artificial small parameters such as 1/N , where N is the
number of flavors or order-parameter components, 1/S, where
S is the spin size, or ε = d − dc, the deviation of the number
of space dimensions d from a critical dimension dc [1–3].

In a recent paper [4], henceforth referred to as I, we have
developed a 1/d expansion for an important class of spin
models, namely, coupled-dimer Heisenberg magnets [5–7].
Such magnets consist of strongly coupled pairs (dimers) of
quantum spins which themselves are connected by weaker
interdimer couplings. For spins 1

2 , the general Hamiltonian
reads as

H =
∑

i

Ji
�Si1 · �Si2 +

∑
ii ′mm′

Kmm′
ii ′

�Sim · �Si ′m′ , (1)

where the indices i,i ′ refer to sites on a regular lattice of
dimers, and m,m′ = 1,2 refer to the individual spins on
each dimer. In dimensions d � 2 and for antiferromagnetic
(AF) interactions, coupled-dimer models typically display
a quantum phase transition (QPT) between a paramagnetic
ground state, realized at small K/J , and an AF ground state,
realized at large K/J .

The expansion developed in I is based on a bond-operator
representation of the dimer Hilbert space. In contrast to the
original mean-field-based linear bond-operator theory [8], it
employs an exact projection scheme which, in large space
dimensions, enables a perturbative treatment of the nonlinear
Hamiltonian terms. In I, we have employed this expansion
to calculate observables in the paramagnetic phase of a
hypercubic-lattice dimer model in a systematic expansion in
1/d up to the transition point.

In this paper, we extend the 1/d expansion to magnetically
ordered phases. Starting from a suitable large-d reference state,
i.e., a dimer product state which involves a triplet condensate,
we derive a generalized bond-operator Hamiltonian describ-
ing fluctuations on top of this reference state [9,10]. This
Hamiltonian is then used to generate a 1/d expansion for the
reference state itself as well as for thermodynamic and spectral
properties. Connections between our nonlinear bond-operator
theory and nonlinear spin-wave theory as known from the
literature will be highlighted.

As in I, we demonstrate the approach for a hypercubic-
lattice coupled-dimer model whose ordered state is a collinear
antiferromagnet. We determine the order parameter as well
as dispersion and spectral weight of both transverse (i.e.,
Goldstone) and longitudinal (i.e., Higgs) excitations in this
phase. We show that the present 1/d expansion smoothly
connects to the paramagnetic phase of the model, with a
continuous QPT between the two. Our theory thus succeeds
in consistently describing, beyond the level of Gaussian
fluctuations, both Goldstone and critical modes in a system
with a condensate order parameter; this is highly nontrivial
considering that standard approaches to the interacting-boson
problem, such as the Hartree-Fock and Popov approximations
[11,12], as well as previous approaches to coupled-dimer
magnets [13–15] fail in this respect. Altogether, this turns
the popular bond-operator formalism into a controlled and
systematic theory.

A. 1/d expansion, Goldstone modes, and quantum phase
transitions

The utility of the small parameter 1/d guarantees sensible
and consistent results across the entire phase diagram; this
distinguishes our approach from earlier refinements of bond-
operator theory [14] or alternative microscopic approaches to
the Heisenberg bilayer model [13]. In particular, the minimum
energy of transverse spin fluctuations in the ordered phase of
an SU(2) symmetric coupled-dimer model, being zero at any
d due to Goldstone’s theorem, is zero to all orders in the 1/d

expansion [16].
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As discussed in I, the 1/d expansion can also access the
vicinity of the quantum critical point despite the presence of
critical singularities: First, critical exponents necessarily take
mean-field values to all orders in the 1/d expansion. Second,
observables which are analytic at criticality are amenable to a
1/d expansion even across the QPT. In I, this was demonstrated
for the excitation gap � of the disordered state which varies
with the distance t to criticality as � ∝ tνz with ν = 1

2 , z = 1,
hence �2 ∝ t is analytic. Here, we shall determine, e.g., the
order parameter Mst which follows Mst ∝ (−t)β with β = 1

2 ,
hence M2

st ∝ (−t) is analytic as well. In the above, ν, z, and
β are the correlation-length, dynamic, and order-parameter
exponents, respectively.

We note that applying the 1/d expansion near the QPT can
also be used to extract the coefficients of a φ4 order-parameter
field theory, which then may be employed to analyze critical
properties. As we are able to directly calculate observables at
and near criticality, we shall not discuss this route further.

B. Model and summary of results

We summarize our main results obtained for the coupled-
dimer model on a d-dimensional hypercubic lattice, with

H = J
∑

i

�Si1 · �Si2 +
∑
〈ii ′〉

(K11 �Si1 · �Si ′1 + K22 �Si2 · �Si ′2)

+ hz
∑

i

ei �Q·Ri
(
Sz

i1 − Sz
i2

)
. (2)

Here,
∑

〈ii ′〉 denotes a summation over pairs of nearest-
neighbor dimer sites, and we will exclusively consider the
symmetric case with K11 = K22 ≡ K . We have added a
staggered field hz which couples to the collinear AF order
parameter at �Q = (π,π, . . .).

As in I, the ratio between interdimer and intradimer
coupling is parametrized by

q = Kd

J
(3)

which ensures a nontrivial competition between these interac-
tions in the limit d → ∞ at fixed q. In d = 2, where Eq. (2)
represents the much-studied bilayer Heisenberg model, the
transition between the paramagnetic and collinear AF phases
occurs at [17] qc = 0.793.

From our large-d expansion in the AF phase, we find the
QPT to be located at hz = 0 and

qc = 1

2
+ 3

16

1

d
+ O

(
1

d2

)
, (4)

identical to the corresponding result obtained in I for the
paramagnetic phase. At hz = 0, the staggered magnetization
per dimer follows:

M2
st = 4q2 − 1

4q2
− 1

d

[
5(2q + 1)2

256q6
+ 1

]
2q2

(2q + 1)2

+ O
(

1

d2

)
(5)

and vanishes at the critical point as

Mst =
[

2 + 5

3d
+ O

(
1

d2

)]√
q − qc. (6)

The gap �z of the longitudinal (Higgs) mode is given by

�2
z

J 2
= 4q2 − 1 + 1

32d

[
− 1

q2
− 16

(2q + 1)2
+ 48

2q + 1

+ 192

12q2 + 1
− 96 + 16q

]
+ O

(
1

d2

)
. (7)

It closes at the critical point as

�z

J
=
[

2 − 5

8d
+ O

(
1

d2

)]√
q − qc. (8)

Both longitudinal and transverse modes have the same velocity
at criticality, with the 1/d expansion

c

J
= 1√

2
+ 5

16
√

2d
+ O

(
1

d2

)
. (9)

C. Outline

The body of the paper is organized as follows: Section II
describes the generalization of the bond-operator approach
to magnetically ordered phases. In Sec. III, we apply this
formalism to the collinear phase of the hypercubic bilayer
model, where we define a suitable reference state, derive an
exact interacting bond-operator Hamiltonian for its excita-
tions, and discuss the strategy to construct a 1/d expansion.
The explicit calculation of observables, order by order in
1/d, is demonstrated in Sec. IV. Section V finally highlights
the similarities and differences between nonlinear spin-wave
theory and our approach when applied deep in the ordered
phase.

A concluding section closes the paper, and various appen-
dices are devoted to technical details.

II. BOND OPERATORS FOR ORDERED PHASES

Sachdev and Bhatt [8] devised bond-operator mean-field
theory as an efficient slave-particle description for the quantum
paramagnetic phase of coupled-dimer magnets (1). In the
original formulation, the singlet state on each dimer is
“condensed,” and triplet excitations (later dubbed “triplons”)
on top of this singlet state are treated as noninteracting bosons.
Bond-operator theory has been generalized to magnetically
ordered phases by using triplet condensates [9,10,18]. Here,
we formulate this generalization such that it can be combined
with an exact projection scheme suitable for the 1/d expansion.

We denote the four basis states on each dimer i by |tk〉i ,
k = 0, . . . ,3, where |t0〉 = (|↑↓〉 − |↓↑〉)/√2 is the spin-0
singlet state, and |t1〉 = (−|↑↑〉 + |↓↓〉)/√2, |t2〉 = ı(|↑↑〉 +
|↓↓〉)/√2, |t3〉 = (|↑↓〉 + |↓↑〉)/√2 correspond to the spin-1
triplet, and ı is the imaginary unit.

A. General Hilbert-space rotation

While the paramagnetic phase of a coupled-dimer model
can be conveniently accessed from a state involving a prod-
uct of singlets |ψ0〉 = ∏

i |t0〉i , magnetically ordered phases
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require a reference state with broken SU(2) spin symmetry.
For a consistent description of excitations within a modified
bond-operator formalism, it is convenient to perform an SU(4)
basis rotation in the Hilbert space of each dimer [9]. The most
general form reads as

|t̃k〉i = U
(i)
kk′ |tk′ 〉i (k,k′ = 0, . . . ,3). (10)

The rotation should be chosen such that |ψ̃0〉 = ∏
i |t̃0〉i is

a suitable reference state which replaces the singlet product
state |ψ0〉. For instance, a local Néel state polarized along z is
obtained from |t̃0〉 = (|t0〉 + |t3〉)/

√
2 = |↑↓〉.

Spin operators �Sim can be represented in terms of transitions
between the states |tk〉i of a dimer,

Sα
im =

∑
kk′

sαm
kk′ |tk〉i i〈tk′ |, (11)

with 4 × 4 matrices sαm for the spin components Sα (α =
x,y,z ≡ 1,2,3) of the m = 1,2 spins:

sx1,2 = 1

2

⎛
⎜⎝

0 ±1 0 0
±1 0 0 0
0 0 0 −ı

0 0 ı 0

⎞
⎟⎠ ,

sy1,2 = 1

2

⎛
⎜⎝

0 0 ±1 0
0 0 0 ı

±1 0 0 0
0 −ı 0 0

⎞
⎟⎠ , (12)

sz1,2 = 1

2

⎛
⎜⎝

0 0 0 ±1
0 0 −ı 0
0 ı 0 0

±1 0 0 0

⎞
⎟⎠ .

