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Theoretical study of thermally activated magnetization switching under microwave assistance:
Switching paths and barrier height
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Energy barrier height for magnetization switching is theoretically studied for a system with uniaxial anisotropy
in a circularly polarized microwave magnetic field. A formulation of the Landau-Lifshitz-Gilbert equation in
a rotating frame introduces an effective energy that includes the effects of both the microwave field and static
field. This allows the effective-energy profiles to rigorously describe the switching paths and corresponding
barrier height, which govern thermally activated magnetization switching under microwave assistance. We show
that fixed points and limit cycles in the rotating frame lead to various switching paths and that under certain
conditions, switching becomes a two-step process with an intermediate state.
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I. INTRODUCTION

Magnetization dynamics in a microwave magnetic field
has long been studied. The original motivation was provided
by a study on ferromagnetic resonance (FMR) in which
a ferromagnetic material exhibits an intriguing resonant
response to a microwave magnetic field [1,2]. Magnetization
switching under this kind of condition, so-called microwave-
assisted magnetization switching (MAS) [3], has attained
recent attention because of its applications in the field of
magnetic recording [4]. The proposed recording technique,
microwave-assisted magnetic recording (MAMR), employs
a combination of a static field and a microwave field to
switch magnetization in a recording medium. Because the
magnetization excitation induced by the microwave magnetic
field significantly reduces the switching field, MAMR is
regarded as a promising method for writing on high-coercivity
media material that is likely to be used in future high-
density magnetic recording technology. In addition to reducing
the switching field, MAS enables selective switching of
the magnetization of a specific magnetic body, even when
there are several other bodies nearby, because the microwave
field frequency (frf) serves as an additional parameter for
controlling the magnetization switching. By correctly tuning
frf , magnetization excitation may occur in only a specific
magnetic body, reducing the switching field, and thus selective
magnetization switching is realized. This feature is suitable
for use in three-dimensional magnetic recording that uses
recording media with multiple recording layers to increase the
recording density [5–9]. By designing each recording layer
to have a different frequency response to a microwave field,
layer-selective writing can be realized by means of MAS.

In recent years, researchers have extensively studied MAS
both by using various experimental techniques to detect
magnetization switching and by employing computational
methods. The results of these studies indicate that switching
depends on frf , microwave field amplitude, and the magnetic
properties of the material [10–15]. In an attempt to theoreti-
cally explain the complex behavior of MAS, the stability of
magnetization states before switching at 0 K was studied by
using the Landau-Lifshitz-Gilbert (LLG) equation formulated
in a rotating frame [15–17]. The rationale of this approach

is that the effect of a rotating field can be translated as a
fictitious field along the easy axis of the magnetic body when
frf is below a critical frequency and its amplitude is given by
2πfrf/γ where γ is the gyromagnetic ratio. This fictitious field
reduces the switching field according to the Stoner-Wohlfarth
model. When frf exceeds the critical frequency, switching field
reduction almost disappears. These theoretical results show
qualitative agreement with experimental results, which has
allowed the theoretical approach to be widely accepted [15].

The loss of the stability of magnetization states before
switching, however, does not always guarantee switching
if there exists another stable state on the path to the final
switched state [17,18]. In addition, thermal fluctuation causes
magnetization switching to occur stochastically at finite tem-
perature, even when the magnetization states before switching
are stable and separated by a barrier from the final state. Given
these circumstances, it is essential to evaluate the switching
paths and the corresponding barrier height in order to better
understand MAS including a thermally activated region.

In this paper, we investigate magnetization switching under
microwave assistance by introducing an effective energy
derived from the LLG equation formulated in a rotating frame.
Profiles of the effective energy describe the switching paths
and corresponding barrier heights, which are the determinative
factors for magnetization switching. Switching paths are
classified according to the existence and stability of the
following two kinds of characteristic magnetization motion:
fixed points in the rotating frame that correspond to a mag-
netization rotating in synchronization with a microwave field
and energetically balanced limit cycles in the rotating frame
that correspond to a quasiperiodic magnetization motion. The
validity of the theory is confirmed by macrospin simulations.

