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Nonlinear bond-operator theory and 1/d expansion for coupled-dimer magnets.
I. Paramagnetic phase
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For coupled-dimer Heisenberg magnets, a paradigm of magnetic quantum phase transitions, we develop a
systematic expansion in 1/d , the inverse number of space dimensions. The expansion employs a formulation of
the bond-operator technique and is based on the observation that a suitably chosen product-state wave function
yields exact zero-temperature expectation values of local observables in the d → ∞ limit, with corrections
vanishing as 1/d . We demonstrate the approach for a model of dimers on a hypercubic lattice, which generalizes
the square-lattice bilayer Heisenberg model to arbitrary d . In this paper, we use the 1/d expansion to calculate
static and dynamic observables at zero temperature in the paramagnetic singlet phase, up to the quantum phase
transition, and compare the results with numerical data available for d = 2. Contact is also made with previously
proposed refinements of bond-operator theory as well as with a perturbative expansion in the interdimer coupling.
In a companion paper, the present 1/d expansion will be extended to the ordered phase, where it is shown to
consistently describe the entire phase diagram including the quantum critical point.
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I. INTRODUCTION

Paramagnetic phases of quantum spin systems and their in-
stabilities via quantum phase transitions (QPT) have attracted
enormous interest over the past two decades [1–4]. Theoretical
approaches can be roughly grouped into (i) effective low-
energy field theories, often combined with a renormalization-
group treatment, (ii) approximate microscopic calculations,
e.g., using series expansions or auxiliary-particle approaches,
(iii) exact numerical methods, e.g., exact diagonalization or
quantum Monte Carlo (QMC). While coarse-grained field-
theoretic techniques are well suited to capture universal
properties near criticality, a more quantitative connection
to experiments and materials often requires microscopic
modeling. Here, a major problem on the analytical side is that
most approaches either contain uncontrolled approximations
or are restricted to describing a single phase while failing in
crossing a QPT. In this paper, we present an expansion method
which does not suffer from these restrictions.

We concentrate on an important class of systems with
magnetic QPT, namely, coupled-dimer Heisenberg magnets
[1–3] in space dimensions d � 2. In these systems, realized
in materials such as TlCuCl3, BaCuSi2O6, and Ba3Cr2O8,
quantum spins form natural pairs (dimers) with typically strong
antiferromagnetic pairwise coupling, connected by a network
of weaker interdimer couplings. Such materials may display
both paramagnetic and antiferromagnetic ground states, with
the QPT being accessible by varying pressure or magnetic
field.

For coupled-dimer Heisenberg models of individual spins
1
2 , bond operators were proposed as an efficient auxiliary-
particle description [5]. In the original formulation, four bond
operators were introduced to describe the four states of the
Hilbert space of each dimer and combined with a mean-
field approximation, yielding a simple (but uncontrolled)
description of the excitations of the paramagnetic phase
in terms of independent bosonic spin-1 particles (so-called
triplons [6]). Later, generalized bond operators were used for

cases with larger Hilbert space per unit cell, i.e., dimerized
systems with spins S > 1

2 or tetramerized systems [7–10].
In addition, the bond-operator technique was generalized to
magnetically ordered phases using a suitable basis rotation in
the Hilbert space of an isolated dimer [11,12]; this enabled
calculations across the entire phase diagram. However, the
description was mainly restricted to Gaussian fluctuations
around a saddle point, i.e., excitations were treated as non-
interacting bosons, and a small parameter controlling this
approximation was not known. Refined versions of the bond-
operator technique have been developed to include interactions
between the triplons [13–15], but their applicability appears
limited, again because of the lack of a systematic control
parameter.

In this paper, we develop a systematic expansion in 1/d

for coupled-dimer magnets. Formally, this expansion is based
on bosonic bond operators combined with suitable projection
operators to impose the required Hilbert-space constraint. We
show how to calculate thermodynamic and spectral properties
order by order in 1/d. The use of 1/d as a physical small
parameter ensures internal consistency: As will be shown in
a companion paper [16], the expansions for the paramagnetic
and antiferromagnetic phases merge smoothly at the quantum
phase transition which is obtained as a continuous transition
with a vanishing excitation gap. For a model with SU(2) spin
symmetry, the transverse spin excitations of the ordered phase
are gapless at every order in 1/d, as required by Goldstone’s
theorem.

Although our approach is inspired by nonlinear spin-wave
theory, the most important difference is that we work directly
with quantum spins S = 1

2 , such that no semiclassical approx-
imation is possible. Instead, we expand about a dimer product
state which is a suitable reference state in the d → ∞ limit.
Technically, our expansion also differs from spin-wave theory:
the latter features explicit factors of 1/S in the Hamiltonian,
whereas in our approach factors of 1/d are only generated via
momentum summations.
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A. 1/d expansion and quantum criticality

Before diving into details, we discuss the general question
how a systematic 1/d expansion can access quantum critical
behavior. First, it is important to realize that any Taylor
expansion for an observable assumes analyticity (as function
of both 1/d and other control parameters), i.e., is a priori not
compatible with singular behavior found at quantum critical
points. Second, we recall that the critical exponents of the
magnets under consideration are locked to mean-field values
[17] above the upper-critical dimension (here d+

c = 3) [1].
Hence, critical exponents must take mean-field values to all
orders in a 1/d expansion, and nontrivial exponents are not
accessible.

Interestingly, we can use the mean-field nature of the
transition to our advantage, namely, by identifying observables
which are analytic even at criticality. For instance, the excita-
tion gap � of the disordered phase varies with the distance t

to the critical point as � ∝ tνz, with the correlation length and
dynamical exponents ν = 1

2 , z = 1. This implies that �2 ∝ t

is analytic and hence amendable to a 1/d expansion. Similar
considerations apply to the order parameter (in the ordered
phase) and other observables and will be used throughout the
paper to extract critical properties.

Notwithstanding, there are physics aspects which cannot
be captured by a 1/d expansion, for instance, the zero-
temperature damping of excitations. As will be shown in
the paper, the inverse lifetimes induced by interactions are
exponentially suppressed at large d, and hence there is no
damping to all orders in 1/d.

B. Model and large-d limit

The 1/d expansion is applicable to coupled-dimer Heisen-
berg magnets of spin 1

2 , with the general Hamiltonian

H =
∑

i

Ji
�Si1 · �Si2 +

∑
ii ′mm′

Kmm′
ii ′

�Sim · �Si ′m′ , (1)

where the indices i,i ′ refer to sites on a regular lattice of dimers,
and m,m′ = 1,2 refer to the individual spins on each dimer.
For most of the paper, we will be specifically concerned with
dimers on a hypercubic lattice in space dimension d, Fig. 1,
where

H = J
∑

i

�Si1 · �Si2 +
∑
〈ii ′〉

(K11 �Si1 · �Si ′1 + K22 �Si2 · �Si ′2) (2)

and
∑

〈ii ′〉 now denotes a summation over pairs of nearest-
neighbor dimer sites on the hypercubic lattice. We have
allowed for different couplings within the hypercubic lattices
corresponding to m = 1,2, and define

K = K11 + K22

2
, κK = K11 − K22

2
, (3)

where κ is an asymmetry parameter. For d = 1 and 2 the spin
lattice ofH in Eq. (2) corresponds to the much-studied two-leg
ladder and square-lattice bilayer magnets, respectively.

A nontrivial limit d → ∞ is obtained if the interdimer
coupling constant K is scaled as 1/d in order to preserve
a nontrivial competition between the K and J terms in the
Hamiltonian (2) [18]. Hence, for d � 2 and K,J > 0, the
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FIG. 1. (Color online) Left: Phase diagram of the coupled-dimer
model (2) on the hypercubic lattice as function of the control
parameter q = Kd/J and the inverse spatial dimension 1/d . A QPT
separates the paramagnetic singlet phase from the AFM phase. The
solid line shows our result (5) for the phase boundary qc to order
1/d for the symmetric case κ = 0 (3); the dashed line represents
the solution of the equation �(q) = 0 with �(q) from Eq. (7).
The cross marks the numerically exact result for d = 2 obtained
in Ref. [19]. The shaded areas indicate the points of departure for the
large-d expansion (red) and the small-K/J expansion (blue, Sec. V),
respectively. Right: Sketch of the model in d = 2, with solid (hollow)
dots denoting the spins 1 (2) of each dimer.

dimensionless parameter

q = Kd

J
(4)

controls a quantum phase transition between a singlet param-
agnet at small q and an antiferromagnet with ordering wave
vector (π,π, . . .) at large q. For d = 2 this transition occurs at
[19] qc = 0.793 for κ = 0 and qc = 0.720 for |κ| = 1.

A suitable starting point for an expansion is a product
wave function |ψ0〉 = ∏

i |ψ〉i where |ψ〉i denotes an arbitrary
normalized state of dimer i. A simple variation of 〈ψ0|H|ψ0〉
with H from Eq. (2) yields a transition at qc = 1

2 ; for q < qc

the variational minimum is of course found for the singlet
|ψ〉i = (|↑↓〉i − |↓↑〉i)/

√
2, while a linear combination of

singlet and one triplet minimizes 〈ψ0|H|ψ0〉 for q > qc.
Gaussian fluctuations around this product state have been
analyzed previously [11].

Here, we show that the product state |ψ0〉 delivers exact
expectation values for local observables in the limit d → ∞
for any q, i.e., corrections from nonlocal fluctuations vanish in
this limit. The reason is that fluctuation effects tend to average
out in the limit of large connectivity. This then paves the way
for a systematic expansion in 1/d, described in the body of the
paper.

Note that this does not imply that |ψ0〉 becomes the
exact ground state as d → ∞; as we show in the following,
corrections to the wave function are generally nonvanishing
in this limit. This also distinguishes our limit [18] d → ∞ at
fixed q (i.e., K/J ∝ 1/d) from the limit of weak interdimer
coupling, K/J → 0 at fixed d; in the latter, a singlet product
state is trivially the exact ground state.

C. Summary of results

We now quote our main results of the 1/d expansion applied
to the model (2) for κ = 0; results for the asymmetric case of
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nonzero κ , together with an extensive discussion, can be found
in the body of the paper.

The quantum critical point, Fig. 1, is located at

qc = 1

2
+ 3

16

1

d
+ O

(
1

d2

)
. (5)

In the paramagnetic phase, the triplet mode dispersion near the
ordering wave vector �Q can be parametrized by

�2
�k = �2 + c2

d
(�k − �Q)2 . (6)

The energy gap � behaves as

�2

J 2
= 1 − 2q + 1

d
(2q2 − q3) + O

(
1

d2

)
; (7)

it closes at qc according to

�

J
=

[√
2 − 5

8
√

2d
+ O

(
1

d2

)]√
qc − q, (8)

corresponding to mean-field exponents ν = 1
2 and z = 1, and

the critical velocity has the following 1/d expansion:

c

J
= 1√

2
+ 5

16
√

2d
+ O

(
1

d2

)
. (9)

Corresponding results for the antiferromagnetically ordered
phase will be given in the companion paper [16].

D. Relation to previous work

A number of approaches have been used in the literature
to treat triplet excitations in coupled-dimer magnets beyond
the limit of noninteracting bosons. A first approach is to
systematically expand in K/J which can be done in principle
up to high orders [20–23]. This naturally yields accurate results
for small K/J , but cannot reliably cover the regime close to the
critical point and beyond. We will show that our 1/d expansion,
when applied for small q, delivers results consistent with an
expansion in K/J if the latter is done for large d.

A second approach is to include interactions in an ap-
proximate fashion into the bond-operator theory. An efficient
treatment of the hard-core repulsion of triplet excitations has
been proposed by Kotov et al. [14] via Brueckner theory;
this yields an accurate value for the location of the critical
point for the bilayer Heisenberg model. Brueckner theory is
designed to work in the limit of small triplet density, and
we will compare its results with our systematic results for
large d. We note that attempts to generalize the Brueckner
approach to the ordered phase lead to either a violation
of Goldstone’s theorem or to the QPT being (erroneously)
rendered first order [24]. These problems appear to be rooted
in the lack of a systematic expansion parameter controlling the
approximation. An earlier treatment by Chubukov and Morr
[13], inspired by nonlinear spin-wave theory, works in both
phases, but suffers from divergencies at higher orders, probably
because it lacks a small control parameter as well. Recently,
Collins et al. [15,25] proposed to implement the hard-core
repulsion of triplet excitations using projection operators and
used this to calculate properties in the paramagnetic phase in
the spirit of a small-K expansion.