This is of course equivalent to the bond-operator representation
of Sachdev and Bhatt [8], written in terms of transition
operators:

Sα
i1,2 = 1

2 (±|t0〉i i〈tα| ± |tα〉i i〈t0| − ıεαβγ |tβ〉i i〈tγ |).
After the basis rotation (10), Eq. (11) becomes

Sα
im =

∑
kk′

s̃αm
i,kk′ |t̃k〉i i〈t̃k′ |, (13)

with the transformed spin matrices now being in general site
dependent:

s̃αm
i,kk′ =

∑
ll′

(U †)(i)
lk sαm

ll′ U
(i)
k′l′ . (14)

B. Excitations and projection

The next step is to introduce bosonic operators t̃iα (α =
1,2,3) for local excitations w.r.t. the reference state |t̃0〉i :

|t̃α〉i = t̃
†
iα|t̃0〉i . (15)

In the untransformed case, the t̃
†
iα are the triplon bond operators

as used in Refs. [4,14], and we will continue to refer to them
as (generalized) triplons. These operators obey a hard-core
constraint

3∑
α=1

t̃
†
iα t̃iα � 1. (16)

As discussed in some detail in I, this constraint is efficiently
implemented using projection operators Pi which suppress
all matrix elements of observables between the physical and
unphysical parts of the Hilbert space, i.e., prevent the creation
of more than one triplon excitation per dimer site i. As in
Refs. [4,19,20] we choose projectors

Pi = 1 −
∑

γ

t̃
†
iγ t̃iγ . (17)

With the help of the Pi the transitions between the dimer states
can now be written in terms of the generalized bond operators
(15) as follows:

|t̃0〉i i〈t̃0| = Pi,

|t̃α〉i i〈t̃0| = t̃
†
iαPi,

(18)|t̃0〉i i〈t̃α| = Pi t̃iα,

|t̃α〉i i〈t̃β | = t̃
†
iα t̃iβ .

Inserted in (14), these relations allow us to rewrite the
Hamiltonian and other observables in terms of the t̃iα bosons.
In particular, the spin operators, when expressed via the t̃iα ,
obey standard spin commutation within the physical Hilbert
space defined by Eq. (16).

III. REFERENCE STATE AND HAMILTONIAN

In this section, we turn to the hypercubic-lattice coupled-
dimer model (2) and describe how to set up the 1/d expansion
for the AF ordered phase. This requires (i) to define a
suitable reference state and a corresponding Hilbert-space
rotation, (ii) to express the Hamiltonian in the generalized bond
operators, (iii) to perform a Bogoliubov transformation for the
leading-order bilinear part, and (iv) to express and normal
order the remaining Hamiltonian in terms of the Bogoliubov-
transformed triplon operators. These steps, together with a
discussion of the expansion strategy, can be found in the
following subsections.

A. Reference product state

For dominant AF interdimer interaction K , the hypercubic-
lattice model (2) realizes a collinear Néel state on each of
the m = 1,2 “layers,” with the two layers having opposite
spin orientation. Assuming that the staggered magnetization
of the ordered state points along ẑ, its description requires an
alternating linear combination of singlet and z triplet, i.e.,
we choose a Hilbert-space rotation involving a single real
condensate parameter λ:

|t̃0〉i = (|t0〉i + λi |t3〉i)/
√

1 + λ2, (19)

|t̃3〉i = (|t3〉i − λi |t0〉i)/
√

1 + λ2, (20)

|t̃1〉i = |t1〉i , |t̃2〉i = |t2〉i , (21)

with λi = λei �Q·�ri = ±λ or, equivalently,

U (i) =

⎛
⎜⎝

cλi 0 0 sλi

0 1 0 0
0 0 1 0

−sλi 0 0 cλi

⎞
⎟⎠ , (22)
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with sλi = sin tan−1 λi and cλi = cos tan−1 λi . Apparently,
|t̃0〉i smoothly interpolates between a singlet for λ = 0 and
a ẑ-oriented Néel configuration for λ = ±1. In the latter
case, the excitations created by the t̃

†
iα operators are easily

interpreted: t̃
†
i1,2 ≡ t̃

†
ix,y correspond to transverse (or single

spin-flip) excitations which will yield the Goldstone modes
of the ordered phase. In contrast, t̃

†
i3 ≡ t̃

†
iz is a longitudinal

excitation: for λ = 1 we have |t̃0〉 = |↑↓〉 and |t̃3〉 = |↓↑〉,
i.e., t̃

†
i3 flips both dimer spins. The interpretation of the modes

will be substantiated by the dispersion results obtained below.
The value of the rotation (or condensate) parameter λ is

left unspecified at this point; it depends on model parameters
and will acquire a 1/d expansion, to be described in the
following. This is similar to the behavior of the reference
state in spin-wave theory for noncollinear states, e.g., for
an antiferromagnet in a uniform field: Here, the moment
orientation receives corrections at every order in 1/S.

We note that the reference state |ψ̃0〉 = ∏
i |t̃0〉i is suitable

for an applied staggered field along ẑ, but cannot describe the
physics in a uniform field, as it yields zero net magnetization.

Linear bond-operator theory in the presence of a uniform field
using canted states has been described in Ref. [9]; we leave
the corresponding 1/d expansion for future work.

B. Real-space bond-operator Hamiltonian

The Hamiltonian of the model (2) can be expressed using
the rotated bond operators t̃iα , with arbitrary condensate
parameter λ. Inserting the projectors Pi (17), the resulting
Hamiltonian can be split as follows:

H = H0 + H1 + H2 + H3 + H4 + H5 + H6, (23)

where the Hn(λ) contain n triplon operators t̃iα and explicitly
depend on the reference-state parameter λ. In contrast to
the calculation in the paramagnetic phase, here all Hn

with odd n are nonzero even for a symmetric system with
K11 = K22.

We list the terms up to order four, as these are required for
the following 1/d expansion (recall λi = λei �Q·�ri ):

H0 = −NJ (3 − λ2)

4(1 + λ2)
− 2NKdλ2

(1 + λ2)2
+ 2Nhzλ

1 + λ2
, (24)

H1 =
∑

i

ei �Q· �ri

[
λJ

1 + λ2
− 2Kdλ(1 − λ2)

(1 + λ2)2
+ hz(1 − λ2)

1 + λ2

]
(t̃†iz + t̃iz), (25)

H2 =
∑
i,a

[
J

1 + λ2
− 2λhz

1 + λ2
+ 4Kdλ2

(1 + λ2)2

]
t̃
†
ia t̃ia +

∑
〈ii ′〉,a

K(1 − λ2)

1 + λ2
t̃
†
ia t̃i ′a +

∑
〈ii ′〉,a

K

2
(t̃†ia t̃

†
i ′a + H.c.)

+
∑

i

[
J

1 − λ2

1 + λ2
− 4λhz

1 + λ2
+ 8Kdλ2

(1 + λ2)2

]
t̃
†
izt̃iz +

∑
〈ii ′〉

K(1 − λ2)2

2(1 + λ2)2
(t̃†izt̃

†
i ′z + t̃

†
izt̃i ′z + H.c.), (26)

H3 = 2K

1 + λ2

∑
〈ii ′〉

λi[t̃
†
ix t̃

†
i ′zt̃i ′x + t̃

†
iy t̃

†
i ′zt̃i ′y + H.c.] − 2K(1 − λ2)

(1 + λ2)2

∑
〈ii ′〉

λi ′

[∑
γ

t̃
†
izt̃

†
i ′γ t̃i ′γ + t̃

†
izt̃

†
i ′zt̃i ′z + H.c.

]

+
[

2Kλ(1 − λ2)

(1 + λ2)2
− Jλ

1 + λ2
− hz(1 − λ2)

1 + λ2

]∑
i,γ

ei �Q· �ri [t̃†izt̃
†
iγ t̃iγ + H.c.], (27)

H4 = − K

2(1 + λ2)

∑
〈ii ′〉,a

[
2
∑

γ

[(1 + λ2)t̃†ia t̃
†
i ′a t̃

†
i ′γ t̃i ′γ + (1 − λ2)t̃†ia t̃

†
i ′γ t̃i ′γ t̃i ′a] + (1 + λ2)t̃†ia t̃

†
i ′a t̃izt̃i ′z − (1 − λ2)t̃†ia t̃

†
i ′zt̃izt̃i ′a + H.c.

]

− K

2(1 + λ2)2

∑
〈ii ′〉

[
2
∑

γ

[(1 − λ2)2 t̃
†
i ′zt̃

†
izt̃

†
iγ t̃iγ + (1 − λ2)2 t̃

†
izt̃

†
iγ t̃iγ t̃i ′z + 2λ2 t̃

†
izt̃

†
i ′γ t̃i ′γ t̃iz]

+ 2
∑
γ,δ

λ2 t̃
†
iγ t̃

†
i ′δ t̃iγ t̃i ′δ + 2λ2 t̃

†
izt̃

†
i ′zt̃izt̃i ′z + (1 + λ2)2 t̃

†
ix t̃

†
i ′x t̃iy t̃i ′y − (1 + λ2)2 t̃

†
ix t̃

†
i ′y t̃iy t̃i ′x + H.c.

⎤
⎦ . (28)

Here, summations over a refer to the transverse components
a = x,y, while γ,δ = x,y,z. This reflects the fact that the
transverse modes (x,y) are degenerate, but distinct from the
longitudinal (z) one.

C. Strategy for 1/d expansion

As in I, the basis for the 1/d expansion is the observation
that a suitably chosen product state |ψ̃0〉 delivers exact
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expectation values of local observables in the limit d → ∞,
with corrections vanishing as 1/d. While in the paramagnetic
phase this reference state is simply spanned by local singlets,
the triplet admixture parametrized by λ in Eq. (19) will vary
as function of the coupling ratio q inside the AF phase, such
that the condensate parameter λ acquires a 1/d expansion. As
will be shown following, λ is proportional to the staggered
magnetization (at small λ), such that λ is expected to vary
in a nonanalytic, but mean-field-like, fashion near the QPT.
According to the discussion in Sec. I A, this suggests to expand
λ2 in a Taylor series in 1/d via the following ansatz:

λ2 = λ2
0 + λ1

d
+ λ2

d2
+ · · · . (29)

The 1/d expansion now requires to perform perturbation
theory in the nonlinear couplings of H and, at the same time,
to determine the corrections to λ, keeping in mind that the
Hamiltonian itself formally depends on λ.

D. Linear part

The condensate parameter λ must be chosen such that
Hamiltonian pieces which are linear in t̃ operators vanish
because these pieces would generate an additional condensate.
To leading order, this translates into H1 = 0, i.e.,

h1a(λ,hz) ≡ λJ

1 + λ2
− 2qJλ(1 − λ2)

(1 + λ2)2
+ hz(1 − λ2)

1 + λ2
= 0.

(30)

We denote the solution of this equation by λ0(hz); for hz = 0
it reads as

λ2
0(hz =0) = 2q − 1

2q + 1
. (31)

The same result can be obtained variationally by minimizing
〈ψ̃0|H|ψ̃0〉.

From Eq. (31) we have, on the one hand, |λ0| → 1 for q →
∞, i.e., a classical Néel state emerges as the reference state
in the limit of decoupled “layers.” On the other hand, λ → 0
as q → 1

2
+

: The ordered state ceases to exist at the quantum
critical point at qc = 1

2 . This coincides with the leading-order
result for the phase boundary obtained in I. Corrections to λ

according to Eq. (29) will yield 1/d corrections to the phase
boundary. Finally, we note that a dominant staggered field
|hz| 
 J,qJ also results in |λ0| → 1.

E. Harmonic approximation

The bilinear part of the t̃ Hamiltonian H2 in Eq. (26) takes
the following form in momentum space:

H2(λ) =
∑
�k,α

[
A�kα t̃

†
�kα

t̃�kα + B�kα

2
(t̃†�kα

t̃
†
−�kα

+ H.c.)

]
. (32)

Here, momenta �k are taken from the full first Brillouin zone,
and the λ-dependent coefficients read as

A�ka = J

1 + λ2
− 2λhz

1 + λ2
+ 4qJλ2

(1 + λ2)2
+ 1 − λ2

1 + λ2
B�ka,(33)

B�ka = qJγ�k, (34)

A�kz = J
1 − λ2

1 + λ2
− 4λhz

1 + λ2
+ 8qJλ2

(1 + λ2)2
+ B�kz, (35)

B�kz = qJγ�k

(
1 − λ2

1 + λ2

)2

, (36)

where γ�k is the normalized interaction structure factor

γ�k = 1

d

d∑
n=1

cos kn. (37)

Notably, there is no mixing between the three excitation modes
at the harmonic level; this is specific to the present case of
collinear order [and to the basis choice in Eqs. (20) and (21)]
and would not apply to excitations of canted states [9].

To set the stage for a perturbative treatment, we define
the leading (in 1/d) piece of this bilinear Hamiltonian as
unperturbed system H(0)

2 ≡ H2(λ0). Its coefficients are A
(0)
�kα

≡
A�kα(λ0) and B

(0)
�kα

≡ B�kα(λ0); using hz(λ0) from Eq. (30), the

A
(0)
�kα

can be brought in the form

A
(0)
�ka

= J1 + 1 − λ2
0

1 + λ2
0

B
(0)
�ka

, A
(0)
�kz

= J2 + B
(0)
�kz

(38)

with the shorthands

J1 = J

1 − λ2
0

, J2 = J
1 + λ2

0

1 − λ2
0

. (39)

The solution of H(0)
2 can be obtained by a standard

Bogoliubov transformation

t̃�kα = u�kτ̃�kα + v�kτ̃
†
−�k,α

, (40)

and will be dubbed “harmonic approximation.” The Bogoli-
ubov coefficients obey

u2
�kα

,v2
�kα

= ±1

2
+

A
(0)
�kα

2ω̃�kα

, u�kαv�kα = −
B

(0)
�kα

2ω̃�kα

, (41)

with the eigenmode energies

ω̃�kα =
√

A
(0)
�kα

2 − B
(0)
�kα

2
. (42)

While the above formulas are valid for arbitrary staggered
field hz, we can obtain explicit expressions for the case hz = 0
using Eq. (31):

J1 = (2q + 1)J

2
, J2 = 2qJ, (43)

leading to

ω̃�ka = J
2q + 1

2

√
1 + 2γ�k

2q + 1
− 2q − 1

2q + 1
γ 2

�k , (44)

ω̃�kz = 2Jq

√
1 + γ�k

4q2
. (45)

A discussion of the dispersions is deferred to Sec. IV E.
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F. Normal-ordered Hamiltonian

To apply diagrammatic perturbation theory, we need to
convert the Hamiltonian into a normal-ordered form in terms
of bosons which diagonalize the free-particle piece. As in I,
we employ the strategy to Bogoliubov transform the leading-
order bilinear terms only, according to Eqs. (40) and (41).
Consequently, additional bilinear terms, obtained both from
corrections to the condensate parameter λ and from normal or-
dering of higher-order terms, need to be treated perturbatively.

After expressing the Hamiltonian via the τ̃ operators and
subsequent normal ordering, it takes the form

H = H′
0 + H′

1 + H′
2 + H′

3 + H′
4 + H′

5 + H′
6, (46)

where H′
n(λ) contains n of the Bogoliubov-transformed τ̃

operators. The 1/d expansion of λ (29) can be used to formally
split each H′

n into pieces arising from the different orders in
the λ expansion:

H′
n(λ) = H′

n
(0) + H′

n
(1) + H′

n
(2) + · · · , (47)

where H′
n

(0) ≡ H′
n(λ0), H′

n
(1) = H′

n(
√

λ2
0 + λ1/d) − H′

n(λ0),
and so on. With this prescription, all terms in a particular piece
H′

n
(m) are at least suppressed as 1/dm. We will make frequent

use of this splitting in the course of evaluating observables in
the next section.

We will now quote selected pieces of the τ̃ Hamiltonian
which are needed for the following calculations. As above, we
restrict ourselves to terms arising fromH0,...,4, as these are suf-
ficient to obtain the desired corrections to the order parameter
and to the mode dispersion to order 1/d. The constant term is

H′
0 = −NJ (3 − λ2)

4(1 + λ2)
− 2NKdλ2

(1 + λ2)2
+ 2Nhzλ

1 + λ2

+
∑
�k,α

[
A�kαv2

�kα
+ B�kαu�kαv�kα

]+ · · · , (48)

where the second line arises from normal ordering of H2.
Additional terms from normal ordering of H4 are of order
1/d2 and are not shown (see Sec. IV B for further comments).

It is useful to split the bilinear τ̃ terms into H′
2 = H′

2a +
H′

2b + H′
2c, where H′

2a is the unperturbed (or harmonic) piece:

H′
2a =

∑
�k,α

ω̃�kατ̃
†
�kα

τ̃�kα, (49)

while H′
2b contains the remaining terms coming from H2:

H′
2b =

∑
�k,α

{[
A

(r)
�kα

(
u2

�kα
+v2

�kα

)+ 2B
(r)
�kα

u�kαv�kα

]
τ̃
†
�kα

τ̃�kα

+
[
A

(r)
�kα

u�kαv�kα +
B

(r)
�kα

2

(
u2

�kα
+v2

�kα

)]
(τ̃ †

�kα
τ̃
†
−�kα

+ H.c.)

}
,

(50)

where A
(r)
�kα

= A�kα(λ) − A
(0)
�kα

and B
(r)
�kα

= B�kα(λ) − B
(0)
�kα

. Fi-
nally,

H′
2c =

∑
�kα

[
C�kατ̃

†
�kα

τ̃�kα + D�kα

2
(τ̃ †

�kα
τ̃
†
−�kα

+ H.c.)

]
(51)

represents the bilinear terms generated from normal ordering
of H4, with the coefficients C�kα and D�kα listed in Appendix B.
Importantly, all contributions to the coefficients in H′

2b and
H′

2c are of order 1/d or smaller.
The linear-in-τ̃ piece of the Hamiltonian reads as

H′
1 = H′

1a + H′
1b = (h1a + h1b)(u �Qz + v �Qz)(τ̃

†
�Qz

+ τ̃ �Qz)

(52)

with h1a(λ,hz) from Eq. (30) and the following contribution
from normal ordering of H3:

h1b = −2J3R4a + 2J4(R2a + R2z − R4z − R3z)

− h1a(2R2a + 2R2z + R1z) (53)

with the shorthands

J3 = 2qJλ

1 + λ2
; J4 = J3

1 − λ2

1 + λ2
. (54)

The R1...4 represent momentum summations over com-
binations of Bogoliubov coefficients and are listed in
Appendix A.

The cubic term involves interactions between a longitudinal
and two transverse excitations as well as those of three
longitudinal ones. It reads as

H′
3 =

∑
123,a

[
�a

31(τ̃ †
1aτ̃

†
2zτ̃

†
3a + τ̃1aτ̃2zτ̃3a)δQ+1+2+3

+ �a
32(τ̃ †

1aτ̃
†
3aτ̃2z + τ̃

†
2zτ̃3aτ̃1a)δQ+1−2+3

+ �a
33(τ̃ †

1aτ̃
†
2zτ̃3a + τ̃

†
3aτ̃2zτ̃1a)δQ+1+2−3

]
+
∑
123

[
�z

31(τ̃ †
1zτ̃

†
2zτ̃

†
3z + τ̃1zτ̃2zτ̃3z)δQ+1+2+3

+ �z
32(τ̃ †

1zτ̃
†
2zτ̃3z + τ̃

†
3zτ̃2zτ̃1z)δQ+1+2−3

]
, (55)

where the δ functions account for momentum conservation
up to reciprocal lattice vectors of the hypercubic lattice,
and their arguments reflect the fact that the condensate
is staggered, i.e., each longitudinal (τ̃z) excitation carries
an additional momentum �Q. Finally, the normal-ordered
quartic term may be split as H′

4 = H′az
4 + H′z

4 + H′ab
4 , with its

pieces

H′az
4 =

∑
1234,a

[
�az

41(τ̃ †
1aτ̃

†
2aτ̃

†
3zτ̃

†
4z + τ̃1aτ̃2aτ̃3zτ̃4z)δ1+2+3+4 + (

�az
42τ̃

†
1aτ̃

†
2aτ̃3zτ̃4z + �az

43τ̃
†
1aτ̃

†
2zτ̃3aτ̃4z + �az

44τ̃
†
1zτ̃

†
2zτ̃3aτ̃4a

)
δ1+2−3−4

+ �az
45(τ̃ †

1aτ̃
†
2aτ̃

†
3zτ̃4z + τ̃

†
4zτ̃3zτ̃2aτ̃1a)δ1+2+3−4 + �az

46(τ̃ †
1zτ̃

†
2zτ̃

†
3aτ̃4a + τ̃

†
4aτ̃3aτ̃2zτ̃1z)δ1+2+3−4

]
, (56)
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H′z
4 =

∑
1234

[
�z

41(τ̃ †
1zτ̃

†
2zτ̃

†
3zτ̃

†
4z + τ̃1zτ̃2zτ̃3zτ̃4z)δ1+2+3+4 + �z

42τ̃
†
1zτ̃

†
2zτ̃3zτ̃4zδ1+2−3‘−4 + �z

43(τ̃ †
1zτ̃

†
2zτ̃

†
3zτ̃4z + τ̃

†
4zτ̃3zτ̃2zτ̃1z)δ1+2+3−4

]
,

(57)

H′ab
4 =

∑
1234,ab

[
�ab

41(τ̃ †
1aτ̃

†
2aτ̃

†
3bτ̃

†
4b + τ̃1aτ̃2aτ̃3bτ̃4b)δ1+2+3+4 + (

�ab
42 τ̃

†
1aτ̃

†
2aτ̃3bτ̃4b + �ab

43 τ̃
†
1aτ̃

†
2bτ̃3aτ̃4b

)
δ1+2−3−4

+ �ab
44(τ̃ †

1aτ̃
†
2aτ̃

†
3bτ̃4b + τ̃

†
4bτ̃3bτ̃2aτ̃1a)δ1+2+3−4

]
. (58)

Explicit expressions for selected vertex functions �3,4 are
given in Appendix B.