A third approach, due to Jensen [26], is based on a
1/z expansion for Green’s functions, where z is the lattice
coordination number. Similar to earlier work [27,28], it has
been used to calculate excitation energies in the paramagnetic
phase, but a systematic analysis order by order in 1/z has not
been performed to our knowledge. Related 1/z expansions
have been applied to other types of lattice models [29–31], but
the vicinity of a QPT has not been studied.

It is worth mentioning that various methods exist to describe
spin excitations of semiclassically ordered states beyond the
limit of noninteracting bosons. The most prominent micro-
scopic approach is nonlinear spin-wave theory, and we will
make contact between this and our method in Ref. [16]. Here,
we only point out that these semiclassical methods cannot
cover the regime near quantum criticality of the models (1) and
(2), mainly because longitudinal fluctuations are neglected.

Finally, a certain class of infinite-range Heisenberg models
was investigated in Ref. [32] where valence-bond states could
be stabilized via suitable perturbations. In both the infinite-
range case and our d → ∞ limit, the number of interaction
partners of each spin diverges.

E. Outline

The body of the paper is organized as follows: In Sec. II, we
introduce the formulation of the bond-operator representation
to be employed in the paper. This is used in Sec. III to
construct an exact interacting Hamiltonian of triplet excitations
on top of a singlet background. In Sec. IV, we develop the
1/d expansion in the paramagnetic phase. Starting from the
singlet-product-state description, we first show that fluctuation
corrections to thermodynamic quantities vanish as d → ∞.
We then demonstrate how to evaluate those corrections, as
well as corrections to the triplon dispersion, in a power series in
1/d and present explicit results for the hypercubic dimer model
(2). Particular attention is paid to the asymmetric case κ �= 0
(3), as this induces cubic triplon vertices which are absent
in the symmetric situation. Section V provides an important
cross-check for our approach: We calculate observables in an
expansion in K/J , i.e., the relative strength of the interdimer
coupling, for the hypercubic dimer model (2) in arbitrary
dimension d. The results of this and our 1/d expansion are
shown to be consistent in the combined limit of small 1/d and
small q. In Sec. VI, we discuss aspects of our method beyond
the thermodynamic-limit hypercubic-lattice case, including
large-d generalizations of given finite-d lattice models. The
concluding Sec. VII describes possible extensions and further
applications of our method. Technical details are relegated to
various Appendices.

A companion paper [16] will be devoted to the extension of
the 1/d expansion to magnetically ordered phases of coupled-
dimer models.

II. BOND OPERATORS AND PROJECTION

Bond-operator theory employs a slave-particle description
of the states of each dimer i. We denote those states by |tk〉i ,
k = 0, . . . ,3, where |t0〉 = (|↑↓〉 − |↓↑〉)/√2 is the spin-0
singlet state, and |t1〉 = (−|↑↑〉 + |↓↓〉)/√2, |t2〉 = ı(|↑↑〉 +
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|↓↓〉)/√2, |t3〉 = (|↑↓〉 + |↓↑〉)/√2 correspond to the spin-1
triplet, and ı is the imaginary unit.

The initial bond-operator approach of Sachdev and Bhatt
[5] introduced four bosonic operators t

†
ik which create these

states out of a fictitious vacuum |tk〉i = t
†
ik|vac〉i , leading to

the following representation of the original spin operators in
terms of bond bosons:

Sα
i1,2 = 1

2 (±t
†
iαti0 ± t

†
i0tiα − ıεαβγ t

†
iβ tiγ ), (10)

where α = 1,2,3 ≡ x,y,z, and the upper (lower) sign corre-
sponds to spin 1 (2) of each dimer. The constraint

3∑
k=0

t
†
iktik = 1 (11)

then defines the physical Hilbert space. For the subsequent
treatment, the singlet operator was condensed ti0 → 〈ti0〉 = s,
and the constraint was treated in a mean-field fashion via
a Lagrange multiplier μ, such that

∑3
α=1〈t†iαtiα〉 + s2 = 1.

In the Hamiltonian, only bilinear terms in the tα operators
were kept, amounting to a harmonic approximation for the
triplet excitations, and the mean-field parameters s and μ were
determined variationally.

A. Excitations as hard-core bosons

An alternative approach is due to Kotov et al. [14]. It
starts by reformulating the Hilbert space in terms of a singlet
vacuum and triplet particles. Then, the operators t

†
iα create

excitations on top of the singlet background state (i.e.,
represent the t

†
iαti0 operator of Sachdev and Bhatt [5]), and

singlet operators no longer appear. The triplet excitations
obey the hard-core constraint

3∑
α=1

t
†
iαtiα � 1. (12)

A harmonic approximation to the resulting Hamiltonian, also
ignoring the hard-core constraint, is similar in spirit to linear
spin-wave theory and has been employed in a number of
papers [11,12,33–35].

Reference [14] proposed to go beyond the harmonic
approximation by encoding the hard-core constraint as an
infinite onsite repulsion,

HU = U
∑
iαβ

t
†
iαt

†
iβ tiαtiβ, U → ∞ (13)

and treating this via the so-called Brueckner approach which
involves a self-consistent summation of ladder diagrams and
is controlled in the small-density limit. In addition, quartic
triplet terms were included in a Hartree-Fock approximation.
In Appendix E, we will discuss the possibility to generate a
1/d expansion using this approach.

B. Projection operators

More recently, Collins et al. [15] implemented the hard-
core constraint (12) for the tiα using projection operators
which suppress any matrix element of observables between
states inside and outside the physical Hilbert space. Using
such projection operators, the spin operators Sα

im acquire the

following representation in terms of the triplet operators tiα:

Sα
i1,2 = 1

2 (±t
†
iαPi ± Pitiα − ıεαβγ t

†
iβ tiγ ), (14)

where Pi prevents the creation of more than one triplet
excitation on site i.

In our calculations we shall adopt this procedure and, as in
Ref. [15], we will use the projector

Pi = 1 −
∑

γ

t
†
iγ tiγ . (15)

It can then be shown that the �Sim (14) obey the standard spin
commutation relations inside the physical Hilbert space. Other
choices of the projector are not advantageous, as explained in
Appendix A.

III. HAMILTONIAN AND PERTURBATION THEORY

In this section, we discuss how to generate the perturbative
expansion in 1/d for coupled-dimer models. We will primarily
deal with the hypercubic-lattice case as in Eq. (2); differences
arising from other lattice geometries will be discussed in
Sec. VI.

A. Real-space bond-operator Hamiltonian

Using the representation (14) of spin operators, the Hamil-
tonian (2) takes the following form:

H = J
∑
iα

(
t
†
iαtiα − 3

4

)

+ K

2

∑
〈ii ′〉α

(t†iαPiPi ′ ti ′α + t
†
iαPit

†
i ′αPi ′ + H.c.)

− κK

2

∑
〈ii ′〉αβγ

εαβγ [(ıt†iαPit
†
i ′βti ′γ + H.c.) + (i ↔ i ′)]

+ K

2

∑
〈ii ′〉αβ

(t†iαt
†
i ′βtiβ ti ′α − t

†
iαt

†
i ′αtiβ ti ′β). (16)

Inserting the projector (15) into Eq. (16) results in a
Hamiltonian with nonlinear couplings up to sixth order,

H = H0 + H2 + H3 + H4 + H5 + H6, (17)

where Hn contains n triplet operators. H0 = − 3
4JN is the

energy of the product state |ψ0〉, with N the number of dimer
sites. The remaining even-n terms read as

H2 = J
∑
i,α

t
†
iαtiα + K

2

∑
〈ii ′〉α

(t†iαti ′α + t
†
iαt

†
i ′α + H.c.) , (18)

H4 = K

2

∑
〈ii ′〉αβ

(t†iαt
†
i ′βtiβ ti ′α − t

†
iαt

†
i ′αtiβ ti ′β) −K

2

∑
〈ii ′〉αβ

(t†iαt
†
iβ tiβ ti ′α

+ t
†
iαt

†
i ′βti ′βti ′α + t

†
iαt

†
i ′αt

†
iβ tiβ + t

†
iαt

†
i ′αt

†
i ′βti ′β + H.c.),

(19)

and

H6 = K

2

∑
〈ii ′〉

∑
α,β,γ

(t†iαt
†
iβ t

†
i ′αt

†
i ′γ tiβ ti ′γ

+ t
†
iαt

†
iβ t

†
i ′γ tiβ ti ′γ ti ′α + H.c.). (20)
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For asymmetric couplings K11 �= K22, the following odd-n
terms occur in addition:

H3 = −κK

2

∑
〈ii ′〉αβγ

εαβγ [(ıt†iαt
†
i ′βti ′γ + H.c.) + (i ↔ i ′)] (21)

and

H5 = κK

2

∑
〈ii ′〉αβγ κ

εαβγ [(ıt†iαt
†
iκ t

†
i ′βti ′γ tiκ + H.c.) + (i ↔ i ′)].

(22)

Cubic terms of the form (21) have been discussed in the context
of two-particle decay of triplet excitations at elevated energies
both experimentally [36,37] and theoretically [38,39].

Two remarks concerning the full Hamiltonian are in order:
First, the strength of all nonlinear coupling is set by K . Second,
individual pieces of H violate the constraint (12), and only an
infinite-order treatment will restore the constraint exactly. In
the expansion described below, the constraint is expected to
be obeyed order by order in 1/d.

B. Bilinear part

The free-triplon part (18) of the Hamiltonian takes the
following form in Fourier space:

H2 =
∑
�kα

[
A�kt

†
�kα

t�kα + B�k
2

(t†�kα
t
†
−�kα

+ H.c.)

]
, (23)

where

A�k = J + B�k, B�k = qJγ�k (24)

and the structure factor of the interaction

γ�k = 1

d

d∑
n=1

cos kn (25)

which is normalized such that −1 � γ�k � 1. The bilinear
Hamiltonian (23) is solved by a standard Bogoliubov trans-
formation

t�kα = u�kτ�kα + v�kτ
†
−�kα

(26)

which transforms it into

H2 =
∑
�kα

ω�kτ
†
�kα

τ�kα + 3

2

∑
�k

(ω�k − A�k) (27)

with mode energies

ω�k =
√

A2
�k − B2

�k = J
√

1 + 2γ�kq (28)

and Bogoliubov coefficients

u2
�k,v

2
�k = ±1

2
+ A�k

2ω�k
, u�kv�k = − B�k

2ω�k
. (29)

C. Large-d limit and perturbation theory

The physics of the bilinear Hamiltonian H2, usually
referred to as harmonic approximation, can be used to discuss
the limit of large dimensions d. Due to the anomalous piece,

pairs of triplets get admixed into the ground state. The wave
function in harmonic approximation can be written as

|ψ〉 ∝ exp

⎛
⎝∑

�kα

v�k
u�k

t
†
�kα

t
†
−�kα

⎞
⎠ |ψ0〉. (30)

The local triplet density evaluates to

〈ψ |t†iγ tiγ |ψ〉 = 1

N

∑
�k

v2
�k

d→∞= q2

8d
(31)

(see Appendix B). Similarly, expectation values such as
〈tiγ tjγ 〉, with i,j being neighboring sites, vanish as d → ∞.
This implies, as announced, that the product state |ψ0〉 yields
exact ground-state expectation values in the limit d → ∞. All
corrections can be systematically evaluated in power series in
1/d; this is the subject of this paper.

Technically, we shall calculate observables for the model
(2) by an expansion in the nonlinear couplings H3,4,5,6 in
(17) using standard diagrammatic perturbation theory. While
there is no small parameter controlling such an expansion
in arbitrary fixed d, it will become clear that, for large d,
perturbative contributions to observables are suppressed by an
increasing number of powers of 1/d with increasing order in
perturbation theory.

The origin of this suppression lies in the momentum
summations for large d which involve powers of the interaction
structure factor γ�k (25): For a typical �k, γ�k is a sum of
d “random” numbers which tend to average out, such that
the magnitude of γ�k for typical �k scales as [40] 1/

√
d. In a

momentum sum, most �k are typical, such that γ�k can be used
as a formal expansion parameter (see Appendix B). The
nonlocality of the interactions in H then ensures that the
perturbation theory can be truncated. However, the structure
of the expansion is different from that of a loop expansion,
i.e., diagrams with different numbers of loops contribute to
any given order in 1/d.