IV. 1/d EXPANSION FOR OBSERVABLES

With the Hamiltonian at hand, we are now ready to evaluate
observables in the collinear phase of the hypercubic coupled-
dimer model in an expansion in 1/d. As in I, the calculation
will be restricted to the leading 1/d corrections beyond the
harmonic approximation.

The first step is to ensure that the linear-in-τ̃ piece H′
1

vanishes. Subsequently, standard diagrammatic perturbation
theory will be applied, with H′

2a as unperturbed piece
and H′

2b + H′
2c + H′

3 + H′
4 + H′

5 + H′
6 as perturbation. We

exclusively consider zero temperature, where all Hartree loops
of τ̃ particles vanish.

A. Reference product state and phase boundary

The condition of having no condensate-generating piece
in the final Hamiltonian H′

1 = 0 can be used to generate a
1/d expansion for the condensate parameter λ. To cover the
quantum critical point, the expansion needs to be done for λ2,
with the parametrization as in Eq. (29).

From the explicit form of H′
1 (52), we read off the condition

h1a + h1b = 0. Recalling that h1a(λ0,h
z) = 0, we see that the

1/d corrections arise from h1a(λ−λ0,h
z) and h1b(λ,hz). The

latter can be evaluated at λ0 because the R1...4 factors in Eq. (53)
are of order 1/d or smaller. Expanding h1a around λ0 yields
to order 1/d:

h1a = λ1

d

[
J
(
1 − λ2

0

)
2λ0
(
1 + λ2

0

)2 −qJ
(
1 + λ4

0 − 6λ2
0

)
λ0
(
1 + λ2

0

)3 − 2hz(
1 + λ2

0

)2

]

(59)

which has to equal −h1b. Using hz(λ0) from Eq. (30) and
solving for λ1, we find

λ1

d
= −4J4λ0(R2a + R2z − R3z)

(
1 − λ2

0

)(
1 + λ2

0

)3

J
(
1 + λ2

0

)3 − 2qJ
(
1 − λ2

0

)3 , (60)

where we have used that the R4 are of order 1/d2 and can be
neglected. This condensate correction can be simplified in the
case hz = 0 using λ0 from Eq. (31):

λ1

d
= − 8q

(2q + 1)2
(R2a + R2z − R3z). (61)

Using the explicit values of R2,3 from Appendix A, we
thus obtain the following result for the condensate parameter

at hz = 0:

λ2 = 2q − 1

2q + 1
− 1

d

[
4q3

(2q + 1)4
+ 16q2 + 1

64q3(2q + 1)2

]

+ O
(

1

d2

)
, (62)

as illustrated in Fig. 1. For q → ∞, there are no fluctuation
corrections to |λ| = 1: we expect this result to hold to all orders
in 1/d, as |λ| �= 1 implies entanglement between the “layers”
which must be absent for J = 0.

The condition λ2 = 0 describes the vanishing of the con-
densate parameter and can be used to determine the location
of the quantum critical point. The ansatz qc = 1/2 + q1c/d

plugged into Eq. (62) yields the phase boundary of the ordered
phase as

qc = 1

2
+ 3

16d
+ O

(
1

d2

)
. (63)

Importantly, the same expression was obtained in I for the
boundary of the disordered phase, by using the condition of
a vanishing triplon gap. Hence, the 1/d expansion correctly
yields a second-order QPT, with a continuous onset of the
order parameter upon increasing q.

B. Ground-state energy

We continue by determining the ground-state energy E0.
In the τ̃ -particle formalism, it is given by H′

0 (48) plus
perturbative corrections from H′

2b + H′
2c + H′

3 + H′
4 + H′

5 +
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FIG. 1. (Color online) Condensate parameter (62) for the
coupled-dimer model (2) at hz = 0. The curves correspond to d = ∞
(solid line), d = 3 (dashed line), and d = 2 (dashed-dotted line). Note
that q/(1 + q) = Kd/(J + Kd) varies linearly along the horizontal
axis.
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H′
6. The constant H′

0 depends on the condensate parameter λ

and needs to be expanded in 1/d, using the 1/d expansion
for λ itself. Given that we have determined this expansion
to order 1/d, we can calculate E0 only up to this order; this
is distinct from the disordered-phase calculation in I where
we were able to extract the 1/d2 piece as well. Importantly,
the perturbative corrections are of order 1/d2 or smaller: The
vertices in bothH′

2b andH′
2c are of order 1/d, and the diagrams

involving H′
3,...,6 contain at least two momentum summations

each contributing at least a factor of 1/d (for details see I).
Hence, we have

E0 = H′
0 + O

(
1

d2

)
= E00 + E01

d
+ O

(
1

d2

)
, (64)

where we have parametrized the first two orders in the
expansion.

The leading piece E00 is from H0 (24), evaluated at λ0:

E00

N
= −J

(
3 − λ2

0

)
4
(
1 + λ2

0

) − 2qJλ2
0(

1 + λ2
0

)2 + 2hzλ0

1 + λ2
0

= −J
(
3 + λ2

0

)
4
(
1 − λ2

0

) + 2qJλ2
0(

1 + λ2
0

)2 , (65)

where hz(λ0) from Eq. (30) has entered the second equality.
E01 receives contributions from 1/d corrections to λ and from
the normal-ordering piece in Eq. (48), where the latter can be
evaluated at λ0. The result is

E01

N
= λ1

[
J(

1 + λ2
0

)2 − 2qJ

(
1 − λ2

0

)
(
1 + λ2

0

)3 + hz
(
1 − λ2

0

)
λ0
(
1 + λ2

0

)2

]

+ q2J 3

8J 2
2

(
1 − λ2

0

1 + λ2
0

)3

− q2J 2

4J2

(
1 − λ2

0

1 + λ2
0

)4

+ q2J 3

4J 2
1

(
1 − λ2

0

) − q2J 2

2J1
, (66)

with J1 and J2 defined in Eq. (39). Eliminating hz as before
and using λ1 from Eq. (60), together with the expressions for
R2,3 from Appendix A, this can be cast into

E01

JN
= −q2

8

(
1 − λ2

0

1 + λ2
0

)5

− q2

4

(
1 − λ2

0

)
. (67)

In the limit hz = 0, our final result for the ground-state energy
reads as

E0

JN
= −4q2 + 2q + 1

8q
− 1

2d

[
1

128q3
+ q2

2q + 1

]

+ O
(

1

d2

)
. (68)

This expression is analytic even at the quantum critical point,
reflecting the mean-field value [21] α = 0 of the specific-heat
exponent α.

At the critical point, the above calculation reproduces the
ground-state energy obtained in I for the paramagnetic phase.
This is most transparent by inserting λ = 0 directly into H′

0
from Eq. (48), which then yields the leading two terms of
the 1/d expansion of E0 in the corresponding equation in I.

Alternatively, one may set λ0 = 0 in Eqs. (65) and (67) to
obtain the same result. A discussion of the limit of vanishing
intradimer coupling q → ∞ and its connection to spin-wave
theory is given in Sec. V.

C. Triplet density

Next, we calculate the triplet densities, which can be
expressed as 〈t†iαtiα〉 via triplon operators t defined on top
of a singlet background [4] |tα〉i = t

†
iα|t0〉i . Using the basis

rotation in Eqs. (19)–(21), the densities can be expressed in
terms of t̃ operators as follows:

t
†
iatia = t̃

†
ia t̃ia (a = x,y), (69)

t
†
iztiz = t̃

†
izt̃iz + λ2Pi + λi(t̃

†
iz + t̃iz)

1 + λ2
. (70)

For the corresponding expectation values, we find to order 1/d

1

N

∑
i

〈t†iatia〉 = 1

N

∑
i

〈t̃†ia t̃ia〉 = R2a, (71)

1

N

∑
i

〈t†iztiz〉 = λ2
0

1 + λ2
0

+ λ1

d

1(
1 + λ2

0

)2

− 2λ2
0

1 + λ2
0

R2a + 1 − λ2
0

1 + λ2
0

R2z. (72)

In these expressions,
∑

i〈t̃†iα t̃iα〉/N = R2α represents the result
of the harmonic approximation, with perturbative corrections
starting at order 1/d2 only [22]. Without staggered field
hz = 0, we can write the triplet densities as a function
of q:

1

N

∑
i

〈t†iatia〉 = 1

d

q2

2(2q + 1)2
+ O

(
1

d2

)
, (73)

1

N

∑
i

〈t†iztiz〉 = 2q − 1

4q
− 1

d

(
q2

2(2q + 1)2
+ 1

64q3

)

+ O
(

1

d2

)
. (74)

These results are illustrated in Fig. 2, which most prominently
shows a kink in the z triplet density at the QPT. Parenthetically,
we note that the local spin correlator can be expressed in terms
of the triplet densities according to �Si1 · �Si2 = ∑

α t
†
iαtiα − 3

4 .

D. Staggered magnetization

The staggered magnetization

Mst = 1

N

∑
i

ei �Q·Ri
〈
Sz

i1 − Sz
i2

〉
(75)

represents the order parameter of the collinear antiferromag-
net. It is most efficiently determined by taking the derivative
of the ground-state energy w.r.t. hz:

Mst = ∂E0

N∂hz
= ∂E00

N∂hz
+ 1

d

∂E01

N∂hz
+ O

(
1

d2

)
. (76)
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FIG. 2. (Color online) Triplet densities 〈t †iαtiα〉 for α = x,y and
α = z for the hypercubic-lattice dimer model at hz = 0 in d = ∞
(solid line), d = 3 (dashed line), and d = 2 (dashed-dotted line).
In the paramagnetic phase, the densities are given [4] by 〈t †iαtiα〉 =
q2/(8d) to order 1/d; the result for the antiferromagnetic phase is in
Eqs. (73) and (74).

Given the mean-field value of the order-parameter exponent
β = 1

2 , we expect M2
st to vary analytically near the QPT, and

consequently we parametrize

M2
st = M2

st0 + Mst1

d
+ Mst2

d2
+ · · · . (77)

Using Eq. (65), the leading piece is found as

Mst0 = 2λ0

1 + λ2
0

+ 2h1a(λ0,h
z)

1 + λ2
0

∂λ0

∂hz
= 2λ0

1 + λ2
0

(78)

with h1a(λ,hz) in Eq. (30). Given that h1a(λ0,h
z) = 0, the

second term vanishes; this also applies to the limit λ0 → 0
where ∂λ0/∂hz diverges. From Eq. (67), we have

∂E01

N∂hz
= 5Jq2λ0

2

(
1 − λ2

0

)4(
1 + λ2

0

)6

∂λ0

∂hz
+ Jq2λ0

2

∂λ0

∂hz

= −
[

5

(
1 − λ2

0

)4(
1 + λ2

0

)6 + 1

]

× Jq2λ0
(
1 − λ4

0

)
2
[
J (1 − 2q) + 3λ2

0J (1 + 2q) − 4hzλ3
0

] . (79)

We now focus on the limit hz = 0 where Eq. (79) can be
converted into

Mst1 = −
(
1 + λ2

0

)2

8

[
5

(
1 − λ2

0

)4(
1 + λ2

0

)6 + 1

]
, (80)

representing the second term of the expansion (77). This yields
our final result for the staggered magnetization

M2
st =

4q2 − 1

4q2
− 1

d

2q2

(2q + 1)2

[
5(2q + 1)2

256q6
+ 1

]
+O

(
1

d2

)
,

(81)

graphically shown in Fig. 3. For d = ∞, the magnetization
reaches its saturation value in the limit of decoupled “layers”
q → ∞, and fluctuation corrections generically lead to a
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FIG. 3. (Color online) Staggered magnetization per dimer (81)
derived from the 1/d expansion for the coupled-dimer model (2) at
hz = 0. The curves correspond to d = ∞ (solid line), d = 3 (dashed
line), and d = 2 (dashed-dotted line). Fluctuation corrections lead to
a maximum of Mst at some q < ∞ (see text). We note that solving
M2

st = 0 using a truncated series defines a qc(d) which is distinct from
the expansion result (63) evaluated at fixed finite d , because M2

st from
Eq. (81) evaluated at qc from Eq. (63) vanishes only up to order 1/d;
this is a natural series-expansion property, as already discussed in
Sec. IV E of I.

reduction of Mst. Interestingly, these fluctuation effects cause
Mst to be maximal at some finite value of the interlayer
coupling, indicating that interlayer and intralayer fluctua-
tions compete. This is qualitatively consistent with results
for the bilayer square-lattice magnet [23,24]. As shown in
Sec. V, our fluctuation corrections obtained in the limit
q → ∞ match those obtained from spin-wave theory in this
limit.

The vanishing of the order parameter Mst upon decreasing
q can be used to define the boundary qc of the ordered phase,
and solving for qc we find the same expression as in Eq. (63),
showing internal consistency of our method.

Last but not least, we emphasize that the staggered
magnetization cannot only be calculated as a derivative of
the ground-state energy, but also directly as the expectation
value (75), with identical results as required by thermodynamic
consistency. Importantly, the expectation-value calculation at
order 1/d involves both fluctuations around the product state
|ψ̃0〉, described by t̃ operators, as well as corrections to |ψ̃0〉,
i.e., to the condensate parameter λ. We note that the latter
corrections were overlooked in Ref. [9]; similar problems
have appeared in the literature on frustrated hard-core boson
systems (see Ref. [26] for a summary).

E. Mode dynamics

The elementary excitations of the AF phase are generalized
triplons. In contrast to the paramagnetic phase with a triply
degenerate excitation spectrum, here we have to distinguish
Goldstone and non-Goldstone modes, dubbed transverse and
longitudinal, respectively. In the following, we will determine
the mode dispersions to order 1/d, restricting the concrete
evaluation to the field-free case hz = 0.

The leading-order dispersions are those from the harmonic
approximations ω̃�ka and ω̃�kz displayed in Eqs. (44) and (45).
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Perturbative corrections arise from H′
2b + H′

2c + H′
3 + H′

4 +
H′

5 + H′
6 and are suppressed at least as 1/d. Their calculation

parallels that in I, and we refer the reader to that paper for
details. In particular, to order 1/d it is sufficient to determine
the normal self-energies �N of the τ̃ particles, and the
renormalized mode energies obey

�̃2
�k = ω̃2

�k + 2ω̃�k�N (�k,ω̃�k). (82)

We first consider the a = x,y modes: as we will see in
the following, these modes remain degenerate and represent
the transverse Goldstone modes of the system. The relevant
self-energy diagrams contributing to O(1/d) are listed in Ap-
pendix C, together with their analytic expressions. Expressing
these self-energies at hz = 0 in terms of q we find, using
Eq. (82), the following result for the dispersion of the a = x,y

modes:

�̃2
�ka

J 2
= (2q + 1)2

4

[
1 + 2γ�k

2q + 1
− γ 2

�k
2q − 1

2q + 1

]
− 1

d

1 + γ�k
128q2(2q + 1)2

(
32q2 + 4q2γ 2

�k + 8q − 4qγ�k − γ 2
�k − 2γ�k

)
× [

1024q8(γ�k − 1)
(
8 + γ 2

�k
)+ 1024q7(γ�k − 1)

(
10 − γ�k + γ 2

�k
)− 256q6(γ�k + 2)

(
4 + 3γ�k + γ 2

�k
)

− 256q5
(
γ 3

�k − γ 2
�k + 20γ�k − 4

)− 16q4
(
γ 3

�k − 21γ 2
�k + 64γ�k − 8

)− 16q3
(
γ 3

�k − 8γ 2
�k − 29γ�k + 14

)
+ 8q2

(−18 + 25γ�k + 9γ 2
�k
)+ 4q

[−10 + γ�k(γ�k + 1)(γ�k + 3)
]+ (

γ 3
�k + γ 2

�k − 2γ�k − 4
)] + O

(
1

d2

)
. (83)

This expression has the property �̃2
�Qa

= 0 for all q, i.e., both transverse modes are soft at the ordering wave vector. This is
the property expected for Goldstone modes; recall that our momenta are taken from the full first Brillouin zone. Expanding
around �k = �Q we can introduce a velocity ca of the Goldstone mode according to �̃2

�ka
= c2

a(�k − �Q)2/d, with ca evaluating
to

ca

J
=
√

q(2q + 1)

2

[
1 + 1

q(2q + 1)3(6q + 1)d

(
12q5 + 14q4 − 2q3 − 4q2 − 5q

16
+ 13

32
+ 7

64q
+ 1

128q2

)]
+ O

(
1

d2

)
. (84)

The velocity is nonsingular at the QPT, and an explicit evaluation at q = qc [Eq. (63)] yields Eq. (9) quoted in Sec. I B. Importantly,
this velocity equals the longitudinal-mode velocity calculated below [Eq. (88)] as well as the triplon velocity in the disordered
phase [4] if both are evaluated at q = qc. This demonstrates a smooth evolution of the excitation modes across the quantum critical
point.

We alert the reader that the connection between the modes discussed here and the signal in inelastic neutron scattering will be
discussed in Sec. IV F. In particular, the distinction between “even” and “odd” excitations w.r.t. to the spin indices within each
dimer will only be made at the level of response functions, while the modes discussed here are defined for dimers and hence do
not carry an even/odd quantum number.

We now consider the z mode which will be interpreted as a longitudinal amplitude (or Higgs) mode. The individual contributions
to the self-energy are listed in Appendix C, from which we obtain the following 1/d expansion for the z-mode dispersion at
hz = 0:

�̃2
�kz

J 2
= [4q2 + γ�k] + 1

32d

[
− 1

q2
− 16

(2q + 1)2
+ 2γ 2

�k
(γ�k − 3)(γ�k − 1)2

4q + 1 − γ�k
− 24

(γ�k − 3)(γ�k − 1)

γ�k − 12q2

+ 2
(
4 − 3γ�k + γ 2

�k
)(−8 − γ�k + γ 2

�k
)+ 8

6 − γ�k + γ 2
�k

2q + 1
+ 8q

(
4 − γ 2

�k + γ 3
�k
)]+ O

(
1

d2

)
. (85)

This dispersion is generally gapped, with a minimum energy at �k = �Q. Parametrizing �̃2
�kz

= �2
z + c2

z (�k − �Q)2/d we find for the
mode gap

�2
z

J 2
= 4q2 − 1 + 1

32d

[
− 1

q2
− 16

(2q + 1)2
+ 48

2q + 1
+ 192

12q2 + 1
− 96 + 16q

]
+ O

(
1

d2

)
. (86)

To leading order, we see that �z = 0 at q = 1
2 . Examining the

1/d corrections shows that �z = 0 to order 1/d for q = qc

from Eq. (63), i.e., the gap vanishes at the quantum critical
point. In its vicinity, the gap varies with a critical exponent
νz = 1

2 as follows:

�z

J
=
[

2 − 5

8d
+ O

(
1

d2

)]√
q − qc (87)

which is Eq. (8) quoted in the Introduction. The z-mode
velocity obeys

cz

J
= 1√

2

[
1 + 1

32d

(
14

2q + 1
− 4

(2q + 1)2
− 72

12q2 + 1

+ 96

(12q2 + 1)2
+ 6 + 20q

)]
+ O

(
1

d2

)
(88)

which again yields Eq. (9) if evaluated at q = qc.
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FIG. 4. (Color online) Mode gaps for the hypercubic-lattice cou-
pled dimer model as obtained from the 1/d expansion, for d = ∞
(solid line), d = 3 (dashed line), and d = 2 (dashed-dotted line).
The triplon gap �para of the paramagnetic phase, as calculated in
I, is shown for small q, whereas the longitudinal (or Higgs) gap
�z is shown for large q. Note that q/(1 + q) = Kd/(J + Kd)
varies linearly along the horizontal axis, and the gaps are plotted
as �/(J + Kd).

Together, this allows us to consistently interpret the z mode
as a longitudinal (or Higgs) mode of the ordered phase: It is
soft at the QPT where it merges with the gapless transverse
modes. Inside the ordered phase, the longitudinal mode is
gapped, corresponding to amplitude fluctuations of the AF
order parameter. We note that this mode is expected to
acquire severe damping deep inside the ordered phase due to
two-particle decay into transverse modes [27]. However, the
corresponding decay rates are exponentially small as d → ∞
and hence cannot be obtained from the 1/d expansion [4].

Our results for Higgs gap in the ordered phase, combined
with those from I for the triplon gap in the disordered phase,
are illustrated in Fig. 4. Near criticality, we find that their ratio
obeys

�z(qc + δq)

�para(qc − δq)
=

√
2 (89)

to order 1/d. In fact, this result has been previously derived
[28] from a φ4 order-parameter field theory and is valid for any
d above the upper critical dimension d+

c . Remarkably, neutron
scattering data obtained in Ref. [29] for TlCuCl3 have found

this relation to be obeyed to good accuracy; for this material
d = d+

c = 3 such that mean-field behavior is expected up to
logarithmic corrections.

F. Dynamic susceptibility

We finally connect the excitation modes to the dynamic
spin susceptibility

χα(�k,ω) = −ı

∫ ∞

−∞
dt eıωt 〈TtSα(�k,t)Sα(−�k,0)〉, (90)

as measured by inelastic neutron scattering. For simplicity,
we restrict ourselves to the single-mode approximation, i.e.,
we do not consider excitation continua, and we calculate the
distribution of mode weights to leading order (1/d)0 only.