D. Normal-ordered Hamiltonian

Diagrammatic perturbation theory requires interaction
terms which are normal ordered in the τ�kα , i.e., the oper-
ators which diagonalize the free-particle piece of H. Upon
expressing the nonlinear couplings H4,6 in terms of the τ�kα ,
normal ordering generates additional bilinear terms. To deal
with those, two different strategies have been employed in the
spin-wave literature: (i) A Bogoliubov transformation is used
to diagonalize the leading-order bilinear terms, i.e., the ones
fromH2, and the bilinear terms obtained from normal ordering
of H4,6 are treated perturbatively [41,42]. (ii) A Bogoliubov
transformation is used to diagonalize all bilinear terms (up
to the order calculated) simultaneously; this then leads to
a self-consistent equation for the Bogoliubov coefficients
[15,43]. For our 1/d expansion, in particular at criticality
and in the ordered phase [16], we found it advantageous to
employ strategy (i), because strategy (ii) would imply the
necessity for a 1/d expansion of the u�k , v�k , and ω�k involved
in the Bogoliubov transformation, which is ill defined if the
leading-order ω�k vanishes. (As we show in the following, a
1/d expansion for ω2

�k is well defined instead.)
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Hence, we employ the leading-order Bogoliubov transfor-
mation according to Eqs. (26), (29), and (24) to generate
a normal-ordered Hamiltonian in terms of the τ�kα . This
Hamiltonian takes the form

H = H′
0 + H′

2 + H′
3 + H′

4 + H′
5 + H′

6, (32)

where the H′
n now contain n transformed τ operators and can

be obtained by a straightforward but tedious calculation [25].
Here, we include terms up to fourth order in the t operators
(this will be shown to be sufficient to obtain the complete
set of corrections to order 1/d to the mode dispersion) and
use the explicit form of A�k and B�k in Eq. (24), assuming
u�k = u∗

�k = u−�k and v�k = v∗
�k = v−�k . The constant is

H′
0 = 3JN

⎡
⎣−1

4
+ R2 + q(R3 + R4)

− 2q(R1 + 4R2)(R3 + R4)

− q

N

⎛
⎝∑

�k
u�kv�kR

′
3(�k) −

∑
�k

v2
�kR

′
4(�k)

⎞
⎠
⎤
⎦ (33)

which involves the abbreviations

R1 = 1

N

∑
�k

u�kv�k, R2 = 1

N

∑
�k

v2
�k ,

(34)

R3 = 1

N

∑
�k

γ�ku�kv�k, R4 = 1

N

∑
�k

γ�kv
2
�k

and

R′
3( �k′) = 1

N

∑
�k

γ �k′−�ku�kv�k,

R′
4( �k′) = 1

N

∑
�k

γ �k′−�kv
2
�k . (35)

As explicitly shown in Appendix B, the R1...4 are suppressed
in the large-d limit at least as 1/d due to the properties of the
large-d momentum summations over γ�k .

The bilinear τ terms can be split asH′
2 = H′

2a + H′
2b where

H′
2a =

∑
�kα

ω�kτ
†
�kα

τ�kα (36)

is the leading-order piece from H2, and

H′
2b =

∑
�kα

[
C�kτ

†
�kα

τ�kα + D�k
2

(τ †
�kα

τ
†
−�kα

+ H.c.)

]
(37)

contains the bilinear terms generated from normal-ordering of
H4, with

C�k = qJ
[
2
(
u2

�k + v2
�k
)
R′

4 − 4u�kv�kR
′
3 − (2γ�kR1 + 8γ�kR2)

× (u�k + v�k)2 − 4(R3 + R4)
(
2u2

�k + 2v2
�k + u�kv�k

)]
,

(38)

D�k = qJ
[
4u�kv�kR

′
4 − 2

(
u2

�k + v2
�k
)
R′

3 − (2γ�kR1 + 8γ�kR2)

× (u�k + v�k)2 − 2(R3 + R4)
(
u2

�k + v2
�k + 8u�kv�k

)]
. (39)

Given the behavior of R1...4 in the large-d limit, all terms in
both C�k and D�k are of order 1/d or smaller, such that the
contribution of H′

2b is suppressed relative to H′
2a in this limit.

The quartic term is

H′
4 = 1

N

∑
1234

[δ1+2+3+4�41(τ †
1ατ

†
2ατ

†
3βτ

†
4β + τ1ατ2ατ3βτ4β)

+ δ1+2−3−4(�42τ
†
1ατ

†
2ατ3βτ4β + �43τ

†
1ατ

†
2βτ3ατ4β )

+ δ1+2+3−4�44(τ †
1ατ

†
2ατ

†
3βτ4β + τ

†
4βτ3βτ2ατ1α)], (40)

where the momenta have been abbreviated according to
�k1 ≡ 1, etc., and the vertex functions �41 . . . �44 are given
in Appendix C. For d = 2, our expressions (33)–(40) agree
with those given in Ref. [25]. Finally, the cubic term, present
only in the asymmetric case κ �= 0, reads as

H′
3 = 1√

N

∑
123

εαβγ [δ1+2+3�31(τ †
1ατ

†
2βτ

†
3γ − τ1ατ2βτ3γ )

+ δ1+2−3�32(τ †
1ατ

†
2βτ3γ − τ

†
3γ τ2βτ1α)

+ δ2+3−1�33(τ †
3γ τ

†
2βτ1α − τ

†
1ατ2βτ3γ )

+ δ1−2+3�34(τ †
1ατ

†
3γ τ2β − τ

†
2βτ3γ τ1α)], (41)

with its vertex functions �31 . . . �34 listed in Appendix C.

IV. 1/d EXPANSION FOR OBSERVABLES

As announced, we now evaluate important observables,
organizing the perturbative contributions in an expansion in
1/d. Based on the Hamiltonian in Eq. (32), diagrammatics is
done using H′

2a as unperturbed piece and H′
2b + H′

3 + H′
4 +

H′
5 + H′

6 as perturbation. The calculation will be limited to
the leading corrections beyond the harmonic approximation.
As will become clear, these corrections will enter at different
orders in 1/d for different observables.

We exclusively consider T = 0; this greatly reduces the
number of contributing diagrams as all closed (unidirectional)
loops of τ particles vanish in the vacuum state. Evaluating in-
dividual diagrams involving cubic or quartic vertices typically
leads to a large number of terms, most of which turn out to not
contribute to the leading 1/d corrections. In this section, we
will restrict the presentation to quoting the relevant results; a
more detailed exposure of how to extract a 1/d expansion can
be found in Appendix D for one sample diagram.

A. Ground-state energy

We start with the ground-state energy per dimer. The
harmonic-approximation result follows from H0 and H2 (27):

Eharm
0

JN
= −3

4
+ 3

2JN

∑
�k

(ω�k − A�k)
d→∞= −3

4
− 3

8

q2

d
,

(42)
where the last expression involves an expansion to leading
order in 1/d as described in Appendix B; it is identical to an
expansion up to order 1/d of H′

0 in Eq. (33).
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(a) (b) (c)

FIG. 2. Feynman diagrams for the ground-state energy up to order
1/d2.

Higher-order terms involve the perturbative couplings and
can be calculated diagrammatically. Up to order 1/d2 there are
two diagrams contributing in the κ = 0 case [Figs. 2(a) and
2(b)], and one further diagram involving cubic vertices which
are nonzero only for κ �= 0 [Fig. 2(c)]. The ground-state energy
is then the sum of all these contributions E0 = H′

0 + E
2(a)
0 +

E
2(b)
0 + E

2(c)
0 . The diagram in Fig. 2(a), being of second order

in H′
2b, evaluates to

E
2(a)
0 = −3

∑
�k

D2
�k

4ω�k
. (43)

Given that the D�k vertex (39) is of order 1/d, only those
terms in E

2(a)
0 will contribute to order 1/d2 which are not

further suppressed by the momentum summation. This implies
to approximate ω�k (28) by its zeroth-order term in γ�k , ω�k ≈ J ,
and leads to

E
2(a)
0

JN
= −3q2(R3 + R4)2 = − 3

16

q4

d2
(44)

to order 1/d2.
Turning to the second-orderH′

4 diagram, shown in Fig. 2(b),
we notice that this has vertices �41 of order 1/d0, but will
be suppressed at least down to 1/d2 by internal momentum
summations involving γ�k or v�k factors from the vertices.
Hence, the energies of the internal particle lines can again
be approximated by ω�k ≈ J . Enumerating all possible con-
tractions of internal lines and using the explicit form of �41,
we find to order 1/d2

E
2(b)
0

JN
= −3

8

q4

d2
. (45)

Similarly, we find the contribution from the cubic diagram to
order 1/d2:

E
2(c)
0

JN
= −κ2q2

3J 2

(
R2

2d
− R2

3

)
= 0. (46)

This is an accidental cancellation, leading to a κ-independent
ground-state energy to order 1/d2. We do not expect such
cancellations at higher orders [see also Eq. (95)].

Finally, we need the expansion of H′
0 (33) to order

1/d2:

H′
0

JN
= −3

4
− 3q2

8d
− 3q3

16d2
+ 27q4

64d2
. (47)

Collecting all terms gives our result for E0:

E0

JN
= −3

4
− 3

8

q2

d
− 3

16

q3

d2
− 9

64

q4

d2
+ O

(
1

d3

)
. (48)

The ground-state energy being analytic up to the critical point
is consistent with the mean-field value [17] α = 0 for the
specific-heat critical exponent α.

B. Triplet density

We continue by calculating additional local static observ-
ables. The local triplet density 〈t†iαtiα〉 per site vanishes as
d → ∞ as stated above; it also vanishes as q → 0 for any d.
In the harmonic approximation, we have

∑
i〈t†iαtiα〉/N = R2

(see Appendix B). Perturbative corrections, which can be
calculated based on the τ -particle self-energies described in
more detail in the next subsection, start only at order 1/d2,
such that we have

1

N

∑
i

〈t†iαtiα〉 = q2

8d
+ O

(
1

d2

)
. (49)

Notably, obtaining the complete 1/d2 contribution would
require self-energies at next-to-leading order (i.e., 1/d2) which
are beyond the scope of this paper.

The expectation value of the bond-pair creation operator∑
〈ij〉〈t†iαt

†
jα〉 involves two different sites and hence an addi-

tional factor of γ�k . As a result, we can obtain the full 1/d2

correction, with the following result for κ = 0:

1

Nd

∑
〈ij〉

〈t†iαt
†
jα〉 = − q

4d
− (2q2 + q3)

16d2
+ O

(
1

d3

)
. (50)

Finally, it is instructive to consider the site-pair creation
operator 〈t†iαt

†
iα〉: this quantity must vanish as a result of

the constraint (12). In the harmonic approximation we have∑
i〈t†iαt

†
iα〉/N = R1, but perturbative corrections start at order

1/d and cancel the harmonic result, such that eventually
〈t†iαt

†
iα〉 = 0 to order 1/d; we expect this to hold order by

order in the 1/d expansion [44].

C. Triplon dynamics

The leading-order triplon dispersion ω�k is from the har-
monic approximation, with the result in Eq. (28). Corrections
from the perturbative couplings can be evaluated via self-
energies which, in the large-d limit, are all suppressed at least
as 1/d. Importantly, we will have both normal and anomalous
τ diagrams, such that the Dyson equation takes the following
form:

GN (�k,ω) = ω + ω�k + �N (�k,−ω)

�(ω,�k)
, (51)

GA(�k,ω) = −�A(�k,ω)

�(ω,�k)
(52)

with

�(ω,�k) = [ω + ω�k + �N (�k,−ω)][ω − ω�k − �N (�k,ω)]

+ �A(�k,ω)�A(�k,−ω). (53)

Consequently, the equation for the renormalized pole energies
��k is �(��k,�k) = 0.
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(a) (b) (c)

(d) (e)

FIG. 3. Feynman diagrams for the normal τ self-energy up to
order 1/d , with vertices from H′

2b and H′
4.

In general, the self-energies �N,A entering �(�k,ω) need to
be evaluated at ω = ��k; for the 1/d expansion this means that
the energy argument of �N,A itself needs to be expanded in
1/d, according to

�N (�k,±��k) = �N± + (��k − ω�k)�′
N±, (54)

with the abbreviations

�N± = �N (�k,±ω�k), �′
N± = ∂�N (�k,±ω)

∂ω

∣∣∣∣
ω=ω�k

. (55)

In the following, we calculate ��k up to order 1/d only.
This leads to two simplifications: The self-energies can be
evaluated at the unperturbed ω�k , �N (�k,±��k) ≈ �N±, and the
�2

N,A terms in Eq. (53) can be neglected as they are of order
1/d2. These simplifications reduce the (positive-energy) pole
equation to

��k − ω�k − �N+ = 0. (56)

As discussed in Sec. I A, expansions have to be used with care
in the vicinity of the quantum critical point. In particular, ��k
will not have a well-defined 1/d expansion near �k = �Q when
the gap closes. However, �2

�k can be expected to be analytic

for the same reason as �2 ∝ (qc − q)2νz = qc − q is analytic.
Consequently, we shall work with the following dispersion
expression, valid to order 1/d:

�2
�k = ω2

�k + 2ω�k�N+. (57)

The diagrams contributing to the normal self-energy in
the symmetric case κ = 0 and to order 1/d are shown
in Fig. 3. Evaluating the frequency and momentum in-

tegrals, again approximating the energies of the internal
particle lines by ω�k ≈ J , we find the following contributions

(a) (b)

FIG. 4. Feynman diagrams for the contribution of cubic (H′
3)

terms to the normal τ self-energy up to order 1/d .

to order 1/d (see Appendix D for a guide):

�3(a)(�k,ω) = C�k, (58)

�3(b)(�k,ω) = �3(c)(�k,ω) = −γ�kq
2J (R3 + R4)(u�k + v�k)2,

(59)

�3(d)(�k,ω) = q2J 2

ω − 3J

[
4γ 2

�k (u�k + v�k)2R2

+ 8γ�k
(
u2

�k + u�kv�k
)
R3 +

2u2
�k

d

]
, (60)

�3(e)(�k,ω) = −q2J 2

ω + 3J

[
4γ 2

�k (u�k + v�k)2R2

+ 8γ�k
(
v2

�k + u�kv�k
)
R3 +

2v2
�k

d

]
. (61)

The � expressions above can be evaluated using the explicit
large-d expressions for the Bogoliubov coefficients and the
R1...4 in Appendix B. Collecting all contributions, we finally
find the 1/d expansion of the triplon dispersion for κ = 0:

�2
�k

J 2
= 1 + 2γ�kq + 1

d

(
2q2 − γ 2

�k q3
) + O

(
1

d2

)
. (62)

We see that interactions generically increase the triplon energy
(for q < 2 which holds everywhere in the disordered phase
treated here); this is of course expected for dominantly
repulsive quartic interactions. While Eq. (62) could in principle
be converted into an expansion for ��k/J , such a conversion is
well defined only if ω�k �= 0, i.e., it fails for �k = �Q at criticality,
as anticipated.

In the asymmetric case κ �= 0, additional self-energy dia-
grams involving cubic vertices occur; those are shown in Fig. 4.
These diagrams are evaluated using the same prescription as
discussed above for the quartic terms and explained in some
detail in Appendix D. To order 1/d, these diagrams have the
following contributions:

�4(a)(�k,ω) = 2κ2q2J 2

ω − 2J

{
u2

�k(1 − γ�k)

2d
+ 2γ�k

(
u2

�k + u�kv�k
)
[R′

3(�k) − R3] + γ 2
�k (u�k + v�k)2[R2 − R′

5(�k)]

}
, (63)

�4(b)(�k,ω) = −2κ2q2J 2

ω + 2J

{
v2

�k (1 − γ�k)

2d
+ 2γ�k

(
v2

�k + u�kv�k
)
[R′

3(�k) − R3] + γ 2
�k (u�k + v�k)2[R2 − R′

5(�k)]

}
(64)
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(see Appendix B for R′
5). These self-energy contributions modify the triplon dispersion as follows:

�2
�k

J 2
= 1 + 2γ�kq + 1

d

(
2q2 − γ 2

�k q3
) +

κ2q2(1 − γ�k)
(
6 + 14γ�kq + 6γ 2

�k q2
)

(2γ�kq − 3)d
+ O

(
1

d2

)
. (65)

This explicitly shows that the 1/d expansion is not simply an
expansion in powers of q or γ�k: The nontrivial denominator
in the κ2/d correction of Eq. (65) arises as a product of the
denominators in the self-energies (63) and (64), evaluated at
ω = ω�k . (In the symmetric case κ = 0, such denominators
were canceled by identical factors in the numerator.)

We note that, to all orders, the momentum dependence
enters via the structure factor γ (25) only, but at higher orders
γ2�k , γ3�k , etc., may appear as well. The dispersion results, for
concrete values of d, are illustrated in Fig. 5.

D. Triplon decay

As can be seen from the explicit expressions, the self-
energies are purely real for the relevant frequencies, i.e., there
is no triplon damping. In fact, this result is not restricted to
order 1/d: In the large-d limit, the typical γ�k is small, such that
the triplon density of states is strongly peaked at ω = J . More
precisely, the density of states for ω �= J is exponentially small
[40] as d → ∞. Consequently, the same applies to the density
of states of multitriplon continua which are responsible for
damping, such that all damping rates (inverse lifetimes) are
exponentially small in 1/d and thus vanish to all orders in a
1/d expansion.

We note that the poles in the self-energies, located at ±2J

and ±3J at order 1/d, produce additional spectral weight in
the triplon propagators near these frequencies. This weight
takes the form of poles with strengths of order 1/d, which
mimic the incoherent continuum present at finite d.

E. Gap and phase boundary

The excitation gap of the paramagnetic phase � is simply
given by the minimum of the triplon dispersion � = � �Q. This

0 π/2 π
→

k = (k,k ,...)

0

0.5

1

1.5

Ω
→ k

/J

0 π/2 π
→

k = (k,k ,...)

0

0.5

1

1.5 q = qcq = 0.45

d = ∞
d = 3
d = 3, κ = 1

FIG. 5. (Color online) Triplon dispersion (65) derived from the
1/d expansion for the coupled-dimer model (2), showing results for
d = ∞ (solid line), d = 3 with κ = 0 (dashed line), and d = 3 with
κ = 1 (dashed-dotted line), where κ is the asymmetry parameter (3).
Left: results for fixed q = Kd/J = 0.45. Right: results at criticality
q = qc, where here qc is defined by � �Q = 0 with ��k from Eq. (65) at
fixed d; the value of this qc is distinct from the expansion result (68)
evaluated at fixed d .

yields

�2

J 2
= 1 − 2q + 1

d
(2q2 − q3)

− 2κ2q2(6 − 14q + 6q2)

(2q + 3)d
+ O

(
1

d2

)
(66)

and is graphically shown in Fig. 6. As announced in Sec. I A,
we find an expansion for �2 which is well behaved even at
criticality; this would not apply to �. Near �Q we can expand
γ�k ≈ −1 + ∑

n(kn − π )2/(2d). This yields the parametriza-
tion in Eq. (6), with the mode velocity c given by

c

J
= √

q + q5/2

2d
− κ2q3/2

2(2q + 3)d

×
[

(6 − 14q + 6q2)(2q − 3)

2(2q + 3)
+ 14q − 12q2

]

+O
(

1

d2

)
. (67)

The location qc of the boundary to the magnetically ordered
phase can be obtained from the condition �2(qc) = 0. Using
an ansatz qc = 1/2 + qc1/d we can obtain q1c and with it the
phase boundary to order 1/d:

qc = 1

2
+

(
3

16
+ κ2

32

)
1

d
+ O

(
1

d2

)
. (68)

For κ = 0, this reduces to the result announced in the
Introduction, Eq. (5). The gap � vanishes in a square-root
fashion upon approaching qc. Extracting the prefactor of the
square root yields the result (8).

Evaluating the expression (68) for d = 2 and κ = 0 yields
a result for the critical coupling of the Heisenberg bilayer
model significantly smaller than the value known from
QMC calculations [19] (see Fig. 1). This indicates sizable
contributions from higher orders in the 1/d expansion; we
leave their explicit evaluation for future work.

0 0.1 0.2 0.3 0.4 0.5 0.6
q = Kd / J

0

0.2

0.4

0.6

0.8

1

Tr
ip

lo
n 

ga
p 

Δ 
/ J

d = ∞
d = 3
d = 3, κ = 1

FIG. 6. (Color online) Triplon gap (66) for d = ∞ (solid line),
d = 3 with κ = 0 (dashed line), and d = 3 with κ = 1 (dashed-dotted
line).
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It is worth noting that solving the equation �2(qc) = 0 using
the truncated series (66) for finite d yields a value for qc which
is distinct from qc as given by the truncated series (68) for
the same finite d. The reason is simply that �2 from Eq. (66)
evaluated at qc from Eq. (68) contains 1/d2 terms which do
not vanish (see also Fig. 1).

F. Triplon weight in dynamic susceptibility

To complete the analysis, we determine the weight of the
triplon mode in the dynamic spin susceptibility

χα(�k,ω) = −ı

∫ ∞

−∞
dt eıωt 〈TtSα(�k,t)Sα(−�k,0)〉, (69)

restricting the analysis to the symmetric case κ = 0. In
the coupled-dimer system under consideration, the Fourier-
transformed spin operator Sα(�k) has two contributions with
different form factors, namely, even (e) and odd (o) ones:

Se
α = S1

α + S2
α = −ıεαβγ t

†
βtγ , (70)

So
α = S1

α − S2
α = t†αP + P tα, (71)

with P the projector of Eq. (15). To extract the mode weight we
restrict our attention to those contributions to χα(�k,ω) which
correspond to a single-mode response, i.e., we do not consider
the even channel which produces a two-particle continuum
only. We note, however, that the P in So

α influences the
pole weight at order 1/d in a nontrivial fashion and can be
approximated neither by unity nor by 〈P 〉.

Using the Bogoliubov transformation (26) one can write
the spin susceptibility for So

α to order 1/d in terms of the τ

Green’s functions as follows:

χ̃α(�k,ω) = (u�k + v�k)2(1 − 2R1 − 8R2)[GN (�k,ω)

+ GN (�k,−ω) + GA(�k,ω) + GA(�k,−ω)]. (72)

Since we are interested in the pole weight, we need to analyze
χ̃ in the vicinity of the pole at ��k . Expanding the self-energies
in the vicinity of ω = ω�k and using the relations (54) and (57)
we can cast the Green’s functions into the following form:

GN (�k,ω) = (1 − �′
N+)−1

ω − ��k
, (73)

GN (�k,−ω) = − (1 − �′
N−)−1

ω + �−
�k

, (74)

GA(�k,ω) = −�A+ + (ω − ω�k)�′
A+

(ω − ��k)(ω + �−
�k )

, (75)

GA(�k,−ω) = −�A− + (ω − ω�k)�′
A−

(ω − ��k)(ω + �−
�k )

, (76)

valid to order 1/d. Here, we have used the abbreviations �N±
and �′

N± of Eq. (55) and similar ones for the anomalous self-
energy, and we have defined

�−
�k = ω�k(1 − 2�′

N−) + �N−. (77)

Additionally, for the anomalous self-energy, we have �A+ =
�A− and �′

A+ = �′
A− to order 1/d. The susceptibility in the

vicinity of ω = ω�k becomes

χ̃α(�k,ω) = (u�k + v�k)2(1 − 2R1 − 8R2)

{
1

ω − ��k

[
(1 − �′

N+)−1 − 2
�A+ − ω�k�

′
A+ + ��k�

′
A+

��k + �−
�k

]

− 1

ω + �−
�k

[
(1 + �′

N−)−1 − 2
�A+ − ω�k�

′
A+ − �−

�k �′
A+

��k + �−
�k

]}
. (78)

It is then easy to identify the pole weight corresponding to
��k as

Z�k = (u�k + v�k)2

[
1 + �′

N+ − �A+
ω�k

− 2R1 − 8R2

]
, (79)

where �− and �′
− have disappeared, as they characterize the

self-energy away from the pole.
To obtain an explicit expression for the pole weight, we

also need the contributions to the anomalous self-energy, with
the relevant diagrams shown in Fig. 7. Their evaluation can
be done along the lines discussed in the previous subsections,
with the following results:

�7(a) = D�k, (80)

�7(b) = −2γ�kq
2JR3

(
u2

�k + u�kv�k
)
, (81)

�7(c) = −2γ�kq
2JR3

(
v2

�k + u�kv�k
)
, (82)

�7(d) = q2J 2

ω − 3J

[
4γ�k(u�k + v�k)2(γ�kR2 + R3) + 2u�kv�k

d

]
, (83)

�7(e) = −q2J 2

ω + 3J

[
4γ�k(u�k + v�k)2(γ�kR2 + R3) + 2u�kv�k

d

]
, (84)

where the self-energy arguments (�k,ω) have been omitted.
Inserting the expressions of the self-energies evaluated here
and in Eqs. (58)–(61), we obtain for the pole weight

Z�k = J

ω�k

{
1 − q2

2d

[
7 +

1 + γ�k − 2γ�kq + γ 2
�k q

1 + 2γ�kq

]}
. (85)

This expression is seen to be singular at the bare critical point,
i.e., q = 1

2 and γ�k = −1. However, this singularity can be
removed by realizing that the physical pole weight will diverge
for ��k → 0 (instead of ω�k → 0). Hence, upon casting the
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(a) (b) (c)

(d) (e)

FIG. 7. Feynman diagrams for anomalous self-energies con-
tributing to order 1/d .

above expression into the form

Z�k = J

��k
W�k , (86)

the prefactor W�k is expected to have a regular 1/d expansion.
Indeed, after a few steps of algebra one finds

W�k = 1 − q2

2d
(6 + γ�k) + O

(
1

d2

)
, (87)

which constitutes our final result for the κ = 0 susceptibility
pole weight.