The susceptibility can be probed in the even (e) and odd (o)
channels of each dimer, corresponding to the operators

Se/o
α = S1

α ± S2
α. (91)

These can be rewritten using the rotated triplon operators t̃

(15). The leading-order single-mode expressions read as

Se
x(�k) = iλ√

1 + λ2
[t̃(�k− �Q)y − t̃

†
(−�k− �Q)y

], (92)

Se
y(�k) = iλ√

1 + λ2
[t̃†

(−�k− �Q)x
− t̃(�k− �Q)x], (93)

Se
z (�k) = 0, (94)

So
x (�k) =

t̃
†
−�kx

+ t̃�kx√
1 + λ2

, (95)

So
y (�k) =

t̃
†
−�ky

+ t̃�ky√
1 + λ2

, (96)

So
z (�k) =

(1 − λ2)(t̃†−�kz
+ t̃�kz) + 2λ

√
Nδ�k, �Q

1 + λ2
. (97)

We note that corrections introduced by the projectors Pi

(17) enter at order 1/d, and that Se
z creates a two-particle

continuum only. Using the Bogoliubov transformation (40),
we can express the susceptibility in terms of the τ̃ Green’s
functions. Using the fact that 2 �Q is a reciprocal lattice vector,
we obtain

χe
x (�k,ω) = λ2

1 + λ2
(u(�k+ �Q)y − v(�k+ �Q)y)2

[
GN

y (�k + �Q,ω) + GN
y (�k + �Q,−ω) − GA

y (�k + �Q,ω) − GA
y (�k + �Q,−ω)

]
, (98)

χo
x (�k,ω) = 1

1 + λ2
(u�kx + v�kx)2

[
GN

x (�k,ω) + GN
x (�k,−ω) + GA

x (�k,ω) + GA
x (�k,−ω)

]
, (99)

χo
z (�k,ω) =

(
1 − λ2

1 + λ2

)2

(u�kz + v�kz)
2
[
GN

z (�k,ω) + GN
z (�k,−ω) + GA

z (�k,ω) + GA
z (�k,−ω)

]+ 4λ2N

(1 + λ2)2
δ(ω)δ�k, �Q. (100)

The expressions for χy are obtained from χx by replacing
x ↔ y.

To leading order in 1/d it is sufficient to evaluate the
expressions at the harmonic level, where GA = 0 and λ = λ0.
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Using the degeneracy of the transverse modes ω̃�kx = ω̃�ky ≡
ω̃�ka , u�kx = u�ky ≡ u�ka , etc., we obtain for the transverse
susceptibilities

χe
a (�k + �Q,ω) = λ2

0(u�ka − v�ka)2

1 + λ2
0

[
1

ω − ω̃�ka

− 1

ω + ω̃�ka

]
,

(101)

χo
a (�k,ω) = (u�ka + v�ka)2

1 + λ2
0

[
1

ω − ω̃�ka

− 1

ω + ω̃�ka

]
. (102)

Hence, these susceptibilities obtain single-mode contributions
from the transverse modes only. Interestingly, the mode
momentum is shifted by �Q in the even channel, but unshifted
in the odd channel, and the mode weight in the even channel
vanishes upon approaching the transition to the disordered
phase. Comparing with the signal in the disordered phase
calculated in I, we conclude that the primary signal is in the
odd channel which also smoothly connects to the triplon-mode
response of the paramagnet, whereas the signal in the even
channel can be interpreted as a replicated signal due to
condensate Bragg scattering (note that the condensate is in
the odd channel, i.e., antisymmetric w.r.t. the spin indices in
each dimer, as well).

The odd-channel longitudinal susceptibility is

χo
z (�k,ω) =

(
1 − λ2

0

1 + λ2
0

)2

(u�kz+v�kz)
2

[
1

ω − ω̃�kz

− 1

ω + ω̃�kz

]

+ 4λ2
0N(

1 + λ2
0

)2 δ(ω)δ�k, �Q, (103)

where the last term χo
z corresponds to the magnetic Bragg

peak of the ordered state, recall Mst = 2λ0/(1 + λ2
0) to leading

order. We conclude that the amplitude (or Higgs) mode is
visible in the longitudinal susceptibility. Upon approaching
the QPT, its weight is finite, smoothly connecting to the triplon
signal. However, in the limit of vanishing intradimer coupling,
its weight is zero: In this limit, the mode describes two flipped
spins w.r.t. the Néel state (see Sec. III A) such that it cannot be
excited by the action of a single-spin operator.

As shown in I, higher orders in the 1/d expansion for
χ (�k,ω) place the poles at the renormalized mode frequencies
�̃�kα and produce 1/d corrections to the weights. Rewriting
the mode weights via Z (o)

�kα
= (J/�̃�kα)W (o)

�kα
and Z (e)

�k+ �Qα
=

(J/�̃�kα)W (e)
�k+ �Qα

, we finally find for hz = 0

W (o)
�ka

= (2q + 1)[2q(1 − γ�k) + 1 + γ�k]

8q
+ O

(
1

d

)
, (104)

W (o)
�kz

= 1

2q
+ O

(
1

d

)
(105)

in the odd channel, and

W (e)
�k+ �Qa

= (2q − 1)(2q + 1)(1 + γ�k)

8q
+ O

(
1

d

)
(106)

in the even channel where the momentum shift by �Q has been
made explicit. While the transverse modes, which are gapless
at the ordering wave vector �Q, show up in the odd channel
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FIG. 5. (Color online) Dispersion of poles in the odd-channel
dynamic susceptibility for d = ∞ (solid line), d = 3 (dashed line),
and d = 2 (dashed-dotted line), for q = 0.6 (top) and q = 5 (bottom).
Left: χa(�k,ω) (a = x,y) with poles given by the transverse modes
(83). Right: χz(�k,ω) with poles from the longitudinal mode (85). The
pole weights are in Eqs. (104) and (105). Note that the energies are
plotted as ω/(J + Kd).

with a spectral weight diverging ∝1/ω, their �Q-shifted replica
is seen in the even channel, but here the weight vanishes ∝ω

due to the factor (1 + γ�k) in Eq. (106).
The pole dispersion for both the transverse and longitudinal

susceptibility in the odd channel is illustrated in Fig. 5.
This appears qualitatively consistent with results from series
expansions for the bilayer Heisenberg model [25], noting the
�Q momentum shift in the even channel. Two things concerning

the mode dispersion deep in the ordered phase are worth
noticing: the longitudinal mode has a very weak dispersion,
and the transverse modes develop a second dispersion mini-
mum at �k = 0. The corresponding extreme limit of vanishing
intradimer coupling, q → ∞, will be discussed in the next
section.

V. VANISHING INTRADIMER COUPLING AND
SPIN-WAVE THEORY

For J = 0, the system described by Eq. (2) consists of
two decoupled hypercubic antiferromagnets. In this limit,
conventional spin-wave theory provides a natural approach,
and we will show that our 1/d expansion produces results
consistent with those of spin waves. We will also comment on
the role of the longitudinal mode in the J = 0 limit.

A. Spin waves and 1/d expansion

Spin-wave theory represents an expansion around a per-
fectly ordered state of a spin-S quantum magnet, with the
small parameter being 1/S. A convenient formulation utilizes
the Holstein-Primakoff representation [32] of spin operators
which is used to generate a Hamiltonian of interacting bosons.
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Here, we apply spin-wave theory to a spin-S Heisenberg model
on a hypercubic lattice in d dimensions with nearest-neighbor
interaction K and demonstrate that it can be used to generate
a 1/d expansion. As the formalism is standard [30], we only
quote the results.

We start with the ground-state energy per spin. To order
1/S the spin-wave expression reads as [30,31]

ESW
0

N
= −KzS2

2

⎡
⎣1 + 1

S

⎛
⎝1 − 2

N

∑
�k

′√
1 − γ 2

�k

⎞
⎠
⎤
⎦ ,

(107)

where γ�k is defined in Eq. (37), z = 2d the coordination
number, N the number of sites, and the momentum summation
is now over the reduced Brillouin zone of the antiferromagnetic
state. A 1/d expansion of this result can be generated by
expanding the argument of the momentum sum in powers of
γ�k (see I for an extensive discussion). Using (2/N)

∑′
�k γ 2

�k =
1/(2d), we eventually find

ESW
0

N
= −KdS2

{
1 + 1

S

[
1

4d
+ O

(
1

d2

)]}
. (108)

In a similar way, we can obtain an expansion for the staggered
magnetization per spin. The general O(1/S) expression reads
as

MSW
st = S

⎡
⎣1 − 1

2S

⎛
⎝ 2

N

∑
�k

′ 1√
1 − γ 2

�k

− 1

⎞
⎠
⎤
⎦ . (109)

Expanding in powers of γ�k under the momentum sum yields

MSW
st = S

{
1 − 1

S

[
1

8d
+ O

(
1

d2

)]}
. (110)

For both E0 and Mst it can be shown that higher-order terms in
the 1/S expansion [31] are suppressed at least as 1/d2 in the
large-d limit. This implies that spin-wave theory to order 1/S

is sufficient to generate the first two terms of the 1/d expansion
for arbitrary value of S.

B. Bond-operator theory for vanishing intradimer coupling

We can compare the above expressions with the results
from the 1/d expansion. The ground-state energy per dimer
[Eq. (68)] in the limit q → ∞ reduces to E0/(qJN ) =
−1/2 − 1/(4d), while the staggered magnetization per dimer
[Eq. (81)] becomes in the same limit Mst = 1 − 1/(4d).
Considering that a dimer consists of two spins, these results
match the spin-wave results in Eqs. (108) and (110) if evaluated
for S = 1

2 .
In addition, one may compare the leading-order (transverse)

mode dispersions in both approaches which again yields
perfect agreement. In particular, the two transverse modes of
bond-operator approach obey ω̃�k = ω̃�k+ �Q and are gapless both

at �k = 0 and �Q. This yields a total of four Goldstone modes,
which is the correct number for two independent subsystems
which are collinearly ordered. (At any finite J there are only
two Goldstone modes.) Moreover, the mode weights in the
even and odd channels are identical in the q → ∞ limit:

This is required because the fluctuations in the two layers
are independent.

The comparison so far suggests that the present bond-
operator theory on the one hand and spin-wave theory on the
other hand are identical in the limit of decoupled layers, at least
if applied for large d. This, however, is a somewhat superficial
conclusion: In bond-operator theory, there is a longitudinal
mode which has no counterpart in the spin-wave approach.
According to its definition, this mode involves simultaneous
excitations in both layers, which appears unnatural for J =
0. Consequently, the longitudinal mode is dispersionless in
this limit, �̃�kz = 2Kd (85), and carries zero spectral weight
[Eq. (97)].

This does, however, not imply that the longitudinal mode
can be discarded when performing bond-operator calculations
for J = 0. The self-energy of the transverse modes also
involves longitudinal-mode propagators (see Appendix C).
These self-energy contributions are nonvanishing and are
required to fulfill the Goldstone condition �̃ �Qa = 0 at order
1/d. This also implies that higher-order calculations in the
two approaches generically involve different intermediate
quantities, diagrams, etc., whereas final results are expected
to match.