V. INTERDIMER PERTURBATION THEORY
FOR ARBITRARY d

In this section, we turn to employing an entirely different
method to calculate observables for the hypercubic coupled-
dimer model (2), namely, a high-order series expansion in
the relative strength of the interdimer coupling k = K/J .
Expansions of this type have been used before for lattices in
d = 1 and 2 [45,46]; here we will derive results for arbitrary
spatial dimension d. We note that high-temperature expansions
for Ising and Potts models on the hypercubic lattice have
been performed in Refs. [47,48], but we are not aware of
any such expansions for one-particle dispersions in a quantum
lattice problem. In the following, we shall use the results
as an independent check of our 1/d expansion developed in
this paper. Furthermore, such high-order series expansions for
general d represent an interesting tool to investigate quantum
phase transitions; we will address this aspect in a forthcoming
publication [49].

A. Method

We start by sketching the methodology of the expansion;
for details we refer the reader to Refs. [23,50]. The expansion’s
reference point corresponds to k = 0. Here, the ground state
is given by a product state of singlets on the dimers, and
elementary excitations are local triplets with excitation energy
� = J . After a global energy shift, we can rewrite Hamiltonian
(2) in the form

H = H0 + k V̂ , (88)

where H0 has an equidistant spectrum bounded from below
counting the number of triplets. Furthermore, the perturbing
part can be written as

V̂ = T̂−2 + T̂−1 + T̂0 + T̂1 + T̂2, (89)

where T̂m changes the total number of triplets by m ∈
{±2,±1,0}. Note that terms with odd m only appear in the
asymmetric case κ �= 0, corresponding to cubic terms in the
bond-operator language.

Each operator T̂m is a sum over local operators connecting
two nearest-neighbor dimers. One can therefore write

T̂m =
∑

l

τ̂m,l , (90)

with τ̂m,l effecting only the two dimers connected by the link
l on the lattice.

The perturbative continuous unitary transformations
(pCUTs) [23,50] map the original Hamiltonian to an effective
quasiparticle-conserving Hamiltonian of the form

Ĥeff(k) = Ĥ0 +
∞∑

n=1

kn
∑

dim(m)=n

M(m)=0

C(m) T̂m1 · · · T̂mn
, (91)

where n reflects the perturbative order. The second sum is
taken over all possible vectors m ≡ (m1, . . . ,mn) with mi ∈
{±2,±1,0} and dimension dim(m) = n. Each term of this
sum is weighted by the rational coefficient C(m) ∈ Q which
has been calculated model independently up to high orders
[23]. The additional restriction M(m) ≡ ∑

mi = 0 reflects
the quasiparticle-conserving property of the effective Hamil-
tonian, i.e., the resulting Hamiltonian is block diagonal in the
number of quasiparticles [Ĥeff,Ĥ0] = 0. Each quasiparticle
block can then be investigated separately which represents a
major simplification of the complicated many-body problem.

The operator products T̂m1 · · · T̂mn
appearing in order n

can be interpreted as virtual fluctuations of “length” l � n

leading to dressed quasiparticles. According to the linked-
cluster theorem, only linked fluctuations can have an overall
contribution to the effective Hamiltonian Ĥeff . Hence, the
properties of interest can be calculated in the thermodynamic
limit by applying the effective Hamiltonian on finite clusters.

Considering all linked fluctuations on the lattice (for
arbitrary d), it becomes clear that the contribution of each
fluctuation only depends on its topology. We can therefore
perform our calculations only on a finite set of topologically
distinct graphs. The contribution on the graphs has then to be
embedded into the lattice in order to extract the properties in
the thermodynamic limit. In the following, this is done for the
ground-state energy and the one-triplon dispersion.

B. Ground-state energy

We now calculate the ground-state energy E0 of the
hypercubic-lattice coupled-dimer model for arbitrary d up
to order k7, using pCUTs and a full graph decomposition.
This task is achieved in two steps: (i) extracting the ground-
state energy per dimer on each graph in order seven and
(ii) embedding these graph contributions into the lattice and
summing up their contributions.

094404-11



JOSHI, COESTER, SCHMIDT, AND VOJTA PHYSICAL REVIEW B 91, 094404 (2015)

FIG. 8. (Color online) Relevant graphs Gi with i ∈ {1, . . . ,11} to
calculate the one-particle dispersion up to order five in k and the
ground-state energy per site up to order seven in k, respectively. Here,
filled circles represent dimers which are connected to their nearest
neighbors by links shown as solid lines.

The first step is conventional and it is part of any linked-
cluster expansion. In order to avoid double counting of
contributions, the reduced contribution ε0,n to E0 of each graph
Gn has to be calculated by subtracting the contributions of all
subgraphs.

Up to order n, only graphs up to n links have to be
considered due to the linked-cluster theorem. Now, one has to
check whether the graphs fit onto the lattice and whether each
graph has a finite contribution in the order under consideration.
The latter depends on both the model and the observable. In
the case of the ground-state energy of the hypercubic-lattice
coupled-dimer model, one has a specific selection rule that
each link has to be touched twice by the perturbation as long as
it is not part of a closed loop of links. This property drastically
reduces the total number of graphs which one has to treat. The
relevant graphs for the calculation of the ground-state energy
per dimer up to order seven are G1, G2, G3, G4, G5, G7, G8, and
G9, which are all illustrated in Fig. 8. Other graphs such as
G6, G10, and G11 do not contribute up to this order due to the
double-touch property.

The embedding factor νn(d) for graph Gn, being the number
of possible embeddings of Gn on the lattice, is a function of
the spatial dimension d. The ground-state energy per dimer in
the thermodynamic limit is then given by

E0

JN
=

∑
n

νn(d) ε0,n. (92)

The determination of the embedding factors νn(d) for arbitrary
d is the most challenging part of this calculation.

In order to determine the embedding factors it is necessary
to divide the number of naive embeddings by the symmetry

factor Sn of Gn. Otherwise, one overcounts contributions since
embeddings connected by a symmetry mapping of the graph
represent exactly the same fluctuation on the lattice in the
thermodynamic limit.

Let us demonstrate the embedding procedure for graph G3.
Without loss of generality, we can start the embedding from the
dimer site s0. Then, the site s1 can be embedded in 2d possible
directions; the site s2 can be embedded in (2d − 1) possible
directions because one direction is already occupied by s0.
The site s3 can be embedded in (2d − 1) different directions
because one direction is already occupied by s1. Note that no
possible direction is occupied by s0 as the minimal loop in
the hypercubic lattice is of length four. The symmetry factor is
given by S3 = 2 originating from a single reflection symmetry.
We therefore end up with ν3(d) = 2d(2d − 1)(2d − 1)/2 =
d(2d − 1)(2d − 1).

Following these principles, we find the following small-k
expansion for the ground-state energy:

E0

JN
= −3

4
− 3

8
d k2 − 3

16
d k3 +

(
21

128
d − 9

64
d2

)
k4

+
(

57

256
d − 3

64
d2

)
k5 +

(
− 2781

1024
d − 7

256
κ2d

+ 273

64
d2 + 7

128
κ2d2 − 357

256
d3 − 1

32
κ2d3

)
k6

+
(
−73 293

16 384
d − 353

1024
dκ2 + 53 205

8192
d2 + 899

1536
d2κ2

− 8499

4096
d3 − 97

384
d3κ2

)
k7 + O(k8). (93)

For d = 1 and κ = 0, this formula reduces to the known results
for the two-leg Heisenberg ladder [46]. For the specific case
d = 2 and κ = 0, we reproduce the numerical results of the
ground-state energy of the square-lattice bilayer [45].

C. Triplon dispersion

In this section, we follow the same line as for the ground-
state energy, but now calculate the one-particle dispersion ��k
up to order k5. The dispersion is calculated by first determining
the reduced one-particle hopping elements t

(n)
i,j from dimer i to

dimer j on graphGn using pCUTs. The reduced amplitudes can
again be obtained by subtracting all subcluster contributions
of a given graph. Only graphs with up to five links are needed
for the calculation of order five; those are also illustrated in
Fig. 8. The individual hopping amplitudes, embedding factors,
and dispersion contributions are given in Appendix F.

Upon expressing the dispersion in terms of the structure
factor γ�k (25), we arrive at

��k
J

= 1 + dγ�k k +
{

[1 + (−1 + γ�k)κ2]d − γ�k
2

2
d2

}
k2 +

{[
3 γ�k

8
+ 5

8
+ (−1 + γ�k)κ2

]
d

+
[
−γ�k − γ�k

2

2
+ (

2 γ�k
2 − 2 γ�k

)
κ2

]
d2 + γ�k

3

2
d3

}
k3 +

{[
11 γ�k

16
− 9

16
+

(
− 3 γ2�k

8
+ 3 γ�k

8

)
κ2 +

(
3

4
− 3 γ�k

4

)
κ4

]
d
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+
[
−15 γ�k

2

16
− 11 γ�k

8
+ 5

16
+

(
− 17

8
+ 39 γ�k

2

8
− 11 γ�k

4

)
κ2 +

(
− 1

4
− γ�k

2
+ 3 γ�k

2

4

)
κ4

]
d2

+
[

3 γ�k
2

2
+ γ�k

3

2
+

(
− 3 γ�k

2

2
+ 3 γ�k

3

2

)
κ2

]
d3 − 5 γ�k

4

8
d4

}
k4

+
{[

−125 γ�k
128

− 3 γ2�k
64

− 45

64
+

(
1 − 17 γ�k

16
+ γ2�k

16

)
κ2 +

(
5

4
− 9 γ�k

16
− 11 γ2�k

16

)
κ4

]
d

+
[

83 γ�k
64

− 15 γ�k
2

16
− 17

64
+

(
− 21

8
− 3 γ�k γ2�k

2
+ 33 γ�k

2

8

)
κ2 +

(
− 3

4
+ 7 γ�k

2

8
− γ�k

8

)
κ4

]
d2

+
[

γ�k
32

+ 35 γ�k
2

16
+ 33 γ�k

3

32
+

(
81 γ�k

3

8
− 45 γ�k

8
− 9 γ�k

2

2

)
κ2 +

(
− 19 γ�k

2

4
+ 5 γ�k

8
+ 33 γ�k

3

8

)
κ4

]
d3

+
[
−5 γ�k

3

2
− 3 γ�k

4

4
+ (

γ�k
4 − γ�k

3)κ2

]
d4 + 7 γ�k

5

8
d5

}
k5 + O(k6). (94)

The one-triplon gap is simply obtained as � = � �Q. Setting
κ = 0, one recovers for d = 1 the known one-triplon gap
of the two-leg Heisenberg ladder [46], while the case d = 2
reproduces the gap of the square-lattice bilayer [45].

D. Double expansion in K/J and 1/d

The large-d expansion and the small-k expansion are
expected to match in the double limit d → ∞ and q → 0;
this is an important cross-check.

First, we reorganize the results of the above expansion in
k = K/J , done for arbitrary d, in powers of q = Kd/J , and
extract the leading terms in 1/d. For the ground-state energy
we find from Eq. (93)

E0

JN
= −3

4
− 3

8

q2

d
+

(
− 3

16
q3 + 9

64
q4

)
1

d2

+
(

21

128
q4 − 3

64
q5 − 357

256
q6 − 1

32
κ2q6

)
1

d3

+O
(

1

d4

)
. (95)

Interestingly, the model-dependent selection rules can be used
to prove [49] that only terms up to order q2m contribute to the
1/dm term in E0, such that the above expression represents the
complete expansion up to 1/d3 of E0.

For the square of the one-triplon energy, we obtain from
Eq. (94)

�2
�k

J 2
= 1 + 2 γ�k q + 1

d

{
(2 γ�k κ2 − 2 κ2 + 2)q2

+ (
6 κ2γ�k

2 − 6 γ�k κ2 − γ�k
2)q3

+ (
6 κ2γ�k

3 − 6 κ2γ�k
2
)
q4

+ (
4 κ2γ�k

4 − 4 κ2γ�k
3
)
q5 + O(q6)

} + O
(

1

d2

)
.

(96)

Here, each order in 1/d, with the exception of d0, generically
receives contributions from all orders in q.

Second, we expand the results of the 1/d expansion from
Sec. IV in q. Interestingly, the expression for the ground-state

energy (48) already has the structure of a small-q expansion;
this is related to the model-dependent selection rules as
noted above. A comparison of Eq. (48) with Eq. (95) shows
coincidence.

A look at the large-d triplon dispersion in Eq. (65) reveals
that the contribution for nonzero κ does require a small-q
expansion. Performing this expansion yields exactly the result
in Eq. (96). Hence, the two expansions are found to be
consistent in their combined regime of validity, providing an
independent check for our 1/d expansion results.

VI. OTHER LATTICES

So far, we demonstrated the 1/d expansion for a simple
coupled-dimer model, namely, dimers on a hypercubic lattice
with nearest-neighbor unfrustrated interactions. More compli-
cated models can be treated, and we give here an incomplete
discussion of aspects arising.

A. Interaction terms

Upon rewriting a general coupled-dimer Heisenberg model
(1) into bond operators, the coefficients of the nonlocal
bilinear, cubic, and quartic terms in the real-space bond-
operator Hamiltonian (16) are related to the Kmm′

in Eq. (1)
according to

K2 = (K11 + K22 − K12 − K21)/2,

K3 = (K11 − K22 + K12 − K21)/2, (97)

K4 = (K11 + K22 + K12 + K21)/2.

The bilayer model treated in the main part of the paper
corresponds to K2 = K4 = K and K3 = κK .

Equation (97) shows that the prefactor K3 of the cubic piece
vanishes provided that the model remains invariant if in every
dimer the spins 1 and 2 are interchanged (together with all their
couplings). A nonvanishing cubic term occurs if this symmetry
is broken, which applies, in addition to the asymmetric bilayer
model [14], also, e.g., to the staggered dimer model [51,52]
and to the alternating chain model [38,39].
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Equation (97) also shows that frustration, introduced by
antiferromagnetic K12 and K21, can induce large quartic cou-
plings which consequently also produce large 1/d corrections.

For exchange interactions beyond nearest-neighbor dimers,
one needs to define a large-d rescaling scheme for every
interaction such that a nontrivial large-d limit is obtained.
The momentum summations will then involve powers of the
different structure factors for the individual interaction terms,
and the relevant large-d expansions have to be performed
separately for all contributions.

B. Large-d generalizations

If the 1/d expansion is used to access a specific model in
d = 2 or 3, then the first step is a generalization of the model
to arbitrary d. Depending on the lattice geometry, this may be
nontrivial, but in any case is not unique.

Hence, a given model generally admits multiple large-
d generalizations which in turn will yield 1/d series for
observables with different coefficients. It is interesting to study
how the different predictions from low-order 1/d expansions
differ in such a situation; this will be the subject of future work.

C. Finite systems

The hypercubic-lattice model with linear size L has N =
Ld dimer sites, and our results have been derived for the
thermodynamic limit where L → ∞ is taken before d → ∞.
Interestingly, they also apply to systems where the limit
d → ∞ is taken at finite L, provided that L is even, as∑

�k γ 2
�k = N/(2d) remains valid.

VII. SUMMARY

We have developed a controlled approach to coupled-dimer
magnets which can cover the entire phase diagram and
smoothly connects the different zero-temperature phases. The
method is formulated using bond operators and utilizes 1/d

as a small parameter, i.e., provides systematic 1/d expansions
for any observable. Phrased differently, we have identified a
small parameter 1/d, which controls the well-known bond-
operator approach and utilizes a systematic improvement of
the frequently used leading-order calculations.

In this paper, we have demonstrated the method for a d-
dimensional hypercubic-lattice generalization of the bilayer
Heisenberg model and determined the ground-state energy,
the one-triplon spectrum and weight, and the phase boundary
to the antiferromagnetic phase.

Contact was made with a perturbative expansion in the
interdimer coupling, performed using continuous unitary
transformation. High-order results of this expansion were used
as a cross-check of the 1/d expansion.

In the companion paper [16], the 1/d expansion is applied
to the antiferromagnetically ordered phase of the hypercubic
coupled-dimer model, where it is shown that both phases can
be smoothly connected order by order in 1/d, as expected on
general grounds.

We envision further applications of the 1/d expansion
developed here to coupled-dimer magnets in a uniform field,
where Bose-Einstein condensation of triplons occurs [3] and
to systems with geometric frustration [53,54], including cases

with noncollinear and incommensurate order. The harmonic
bond-operator approach has been applied to systems with
quenched disorder [55], and we expect insights into corrections
here as well.

ACKNOWLEDGMENTS

We thank E. Andrade, S. Burdin, F. H. L. Essler, D.
K. Morr, G. S. Uhrig, and M. E. Zhitomirsky for helpful
discussions. This research has been supported by the DFG
(Grants No. GRK 1621 and No. SFB 1143), the GIF (Grant
No. G 1025-36.14/2009), and by the Virtual Institute VI-521
of the Helmholtz association.

APPENDIX A: PROJECTORS AND SPIN COMMUTATION
RELATIONS

Here, we discuss the choice of projection operators Pi used
to express the spin operators in terms of hard-core triplet
operators as in Eq. (14). Under the assumption that Pi is an
arbitrary function of ni = ∑

γ t
†
iγ tiγ , an explicit computation

yields

[
Sα

im,S
β

im′
]
− = ıεαβγ S

γ

imδmm′ + (−1)m+m′

4

[
t
†
iα

(
P 2

i − 1
)
tiβ

− Pit
†
iαtiβPi − t

†
iβ

(
P 2

i − 1
)
tiα + Pit

†
iβ tiαPi

]
.

(A1)

The first line corresponds to the standard spin commutator,
and the extra terms can be written, using Pi = f (ni), as

(t†iαtiβ − t
†
iβ tiα)[f 2(ni − 1) − 1 − f 2(ni)]. (A2)

Given the representation (14) of the spin operators, we
have to require f (0) = 1 and f (1) = 0, such that any matrix
element of �Sim between physical and unphysical states is
suppressed. With this requirement, the extra terms (A2)
automatically vanish within the physical Hilbert space defined
by ni � 1. Hence, at a formal level, the choice of projection
operator is not unique, i.e., any function with f (0) = 1 and
f (1) = 0 could be chosen.

However, for practical purposes, f (x) = 1 − x as in
Eq. (15) is most efficient, because a nonlinear function would
lead to a more complicated Hamiltonian with a more involved
normal-ordering procedure.

Nonanalytic choices of f (x) may lead to even more
severe problems: It is illuminating to consider the choice
f (x) = √

1 − x which might have appeared suitable based on
similarities to the Holstein-Primakoff representation of spin
operators in the context of spin-wave theory [56]: There,
the Hilbert-space constraint for Holstein-Primakoff bosons
n � 2S is implemented via square-root projectors S− =
a†√2S − a†a, S+ = √

2S − a†a a. An important difference,
however, is that in spin-wave theory (when used as an
asymptotic expansion) the physical Hilbert space is infinite at
the reference point S → ∞, such that matrix elements with
unphysical states formally do not appear. In our case, the
physical Hilbert space is finite, such that Pi practically has
to be evaluated also with ni � 2 states. Now, Pi is defined
via the series expansion of f (ni), and the series of

√
1 − x
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is nonconvergent for x > 1; this renders calculations with
square-root projectors impossible.

APPENDIX B: MOMENTUM SUMS IN LARGE d AND
EXPECTATION VALUES

As already mentioned in Sec. III, the basis for the 1/d

expansion is the observation that the magnitude of γ�k (25)
scales as 1/

√
d for typical �k and large d. This implies that,

inside a �k summation, γ�k can be treated as a small parameter,
and a formal 1/d expansion can be generated by expanding
in γ�k . Direct summations over γ�k , using

∫ 2π

0 dx cos2 x = 1/2,
etc., yield

1

N

∑
�k

γ 2n+1
�k = 0, (B1)

1

N

∑
�k

γ 2
�k = 1

2d
,

1

N

∑
�k

γ 4
�k = 3

4d2
− 3

8d3
,(B2)

1

N

∑
�k

γ�k+�k′′γ�k+�k′ = γ�k′−�k′′

2d
. (B3)

The expressions for physical observables arise from the
bilinear Hamiltonian (23) and its perturbations and involve
combinations of the mode energy ω�k (28) and Bogoliubov
coefficients (29). For the 1/d expansion these need to be
expanded in γ�k:

ω�k
J

= 1 + γ�kq −
γ 2

�k q2

2
+

γ 3
�k q3

2
−

5γ 4
�k q4

8
+ O

(
γ 5

�k
)
,

v2
�k =

γ 2
�k q2

4
−

γ 3
�k q3

2
+

15γ 4
�k q4

16
+ O

(
γ 5

�k
)
,

(B4)
u2

�k = 1 + v2
�k ,

u�kv�k = −γ�kq
2

+
γ 2

�k q2

2
−

3γ 3
�k q3

4
+

5γ 4
�k q4

4
+ O

(
γ 5

�k
)
.

Frequently needed are the momentum sums defined in Eq. (34).
Using Eqs. (B1), (B3), and (B4), their large-d expansion is
found as follows:

R1 = 1

N

∑
�k

u�kv�k = q2

4d
+ 15q4

16d2
+ O(d−3), (B5)

R2 = 1

N

∑
�k

v2
�k = q2

8d
+ 45q4

64d2
+ O(d−3), (B6)

R3 = 1

N

∑
�k

γ�ku�kv�k = − q

4d
− 9q3

16d2
+ O(d−3), (B7)

R4 = 1

N

∑
�k

γ�kv
2
�k = −3q3

8d2
+ O(d−3). (B8)

The R1...4 are related to expectation values of the bilinear
Hamiltonian (23) as follows:

∑
i

〈t†iαt
†
iβ〉 = NδαβR1,

∑
i

〈t†iαtiβ〉 = NδαβR2,

(B9)∑
〈ij〉

〈t†iαt
†
jβ〉 = NdδαβR3,

∑
〈ij〉

〈t†iαtjβ〉 = NdδαβR4.