VI. SUMMARY

We have demonstrated that the large-d expansion for
coupled-dimer magnets, introduced in I, can be applied
to magnetically ordered phases. It delivers consistent zero-
temperature results, order by order in 1/d, across the entire
phase diagram including the quantum critical point and its
vicinity. Explicit results have been given for coupled dimers
on a hypercubic lattice. We have also shown that, in the extreme
limit of vanishing intradimer coupling where longitudinal
fluctuations do not enter most observables, our leading-order
1/d corrections agree with those derived from nonlinear
spin-wave theory.

The success of our method shows that the bond-operator
formalism, originally developed as efficient but uncontrolled
mean-field theory [8], can be cast into a controlled and
systematic theory for coupled-dimer magnets. Applications to
field-induced quantum phase transitions and to systems with
geometric frustration are foreseen.

On the methodological side, an interesting direction is to
generalize the systematic approach presented here to finite
temperatures. Inside the ordered phase, the challenge lies
in finding a suitable temperature-dependent reference state,
with the condensate vanishing as the Néel temperature is
approached from below.
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APPENDIX A: MOMENTUM SUMS AND EXPECTATION
VALUES

Here, we quote momentum sums over combinations of
Bogoliubov coefficients (41), as used in the main text, to
O(1/d). According to our philosophy of 1/d expansion, we
shall then expand these coefficients in powers of γ�k inside the
summation to extract a 1/d expansion. For instance, expansion
in γ�k gives

u�kav�ka = −Jqγ�k
2J1

+
J 2q2γ 2

�k
2J 2

1

1 − λ2
0

1 + λ2
0

+ O
(
γ 3

�k
)
, (A1)

u�kzv�kz = −Jqγ�k
2J2

(
1 − λ2

0

1 + λ2
0

)2

+
J 2q2γ 2

�k
2J 2

2

(
1 − λ2

0

1 + λ2
0

)4

+O
(
γ 3

�k
)

(A2)

with J1 and J2 defined in Eq. (39). Now, using the properties
of momentum sums of γ�k , i.e.,

1

N

∑
�k

γ�k = 0 ,
1

N

∑
�k

γ 2
�k = 1

2d
, (A3)

etc., we get

1

N

∑
�k

u�kav�ka = J 2q2

4J 2
1 d

1 − λ2
0

1 + λ2
0

+ O(d−2), (A4)

1

N

∑
�k

u�kzv�kz = J 2q2

4J 2
2 d

(
1 − λ2

0

1 + λ2
0

)4

+ O(d−2). (A5)

Similarly, other combinations of Bogoliubov coefficients when
summed over �k give a 1/d expansion. Following is the
summary of relevant momentum sums:

R1a = 1

N

∑
�k

u�kav�ka = J 2q2

4J 2
1 d

1 − λ2
0

1 + λ2
0

+ O(d−2), (A6)

R2a = 1

N

∑
�k

v2
�ka

= q2J 2

8J 2
1 d

+ O(d−2), (A7)

R3a = 1

N

∑
�k

γ�ku�kav�ka = − qJ

4J1d
+ O(d−2), (A8)

R4a = 1

N

∑
�k

γ�kv
2
�km

= O(d−2), (A9)

R1z = 1

N

∑
�k

u�kzv�kz = J 2q2

4J 2
2 d

(
1 − λ2

0

1 + λ2
0

)4

+ O(d−2),

(A10)

R2z = 1

N

∑
�k

v2
�kz

= J 2q2

8J 2
2 d

(
1 − λ2

0

1 + λ2
0

)4

+ O(d−2), (A11)

R3z = 1

N

∑
�k

γ�ku�kzv�kz = − Jq

4J2d

(
1 − λ2

0

1 + λ2
0

)2

+ O(d−2),

(A12)
R4z = 1

N

∑
�k

γ�kv
2
�kz

= O(d−2). (A13)

Note that these expressions are valid for arbitrary hz, with its
value entering via λ0(hz) according to Eq. (30).

The R1...4 are related to expectation values of the leading-
order bilinear Hamiltonian (32) as follows:∑

i

〈t†iαt
†
iβ〉 = 3NδαβR1α,

∑
i

〈t†iαtiβ〉 = 3NδαβR2α,

∑
〈ij〉

〈t†iαt
†
jβ〉 = 3NdδαβR3α,

∑
〈ij〉

〈t†iαtjβ〉 = 3NdδαβR4α.

(A14)

Within self-energy expressions we also need

R′
az(�k) = 1

N

∑
�k′

u�k′av�k′au(�k′−�k)zv(�k′−�k)z = J 2γ�k
32J1J2d

. (A15)

Similar to I, the anomalous expectation value 〈t̃†iα t̃
†
iα〉,

being finite at the harmonic level, vanishes upon taking
into account 1/d corrections as required by the constraint
[22].

APPENDIX B: HAMILTONIAN COEFFICIENTS

We start by listing the coefficients of H′
2c, representing the bilinear terms arising from normal ordering of quartic

interactions

C�ka = (
u2

�ka
+ v2

�ka

)
qJ

[
−2γ�kR1a − 6R3a − 6(γ�kR2a + R4a)� − 4(R′

4a + 2R2a)
λ2

(1 + λ2)2
+ R′

4a

+ (R′
4z − 2γ�kR2z)� − 2(R3z + R4z)�

2 − 8R2z

λ2

(1 + λ2)2

]

− 2u�kav�kaqJ

[
6γ�kR2a + 2R4a + 2(γ�kR1a + R3a)� + 4R′

3a

λ2

(1 + λ2)2
+ R′

3a + 2γ�kR2z + R′
3z

]
, (B1)

D�ka = −(u2
�ka

+ v2
�ka

)
qJ

[
6γ�kR2a + 2R4a + 2(γ�kR1a + R3a)� + 4R′

3a

λ2

(1 + λ2)2
+ R′

3a + 2γ�kR2z + R′
3z

]
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+ 2u�kav�kaqJ

[
−2γ�kR1a − 6R3a − 6(γ�kR2a + R4a)� − 4(R′

4a + 2R2a)
λ2

(1 + λ2)2
+ R′

4a

+ (R′
4z − 2γ�kR2z)� − 2(R3z + R4z)�

2 − 8R2z

λ2

(1 + λ2)2

]
, (B2)

C�kz = −(u2
�kz

+ v2
�kz

)
qJ

[
(2γ�kR1z + 4R3z + 4R4z + 4γ�kR2z)�

2 + 16(R2z + R′
4z)

λ2

(1 + λ2)2
+ 4R3a

+ 2(2R4a − R′
4a)� + 4γ�kR2a�

2 + 16R2a

λ2

(1 + λ2)2

]

− 2u�kzv�kzqJ

[
(4γ�kR2z + 2R4z + 2R3z + 2γ�kR1z)v

2 + 16R′
3z

λ2

(1 + λ2)2
+ 2R′

3a + 4γ�kR2a�
2

]
, (B3)

D�kz = −(u2
�kz

+ v2
�kz

)
qJ

[
(4γ�kR2z + 2R4z + 2R3z + 2γ�kR1z)�

2 + 16R′
3z

λ2

(1 + λ2)2
+ 2R′

3a + 4γ�kR2a�
2

]

− 2u�kzv�kzqJ

[
(2γ�kR1z + 4R3z + 4R4z + 4γ�kR2z)�

2 + 16(R2z + R′
4z)

λ2

(1 + λ2)2
+ 4R3a

+ 2(2R4a − R′
4a)� + 4γ�kR2a�

2 + 16R2a

λ2

(1 + λ2)2

]
, (B4)

where R’s are momentum summations of some combination of Bogoliubov coefficients (see Appendix A) and � = 1−λ2

1+λ2 . The
cubic vertices entering H′

3 read as

�a
31 = [J3γ2+3 + J4γ1+3 + h1a(λ,hz)](u1au2zv3a + v1av2zu3a), (B5)

�a
32 = [J3γ3−2 + J4γ1+3 + h1a(λ,hz)](u1av2zv3a + v1au2zu3a), (B6)

�a
33 = [J3γ2−3 + J4γ1−3 + h1a(λ,hz)](u1au2zu3a + v1av2zv3a)[J3γ1+2 + J4γ1−3 + h1a(λ,hz)](v1au2zv3a + u1av2zu3a), (B7)

�z
31 = [2J4γ2+3 + h1a(λ,hz)](u1zu2zv3z + v1zv2zu3z), (B8)

�z
32 = [2J4γ2−3 + h1a(λ,hz)](u1zu2zu3z + u1zv2zv3z + v1zu2zu3z + v1zv2zv3z)

+ [2J4γ1+2 + h1a(λ,hz)](v1zu2zv3z + u1zv2zu3z). (B9)

The expressions for the quartic vertices are lengthy, and in the following we only show selected ones:

�az
41 = −qJ

[
γ2+3+4(u1au2au3zv4z + v1av2av3zu4z) + �γ2+3+4(u1av2av3zu4z + v1au2au3zv4z)

+ γ2+4

2
(u1au2av3zv4z + v1av2au3zu4z) − �

γ2+4

2
(u1av2av3zu4z + v1au2au3zv4z) + �2(γ3u1av2au3zu4z + γ3v1au2av3zv4z

+ γ4v1au2au3zv4z + γ4u1av2av3zu4z) + 4λ2γ1+2

(1 + λ2)2
(v1au2av3zu4z + u1av2au3zv4z)

]
, (B10)

�az
45 = −qJ

[
�γ2+3−4(u1av2au3zu4z + u1av2av3zv4z + v1au2au3zu4z + v1au2av3zv4z)

+ γ2+3−4(u1au2au3zu4z + u1au2av3zv4z + v1av2au3zu4z + v1av2av3zv4z)

+ γ2−4

2
(u1au2av3zu4z + v1av2au3zv4z) + γ2+3

2
(u1au2av3zu4z + v1av2au3zv4z)

− �

2
(γ2+3u1av2au3zu4z + γ2+3v1au2av3zv4z + γ2−4u1av2av3zv4z + γ2−4v1au2au3zu4z)

+�2(γ3u1av2au3zv4z + γ3v1au2av3zu4z + γ3v1au2av3zv4z + γ3u1av2au3zu4z

+ γ4u1av2au3zv4z + γ4v1au2av3zu4z + γ4v1au2au3zu4z + γ4u1av2av3zv4z)

+ 4λ2

(1 + λ2)2
γ1+2(v1au2au3zu4z + v1au2av3zv4z + u1av2au3zu4z + u1av2av3zv4z)

]
, (B11)

�az
46 = −qJ

[
�(γ1+2−4v1zu2zu3au4a + γ1+2−4u1zv2zv3av4a + γ1+2+3v1zu2zv3av4a + γ1+2+3u1zv2zu3au4a)

+ (γ1+2−4u1zv2zu3av4a + γ1+2−4v1zu2zv3au4a + γ1+2+3u1zv2zu3av4a + γ1+2+3v1zu2zv3au4a)
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+ γ2−4