Note, however, that the full 1/d expansion for these expec-
tation values also involves corrections from the additional
Hamiltonian pieces H2b,4,6. These corrections ensure that
〈t†iαt

†
iα〉 = 0 order by order in the 1/d expansion, as required

by the hard-core constraint (see Sec. IV B).
Finally, we also need the following higher-order combina-

tion of Bogoliubov coefficients:

R′
5(�k) = 1

N

∑
�k′

u�k′v�k′u�k−�k′v�k−�k′ = γ�kq
2

8d
. (B10)

APPENDIX C: CUBIC AND QUARTIC VERTEX
FUNCTIONS

The cubic vertex functions are linearly proportional to the
asymmetry parameter κ (3) and read as

�31(123) = −ıκqJγ2+3(u1u2v3 − v1v2u3), (C1)

�32(123) = −ıκqJγ2−3(u1u2u3 − v1v2v3), (C2)

�33(123) = −ıκqJγ2+3(v1u2v3 − u1v2u3), (C3)

�34(123) = −ıκqJγ2−3(u1v2v3 − v1u2u3). (C4)

The quartic vertex functions are

�41(1234) = qJ

2

∑
α,β,α �=β

(γ2+3u1v2u3v4 − γ2+4u1u2v3v4)

− qJ
∑
α,β

(γ2u1v2u3v4 + γ2u1u2u3v4 + γ2v1v2v3u4 + γ2+3+4u1v2u3v4), (C5)

�42(1234) = qJ

2

∑
α,β,α �=β

(γ2−4u1v2u3v4 + γ2−4v1u2v3u4 − γ2−4u1u2u3u4 − γ2−4v1v2v3v4)

− qJ
∑
α,β

(γ2u1v2u3v4 + γ4v1u2v3u4 + γ2−3−4u1v2u3v4 + γ1+2−4v1u2v3u4

+ γ2u1u2v3u4 + γ4u1v2v3v4 + γ3u1v2u3u4 + γ1v1v2v3u4), (C6)
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�43(1234) = qJ

2

∑
α,β,α �=β

(γ2−3u1u2u3u4 + γ−3−4u1v2u3v4 + γ1+2v1u2v3u4 + γ1−4v1v2v3v4

− γ2−3u1v2v3u4 − γ−3−4u1v2v3u4 − γ1+2u1v2v3u4 − γ1−4u1v2v3u4)

− qJ
∑
α,β

(γ3u1u2u3u4 + γ3u1v2u3v4 + γ1v1u2v3u4 + γ1v1v2v3v4 + γ2−3−4u1u2u3u4 + γ2−3−4u1v2u3v4

+ γ1+2−4v1u2v3u4 + γ1+2−4v1v2v3v4 + γ3u1u2v3u4 + γ3u1v2v3v4 + γ1u1u2v3u4 + γ1u1v2v3v4

+ γ1v1u2u3u4 + γ1v1v2u3v4 + γ3v1u2u3u4 + γ3v1v2u3v4), (C7)

�44(1234) = qJ

2

∑
α,β,α �=β

(γ2+3u1v2u3u4 + γ2−4u1v2v3v4 + γ1−4u1v2u3u4 + γ1+3u1v2v3v4

− γ2+3u1u2v3u4 − γ2−4u1u2v3u4 − γ2−4v1v2u3v4 − γ2+3v1v2u3v4)

− qJ
∑
α,β

(γ2u1v2u3u4 + γ2u1v2v3v4 + γ4u1v2u3u4 + γ3u1v2v3v4 + γ2+3−4u1v2u3u4 + γ2+3−4u1v2v3v4

+ γ1+2−4u1v2u3u4 + γ1+2+3u1v2v3v4 + γ2u1u2u3u4 + γ2u1u2v3v4 + γ4u1v2u3v4 + γ3u1v2u3v4

+ γ3u1v2v3u4 + γ4u1v2v3u4 + γ2v1v2u3u4 + γ2v1v2v3v4). (C8)

APPENDIX D: EVALUATION OF DIAGRAMS IN A 1/d
EXPANSION

Here, we demonstrate the evaluation of Feynman diagrams
in a 1/d expansion, using a sample self-energy diagram
involving two cubic vertices, with the full structure of the
cubic Hamiltonian piece given in Eq. (41). To be explicit,
we focus on a normal self-energy diagram with two �31

vertices which furthermore have τx as external legs with
frequency ω and momentum �k (Fig. 9). Its explicit expression
reads as

�� = i

2π

∫
dω1dω2

1

N

∑
�k1 �k2

�(�k,�k1,�k2)G0N (�k1,ω1)

× G0N (�k2,ω2)δ(ω + ω1 + ω2)δ�k+�k1+�k2
, (D1)

whereG0N is the normal τ Green’s function for the unperturbed
Hamiltonian

G0N (�k,ω) = 1

ω − ωk

(D2)

and �(�k,�k1,�k2) represents the product of vertex functions and
respective permutations of the legs of the cubic vertex cor-
responding to this diagram (�ky ≡ �k1, �kz ≡ �k2,ω�ky

≡ ω1,ω�kz
≡

ω2), i.e.,

�(�k,�k1,�k2) = �1(�k,�k1,�k2) + �2(�k,�k1,�k2) + �3(�k,�k1,�k2)
(D3)

x x

z

y

FIG. 9. Sample self-energy diagram with two cubic �31 vertices.

with

�1(�k,�k1,�k2)

= 2[�31(�k�k1�k2)�31(�k�k1�k2) − �31(�k�k1�k2)�31(�k�k2�k1)

+ �31(�k�k1�k2)�31(�k2�k�k1) − �31(�k�k1�k2)�31(�k1�k�k2)

+ �31(�k�k1�k2)�31(�k1�k2�k) − �31(�k�k1�k2)�31(�k2�k1�k)],
(D4)

�2(�k,�k1,�k2)

= 2[�31(�k2�k�k1)�31(�k�k1�k2) − �31(�k2�k�k1)�31(�k�k2�k1)

+ �31(�k2�k�k1)�31(�k2�k�k1) − �31(�k2�k�k1)�31(�k1�k�k2)

+ �31(�k2�k�k1)�31(�k1�k2�k) − �31(�k2�k�k1)�31(�k2�k1�k)],
(D5)

�3(�k,�k1,�k2)

= 2[�31(�k1�k2�k)�31(�k�k1�k2) − �31(�k1�k2�k)�31(�k�k2�k1)

+ �31(�k1�k2�k)�31(�k2�k�k1) − �31(�k1�k2�k)�31(�k1�k�k2)

+ �31(�k1�k2�k)�31(�k1�k2�k) − �31(�k1�k2�k)�31(�k2�k1�k)].
(D6)

The factors of 2 arise from permutations that yield iden-
tical contributions as the ones that appear above, e.g.,
�31(�k�k2�k1)�31(�k�k2�k1)=̂�31(�k�k1�k2)�31(�k�k1�k2).

For the purpose of illustration, we will now show the explicit
calculation for �1. We first perform the frequency integral in
(D1). The resulting expression is then

��1 = 1

N

∑
�k1�k2

�1(�k,�k1,�k2)

−ω − ω1 − ω2
δ�k+�k1+�k2

. (D7)
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The remaining momentum integration is the central element of
the 1/d expansion. We recall that momentum sums of various
powers of γ�k scale as powers of 1/d [see Eqs. (B1) and (B3)].
In particular, a momentum sum of γ 2n+1

�k is zero and that of γ 2n
�k

scales as 1/dn (plus higher-order terms). As a consequence,
any function f (γ�k) under a momentum integral can be Taylor-
expanded in γ�k as to generate an expansion in 1/d after the
momentum integration. (Note that our small control parameter
is 1/d, not γ�k .)

The actual calculation requires the γ�k expansions of the
mode energy and the Bogoliubov coefficients [Eq. (B4)] as
input. As we restrict our attention to the leading 1/d order
of the self-energy, we can approximate u2

�k ≈ 1 and ω�k ≈ J

since since �1 involves factors of γ�k and v�k which will
generate at least one factor of 1/d. (Obtaining higher orders
is straightforward, but tedious, and requires to include higher
orders for u2

�k and ω�k .) Hence, to order 1/d, Eq. (D7) reduces
to

��1 = − 1

ω + 2J

1

N

∑
�k1

�1(�k,�k1,−�k1 − �k). (D8)

Here, we now need to collect those terms which are O(γ 2
�k ),

as
∑

γ 2
�k ∝ 1/d; these are terms like u2

�ku
2
�k1
v2

−�k−�k1
, etc. This

yields

��1 = − 2γ�kκ
2K2

ω + 2J

1

N

∑
�k1

[
γ�ku

2
�ku

2
�k1
v2

−�k−�k1
− 2γ�ku�kv�ku�k1

v�k1
u−�k−�k1

v−�k−�k1
+ γ�kv

2
�kv

2
�k1
u2

−�k−�k1

− γ�ku
2
�ku�k1

v�k1
u−�k−�k1

v−�k−�k1
+ 2γ�ku�kv�ku

2
�k1
v2

−�k−�k1
− γ�kv

2
�ku�k1

v�k1
u−�k−�k1

v−�k−�k1
+ u�kv�kγ�k1

u2
�k1
u−�k−�k1

v−�k−�k1

− v2
�kγ�k1

u�k1
v�k1

v2
−�k−�k1

− u�kv�ku
2
�k1
γ�k2

u−�k−�k1
v−�k−�k1

+ v2
�ku�k1

v�k1
γ�k2

u2
−�k−�k1

]
. (D9)

Using the definitions of R1...5 in Eqs. (34) and (35), this can be converted into

��1 = −2γ�kκ
2K2

ω + 2J

{
γ�ku

2
�k[R2 − R′

5(�k)] + v2
�k [γ�kR2 − γ�kR

′
5(�k) − R3 + R′

3(�k)] + u�kv�k[2γ�kR2 − 2γ�kR
′
5(�k) − R3 + R′

3(�k)]
}
.

(D10)

A similar calculation for the �2 and �3 combination of vertices results in

��2 = O(1/d2), (D11)

��3 = − 2κ2K2

ω + 2J

{
v2

�k

[
γ�kR

′
3(�k) − γ�kR3 + 1

2d
− γ�k

2d

]
+ γ�ku�kv�k[R′

3(�k) − R3]

}
. (D12)

Summing �4(b) = ��1 + ��2 + ��3 finally yields Eq. (64) of
the main text.

The calculation for other diagrams used in this paper
follows the same strategy as outlined here; typically only
a small fraction of possible vertex contributions of a given
diagram eventually contribute to order O(1/d). For higher
orders, the use of computer algebra is indispensable.

APPENDIX E: BRUECKNER APPROACH

In this Appendix, we discuss the possibility to generate
a 1/d expansion using a different treatment of the hard-
core constraint (12) of the triplet excitations: Instead of the
projectors (15), the infinite onsite repulsion HU (13) is treated
using the Brueckner approach as proposed in Ref. [14]. This
approximation is known to be controlled in the dilute-gas limit,
and since we know that the triplet density scales as 1/d we
expect that the Brueckner approximation becomes accurate
here as well.

Following Ref. [14], we introduce a renormalized quartic
vertex, resulting from the hard-core repulsion HU (13) of the
t particles, which is obtained from a self-consistent ladder

summation [14]

�(�k,ω) = −
⎛
⎝ 1

N

∑
�p

u2
�pu2

�k− �p
ω − ω �p − ω�k− �p

⎞
⎠

−1

. (E1)

Here, all anomalous scattering vertices have been neglected,
which is justified in the small-density limit.

We now proceed to calculate corrections to the triplon
dispersion, both from HU and from the quartic terms in
the Hamiltonian [note that these are only the terms in the
first line of Eq. (19), while those in the other lines arise
from the projectors and are absent here]. For simplicity, we
restrict ourselves to the symmetric case κ = 0. Importantly,
the diagrammatics is done here directly for the t particles,
i.e., the following self-energies and propagators are those of t

particles.
To leading order, the normal self-energy from HU is given

by the sum of Hartree and Fock diagrams:

�U
α (�k,ω) = �αα(�k,ω) +

∑
β

�αβ(�k,ω),

(E2)
�αβ(�k,ω) = 1

N

∑
�q

v2
�qβ�αβ,αβ (�k + �q,ω − ω�qβ).
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Spin indices α,β are written here for bookkeeping purposes
only; both the � vertex and the self-energies do not depend on
α,β in the paramagnetic phase.

Anticipating that �U
α ∝ 1/d, we conclude that the renor-

malized vertex � will be of order 1/d0. Restricting our
attention to this leading contribution, we can approximate
u2

�k = 1, v2
�k = 0, and the mode energy ω �p = J , such that

Eq. (E1) immediately gives

�(�k,ω) = −(ω − 2J ) + O
(

1

d

)
. (E3)

The normal self-energy from Eq. (E2) then evaluates to

�U
N (�k,ω) = −q2(ω − 3J )

2d
(E4)

up to order 1/d, where we have again set the mode energy to J

and used the momentum-summation result (B6). In addition,
there is an anomalous self-energy contribution from the �

vertex [57]. This is expressed as follows:

�U
A (�k,ω) = 1

N

∑
�p

u �pv �p�(0,0). (E5)

Evaluating this in the large-d limit as before, and using
Eq. (B5), we find

�K
A (�k,ω) = 1

N

∑
�p

u �pv �p2J = J
q2

2d
. (E6)

Finally, we take into account the quartic terms of the triplon
Hamiltonian (not arising from projectors); this is done on the
Hartree-Fock level [14]. Summing all self-energy contribu-
tions we have

�N (�k,ω) = −q2(ω − 3J )

2d
+ 2γ�kJR4, (E7)

�A(�k,ω) = J
q2

2d
− 2γ�kJR3. (E8)

These self-energies enter the Dyson equation for the t

particles from which we want to extract the renormalized mode
energy to order 1/d. One difference to the Dyson equation for
the τ particles used in the main paper is that the anomalous
self-energy cannot be neglected here, as the t particles display
anomalous propagators already to leading order. The Dyson
equation can be cast in the following form:

G(�k,ω) = ωZ−1 + A�k + �N (�k,0)

ω2
[
Z−2 − �′2

A (�k,0)
] − [A�k + �N (�k,0)]2 + [Bk + �A(�k,0)]2

, (E9)

where

Z−1 = 1 − ∂�N (�k,ω)

∂ω

∣∣∣∣
ω=0

= 1 + q2

2d
, (E10)

�′
A(�k,0) = ∂�A(�k,ω)

∂ω

∣∣∣∣
ω=0

= 0; (E11)

note that an expansion of �(�k,ω) [Eqs. (E7) and (E8)] around
ω = 0 is exact here. The pole of the t Green’s function (E9)
follows the equation

�2
k = [Ak + �N (�k,0)]2 − [Bk + �A(�k,0)]2

Z−2 − �′2
A (�k,0)

. (E12)

Thus, we obtain the expansion of the dispersion relation to
order 1/d:

�2
k

J 2
= 1 + 2γ�kq + 1

d

(
2q2 − γ 2

�k q3
)
, (E13)

identical to the result (62) derived in the body of the paper.
This indicates that the Brueckner approximation is indeed

controlled in the large-d limit. We note, however, that it cannot
be easily used to systematically generate higher orders of the
1/d expansion, first, because the � vertex becomes extremely
complicated beyond leading order, and second, because a fully
consistent diagrammatic treatment needs to be formulated in
τ instead of t particles to ensure Wick’s theorem.

APPENDIX F: SPECIFIC CONTRIBUTIONS TO THE
INTERDIMER PERTURBATION THEORY

In this appendix, we give more details for the calculation
of the one-triplon dispersion up to order 5 perturbation theory
in k. The dispersion is obtained by Fourier transformation of
the reduced one-triplon hopping amplitudes. The nonvanishing
reduced hopping amplitudes up to order 5, all given in units of
J , read as

t
(0)
0,0 = 1, (F1)

t
(1)
0,1 = 1

2 k + 1
2 κ2k2 − 1

2 κ4k4, (F2)

t
(1)
0,0 = − 1

2 κ2k2 + 1
2 κ4k4 + 3

8 k2 + 3
16 k3 + 3

128 k4 − 15
256 k5,

(F3)

t
(2)
0,0 = − 11

128 k4 − 85
512 k5 − 1

16 κ2k4 − 139
384 κ2k5

− 1
8 κ4k4 − 7

16 κ4k5, (F4)

t
(2)
0,1 = − 1

16 k3 − 5
64 k4 − 31

512 k5 − 1
4 κ2k3 − 5

16 κ2k4

− 1
8 κ2k5 − 1

16 κ4k4 + 99
128 κ4k5, (F5)

t
(2)
0,2 = − 1

8 k2 − 1
8 k3 − 5

64 k4 − 5
512 k5 + 1

2 κ2k3

+ 59
384 κ2k5 + 21

32 κ2k4 + 3
16 κ4k4 − 53

64 κ4k5, (F6)

t
(2)
1,1 = − 5

64 k4 − 45
256 k5 − 137

192 κ2k5 − 5
16 κ2k4

+ 1
8 κ4k4 − 9

16 κ4k5, (F7)

t
(3)
0,1 = 3

1024 k5 − 7
384 κ2k5 − 7

64 κ4k5, (F8)
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t
(3)
0,2 = 1

32 k4 + 57
1024 k5 + 13

768 κ2k5 − 31
128 κ4k5, (F9)

t
(3)
0,3 = 1

16 k3 + 1
16 k4 − 5

512 k5 + 3
16 κ2k4 + 19

24 κ2k5 + 33
64 κ4k5,

(F10)

t
(3)
1,2 = 7

512 k5 − 1
96 κ2k5 + 3

16 κ4k5, (F11)

t
(4)
0,0 = 35

64 k4 + 41
64 k5 − κ2k4 − 5

8 κ2k5 − 1
8 κ4k5, (F12)

t
(4)
0,1 = − 1

16 k4 − 23
512 k5 + 5

16 κ2k4 − 11
192 κ2k5 − 9

32 κ4k5,

(F13)

t
(4)
0,2 = − 3

64 k5 + 3
8 κ2k4 + 13

16 κ2k5 + 11
16 κ4k5, (F14)

t
(5)
0,1 = 1

256 k5 + 1
32 κ2k5 + 7

64 κ4k5, (F15)

t
(5)
0,2 = 1

128 k4 + 35
512 k5 − 3

16 κ2k4 − 325
384 κ2k5 − 7

64 κ4k5,

(F16)

t
(6)
0,3 = − 19

1024 k5 − 5
384 κ2k5, (F17)

t
(6)
0,4 = − 5

128 k4 − 3
64 k5 + 1

16 κ2k5, (F18)

t
(7)
0,4 = − 9

64 k5 − 13
16 κ2k5, (F19)

t
(7)
1,4 = − 3

128 k5 + 7
32 κ2k5, (F20)

t
(7)
2,4 = 3

8 κ2k5, (F21)

t
(10)
0,5 = 7

256k5, (F22)

t
(11)
0,4 = − 5

1024 k5 − 7
384 κ2k5. (F23)

Since the Hamiltonian is Hermitian, the hopping amplitudes
obey t

(n)
i,j = t

(n)
j,i which allows us to reduce the numerical effort.

For clarity, we also give the embedding factors for each
hopping element. Let ν(n)

i,j denote the embedding factor of graph

Gn associated with the hopping element t
(n)
i,j . Note that here we

have omitted the obvious dependence on the spatial dimension
d. These factors can be interpreted as the embedding factors of
graph Gn when the part of the graph connecting site i and site j

is already embedded. In general, this leads to a case distinction.
The embedding factors by construction obey ν

(n)
i,j = ν

(n)
j,i and

are given by

ν
(0)
0,0 = 1,

ν
(1)
0,0 = 2d, ν

(1)
0,1 = 1,

ν
(2)
0,0 = 2d(2d − 1), ν

(2)
0,1 = 2d −1,

ν
(2)
0,2 = 1, ν

(2)
1,1 = d(2d −1),

ν
(3)
0,1 = (2d −1)(2d −1), ν

(3)
0,2 = 2d −1,

ν
(3)
0,3 = 1, ν

(3)
1,2 = (2d −1)(2d −1),

ν
(4)
0,0 = 2d(d −1), ν

(4)
0,1 = 2(d −1),

ν
(4)
0,2 = 1, ν

(5)
0,1 = (2d −1)(d −1),

ν
(5)
0,2 = 2d − 2, ν

(6)
0,3 = 2d −1,

ν̃
(6)
0,3 = 2d − 2, ν

(6)
0,4 = 1,

ν
(7)
0,4 = 2(d −1) + (d −1)2(d − 2),

ν
(7)
1,4 = 2(d −1), ν̃

(7)
1,4 = 2(d −1) − 1,

ν
(7)
2,4 = 1,

ν
(10)
0,5 = 1, ν

(11)
0,4 = 2(d −1).

(F24)

Finally, we give the specific contributions to the one-triplon
dispersion after Fourier transformation. Let ωn(�k) denote the
contribution of graph Gn to the one-particle dispersion ��k . The
contributions of the graphs read as

ω0 = ν
(0)
0,0t

(0)
0,0, (F25)

ω1 = ν
(1)
0,0t

(1)
0,0 +

∑
k̄∈{±k1,...,±kd }

ν
(1)
0,1t

(1)
0,1 cos(k̄), (F26)

ω2 = ν
(2)
0,0t

(2)
0,0 + ν

(2)
1,1t

(2)
1,1 +

∑
k̄

ν
(2)
0,1t

(2)
0,1 cos(k̄) +

∑
k̄1

∑
k̄2 �=−k̄1

ν
(2)
0,2t

(2)
0,2 cos(k̄1 + k̄2), (F27)

ω3 =
∑

k̄

(
2ν

(3)
0,1t

(3)
0,1 + ν

(3)
1,2t

(3)
1,2

)
cos(k̄) +

∑
k̄2 �=−k̄1

2ν
(3)
0,2t

(3)
0,2 cos(k̄1 + k̄2) (F28)

+
∑
k̄1

∑
k̄2 �=−k̄1

∑
k̄3 �=−k̄2

ν
(3)
0,3t

(3)
0,3 cos(k̄1 + k̄2 + k̄3), (F29)

ω4 = ν
(4)
0,0t

(4)
0,0 +

∑
k̄

ν
(4)
0,1t

(4)
0,1 cos(k̄) + 1

2

∑
k̄1

∑
k̄2 �=±k̄1

ν
(4)
0,2t

(4)
0,2 cos(k̄1 + k̄2), (F30)

ω5 =
∑

k̄

2ν
(5)
0,1t

(5)
0,1 cos(k̄) +

∑
k̄1

∑
k̄2 �=−k̄1

ν
(5)
0,2t

(5)
0,2 cos(k̄1 + k̄2), (F31)

ω6 =
∑
k̄1

∑
k̄2 �=−k̄1

∑
k̄3 �=−k̄2

∑
k̄4 �=−k̄3

k̄1+k̄2+k̄3+k̄4 �=0

ν
(6)
0,4t

(6)
0,4 cos(k̄1 + k̄2 + k̄3 + k̄4) (F32)
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+
∑
k̄1

∑
k̄2 �=−k̄1

∑
k̄3 �=−k̄2

{
2ν̃

(6)
0,3t

(6)
0,3 cos(k̄1 + k̄2 + k̄3), if k̄1 = −k̄3 and k̄1 �= k̄2

2ν
(6)
0,3t

(6)
0,3 cos(k̄1 + k̄2 + k̄3), else

(F33)

ω7 =
∑

k̄

2ν
(7)
0,4t

(7)
0,4 cos(k̄) (F34)

+ 1

2

∑
k̄1

∑
k̄2 �=±k̄1

∑
k̄3 �=−k̄2
k̄3 �=−k̄1

2ν
(7)
2,4t

(7)
2,4 cos(k̄1 + k̄2 + k̄3) (F35)

+
∑
k̄1

∑
k̄2 �=−k̄1

{
2ν̃

(7)
1,4t

(7)
1,4 cos(k̄1 + k̄2), if k̄1 �= k̄2

2ν
(7)
1,4t

(7)
1,4 cos(k̄1 + k̄2), else

(F36)

ω10 =
∑
k̄1

∑
k̄2 �=−k̄1

∑
k̄3 �=−k̄2

∑
k̄4 �=−k̄3

k̄1+k̄2+k̄3+k̄4 �=0

∑
k̄5 �=−k̄4

k̄2+k̄3+k̄4+k̄5 �=0

ν
(10)
0,5 t

(10)
0,5 cos(k̄1 + k̄2 + k̄3 + k̄4 + k̄5), (F37)

ω11 =
∑
k̄1

∑
k̄2 �=−k̄1

∑
k̄3 �=−k̄2

2ν
(11)
0,4 t

(11)
0,4 cos(k̄1 + k̄2 + k̄3). (F38)

The one-triplon dispersion is just the sum of these contributions ��k = ∑
n ωn(�k). It is convenient to convert the restricted

momentum summations over cosines into combinations of γ�k , γ2�k , etc. This can be done in a straightforward fashion using
trigonometric theorems, yielding

∑
k̄ cos k̄ = 2dγ�k ,

∑
k̄1

∑
k̄2 �=−k̄1

cos(k̄1 + k̄2) = 4d2γ 2
�k − 2d, etc.
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