2
(v1zv2zu3av4a + u1zu2zv3au4a) + γ2+3

2
(v1zv2zu3av4a + u1zu2zv3au4a)

− �

2
(γ2+3v1zu2zv3av4a + γ2+3u1zv2zu3au4a + γ2−4v1zu2zu3au4a + γ2−4u1zv2zv3av4a)

+�2(γ1u1zu2zu3au4a + γ1u1zu2zv3av4a + γ1v1zv2zu3au4a + γ1v1zv2zv3av4a

+ γ2u1zv2zu3au4a + γ2u1zv2zv3av4a + γ2v1zu2zu3au4a + γ2v1zu2zv3av4a)

+ 4λ2

(1 + λ2)2
γ3−4(u1zv2zu3au4a + u1zv2zv3av4a + v1zu2zu3au4a + v1zu2zv3av4a)

]
, (B12)

�z
41 = −qJ�2γ1(u1zu2zu3zv4z + v1zv2zv3zu4z) − qJ

(
γ4�

2 + 4γ2+4λ
2

(1 + λ2)2

)
(u1zu2zv3zv4z + v1zv2zu3zu4z), (B13)

�z
43 = −qJ�2 [γ1(u1zu2zu3zu4z + u1zu2zv3zv4z + u1zv2zu3zv4z + v1zu2zv3zu4z

+ v1zv2zu3zu4z + v1zv2zv3zv4z) +γ4(v1zu2zu3zv4z + u1zv2zv3zu4z)]

− qJ

(1 + λ2)2
[(γ4(1 − λ2)2 + 4γ2−4λ

2)(u1zu2zv3zu4z + v1zv2zu3zv4z)

+ (γ3(1 − λ2)2 + 4γ2+3λ
2)(u1zu2zv3zu4z + v1zv2zu3zv4z)

+ (γ2(1 − λ2)2 + 4γ2−4λ
2)(u1zv2zv3zv4z + v1zu2zu3zu4z)

+ (γ1(1 − λ2)2 + 4γ1+2λ
2)(v1zu2zv3zv4z + u1zv2zu3zu4z)], (B14)

�ab
41 = −qJγ2+3+4(u1au2au3bv4b + v1av2av3bu4b) − qJ�γ2+3+4(u1av2av3bu4b + v1au2au3bv4b)

− 2qJλ2

(1 + λ2)2
γ3+4u1av2av3bu4b − qJ

2
γ2+4(u1au2av3bv4b − u1av2av3bu4b)(1 − δab), (B15)

�ab
44 = −qJ [γ2+3−4(u1au2au3bu4b + u1au2av3bv4b + v1av2au3bu4b + v1av2av3bv4b)

+ γ1+2−4(u1av2au3bv4b + v1au2av3bu4b) +γ1+2+3(u1av2au3bv4b + v1au2av3bu4b)]

− qJ� [γ2+3−4(u1av2au3bu4b + u1av2av3bv4b + v1au2au3bu4b + v1au2av3bv4b)

+ γ1+2−4(v1au2au3bu4b + u1av2av3bv4b) +γ1+2+3(v1au2av3bv4b + u1av2au3bu4b)]

− 2qJλ2

(1 + λ2)2
[γ1+2(v1au2au3bu4b + v1au2av3bv4b) + γ3−4(u1av2au3bu4b + u1av2av3bv4b)]

− qJ

2
[γ2−4(u1au2av3bu4b + v1av2au3bv4b − v1au2au3bu4b − u1av2av3bv4b)

+ γ2+3(u1au2av3bu4b + v1av2au3bv4b −u1av2au3bu4b − v1au2av3bv4b)] (1 − δab). (B16)

APPENDIX C: SELF-ENERGIES

This Appendix is devoted to the normal self-energies of the τ̃ particles, needed for determining the mode dispersion to order
1/d.

The self-energy diagrams for the transverse modes are shown in Fig. 6. Evaluating the frequency and momentum integrals,
we find to order 1/d:

�6(a)(�k,ω̃) = A
(1)
�ka

(
u2

�ka
+ v2

�ka

)+ 2B
(1)
�ka

u�kav�ka + C�ka, (C1)

�6(b)(�k,ω̃) = 1

ω̃ − J1 − J2

[
u2

�ka

(
J 2

3 + J 2
4 − 2J3J4γ�k

2d
+ 2J 2

3 γ�kR
′
3z(�k − �Q) − 2J3J4γ�kR

′
3z( �Q) + J 2

3 γ 2
�k R2z

)

+ v2
�ka

J 2
3 γ 2

�k R2a + 2u�kav�ka

(
J 2

3 γ�kR3a − 2J3J4γ�kR
′
3a(�k) + J 2

3 γ 2
�k R′

az(�k − �Q)
)]

, (C2)

�6(c)(�k,ω̃) = − 1

ω̃ + J1 + J2

[
v2

�ka

(
J 2

3 + J 2
4 − 2J3J4γ�k

2d
+ 2J 2

3 γ�kR
′
3z(�k − �Q) − 2J3J4γ�kR

′
3z( �Q) + J 2

3 γ 2
�k R2z

)

+u2
�ka

J 2
3 γ 2

�k R2a + 2u�kav�ka

(
J 2

3 γ�kR3a − 2J3J4γ�kR
′
3a(�k) + J 2

3 γ 2
�k R′

az(�k − �Q)
)]

, (C3)
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

FIG. 6. Self-energy diagrams contributing to the transverse mode dispersion up to order 1/d . Solid (dashed line) lines correspond to τ̃xy

(τ̃z) propagators. The bilinear vertex represents H′
2b + H′

2c, while the cubic (quartic) vertices are for H′
3 (H′

4).

�6(d)(�k,ω̃) = �6(e)(�k,ω̃) = −γ�kqJ 2R3a

2J1

[
u2

�ka
+ v2

�ka
+ 2u�kav�ka�0

]
, (C4)

�6(f )(�k,ω̃) = q2J 2

ω̃ − J1 − 2J2

[
u2

�ka

(
�4

0

2d
+ γ 2

�k R2z�
2
0 + 2γ�kR3z�

3
0

)
+ v2

�ka
γ 2

�k R2z + 2u�kav�ka

(
γ 2

�k R2z�0 + γ�kR3z�
2
0

)]
, (C5)

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

(j) (k)

FIG. 7. Feynman diagrams contributing to the longitudinal mode dispersion up to order 1/d; the notation is as in Fig. 6.
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�6(g)(�k,ω̃) = − q2J 2

ω̃ + J1 + 2J2

[
v2

�ka

(
�4

0

2d
+ γ 2

�k R2z�
2
0 + 2γ�kR3z�

3
0

)
+ u2

�ka
γ 2

�k R2z + 2u�kav�ka

(
γ 2

�k R2z�0 + γ�kR3z�
2
0

)]
, (C6)

�6(h)(�k,ω̃) = q2J 2

ω̃ − 3J1

[
u2

�ka

(
3γ 2

�k R2a�
2
0 + 6γ�kR3a�0 + 3

2d

)
+ 3v2

�ka
γ 2

�k R2a + 2u�kav�ka

(
3γ 2

�k R2a�0 + 3γ�kR3a

)]
, (C7)

�6(i)(�k,ω̃) = − q2J 2

ω̃ + 3J1

[
v2

�ka

(
3γ 2

�k R2a�
2
0 + 6γ�kR3a�0 + 3

2d

)
+ 3u2

�ka
γ 2

�k R2a + 2u�kav�ka

(
3γ 2

�k R2a�0 + 3γ�kR3a

)]
, (C8)

with abbreviations �0 = 1−λ2
0

1+λ2
0
, J1 and J2 from Eq. (39) and J3 and J4 from Eq. (54). We recall that all Hamiltonian pieces H′

n(λ)

explicitly depend on the condensate parameter λ; to order 1/d it is sufficient to evaluate the self-energy diagrams (and thus J3

and J4) at λ = λ0, with the only exception of the first two terms of �6(a) which arise from H′
2b.

The Feynman diagrams for longitudinal-mode self-energy are shown in Fig. 7, with the expressions

�7(a)(�k,ω̃) = A1�kz

(
u2

�kz
+ v2

�kz

)+ 2B1�kzu�kzv�kz + C�kz, (C9)

�7(b)(�k,ω̃) = 4J 2
4

ω̃ − 2J2

[
R2zγ

2
�k (1 − γ�k)(u�kz + v�kz)

2 +
u2

�kz

2d
(1 − γ�k) + 2R3zγ�k

(
u2

�kz
+ u�kzv�kz

)− 2γ�kR
′
3z(�k)

(
u2

�kz
+ u�kzv�kz

)]
, (C10)

�7(c)(�k,ω̃) = − 4J 2
4

ω̃ + 2J2

[
R2zγ

2
�k (1 − γ�k)(u�kz + v�kz)

2 +
v2

�kz

2d
(1 − γ�k) + 2R3zγ�k

(
v2

�kz
+ u�kzv�kz

)− 2γ�kR
′
3z(�k)

(
v2

�kz
+ u�kzv�kz

)]
,

(C11)

�7(d)(�k,ω̃) =
2J 2

4 γ 2
�k

ω̃ − 2J1
(1 − γ�k)(u�kz + v�kz)

2R2a, (C12)

�7(e)(�k,ω̃) = −
2J 2

4 γ 2
�k

ω̃ + 2J1
(1 − γ�k)(u�kz + v�kz)

2R2a, (C13)

�7(f )(�k,ω̃) = �7(g)(�k,ω̃) = −q2J 2

J2
�4

0γ�kR3z(u�kz + v�kz)
2, (C14)

�7(h)(�k,ω̃) = 2q2J 2

ω̃ − J2 − 2J1

[
u2

�kz

2d
+ 2γ�kR3a�

2
0

(
u2

�kz
+ u�kzv�kz

)+ γ 2
�k R2a�

4
0(u�kz + v�kz)

2

]
, (C15)

�7(i)(�k,ω̃) = − 2q2J 2

ω̃ + J2 + 2J1

[
v2

�kz

2d
+ 2γ�kR3a�

2
0

(
v2

�kz
+ u�kzv�kz

)+ γ 2
�k R2a�

4
0(u�kz + v�kz)

2

]
, (C16)

�7(j )(�k,ω̃) = 2q2J 2

ω̃ − 3J2
�4

0

[
γ 2

�k R2z(u�kz + v�kz)
2 +

u2
�kz

2d
+ 2γ�kR3z

(
u2

�kz
+ u�kzv�kz

)]
, (C17)

�7(k)(�k,ω̃) = − 2q2J 2

ω̃ + 3J2
�4

0

[
γ 2

�k R2z(u�kz + v�kz)
2 +

v2
�kz

2d
+ 2γ�kR3z

(
v2

�kz
+ u�kzv�kz

)]
. (C18)
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