II. THE LLG EQUATION IN A ROTATING FRAME
AND EFFECTIVE ENERGY

Figure 1 schematically depicts the system we consider.
It has a uniaxial easy axis with an effective anisotropy
field H eff

k that includes crystal anisotropy and demagnetiz-
ing fields. This effective anisotropy field has the following
relation with the effective perpendicular anisotropy Keff

u
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FIG. 1. (Color online) Schematic configuration of the system,
initial magnetization direction, and applied magnetic fields. Two sets
of coordinates, (x, y, z) and (x̃, ỹ, z̃), represent the laboratory frame
and rotating frame, respectively.

and the saturation magnetization Ms: H eff
k = 2Keff

u /Ms. The
magnetization direction is denoted by a unit vector m. We
assume the axis of symmetry to be the z axis and the initial
magnetization direction to be the +z direction. We apply a
static field along the −z direction with amplitude Hz and a
microwave field rotating counterclockwise in the x-y plane
at a frequency of frf with amplitude Hrf . The effective
field is therefore expressed as Heff = Hrf cos(2πfrf t)ex +
Hrf sin(2πfrf t)ey + (−Hz + H eff

k mz)ez. We evaluate switch-
ing of the magnetization in these magnetic fields by using
the LLG equation dm/dt = −γ (m × Heff) + αm × (dm/dt),
where α denotes the Gilbert damping constant. We normalize
time in units of (γH eff

k )−1 and the magnetic fields in units
of H eff

k . The time thus becomes τ = t(γH eff
k ), and the effec-

tive field becomes heff = hrf cos(ωrfτ )ex + hrf sin(ωrfτ )ey +
(−hz + mz)ez, where hz = Hz/H

eff
k , hrf = Hrf/H

eff
k , and

ωrf = (2πfrf)/(γH eff
k ). When the normalized microwave fre-

quency equals 1 (ωrf = 1), the microwave field frequency
coincides with the intrinsic FMR frequency of the system at
hz = 0. After this normalization, the magnetization dynamics
is described by the following LLG equation:

dm
dτ

= −m × heff + αm × dm
dτ

. (1)

This expression of the LLG equation clearly indicates
that the magnetization dynamics can be characterized by the
control parameters hz, hrf , and ωrf . Bertotti et al. showed
that such magnetization dynamics can be conveniently treated
by introducing a rotating frame (x̃, ỹ, z̃) that shares the
symmetrical axis with the laboratory frame (z̃ = z) and rotates
around the z axis at the frequency of frf [16]. By this coordinate
transformation, the microwave field becomes a static field. We
assume the direction of the microwave field to be in the x̃

direction, and consequently the effective field in the rotating
frame is expressed by h̃eff = hrfex̃ + (−hz + mz̃)ez̃.

The dynamics of the magnetization in the rotating frame m̃
is governed by the following LLG equation formulated in the
rotating frame:

dm̃
dτ

= −m̃ × (h̃eff − ωrfez̃ + αωrfm̃ × ez̃) + αm̃ × dm̃
dτ

.

(2)

FIG. 2. (Color online) (a) Phase diagram of a system with dif-
ferent numbers of stable fixed points obtained from the approach
based on det A and tr A. Parameter values are hrf = 0.05 and α =
0.02. Results for hrf = 0.05 and α = 0.1 are shown in the inset.
(b) Corresponding phase diagram of the phase portrait obtained from
the effective-energy approach in the present study.

Next, we briefly explain a previous approach for predicting
the switching condition that uses Eq. (2) to evaluate the
stability of the magnetization states before switching. First,
the fixed points in the rotating frame are obtained by setting
dm̃/dτ = 0. Equation (2) is then linearized with a small
perturbation δm̃ in the tangential plane around the fixed points,
which yields the following equation of motion: (d/dτ )δm̃ =
Aδm̃. The stability of the fixed points can be determined by
examining the determinant and trace of the matrix A [15–17].
Figure 2(a) shows a phase diagram of the system with different
numbers of stable fixed points in the ωrf-hz plane for parameter
values of hrf = 0.05 and α = 0.02. There are four regions in
the diagram, separated by the boundary obtained from the
determinant and the trace. In each region, the system has up
to three stable fixed points. We note that this phase diagram
does not change drastically for α = 0.1, as can be seen from
the inset. The region with only one stable fixed point has
been interpreted as a switching condition because this stable
fixed point corresponds to the final switched state and the
magnetization state before switching is unstable. From the
shape of the region, it can be seen that the switching field of
MAS is expected to decrease linearly as frf increases and then
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to increase suddenly at ωrf = 0.4, which is the intersection
of the two boundaries obtained from the determinant and
the trace. This ωrf dependence of the switching field shows
qualitative agreement with the experimental results [15]. The
frequency at which switching field reduction disappears is
referred to as the critical frequency.

As already discussed, this type of evaluation based on the
stability of the magnetization states before switching offers
insufficient understanding of magnetization switching because
another stable state other than a fixed point on the path to
the final switched state may exist and prevent switching. To
address this problem, we introduce an effective energy that
represents the potential of the magnetization direction along
switching paths. To begin with, we derive the Landau-Lifshitz
form of Eq. (2),

dm̃
dτ

= −m̃ × (h̃eff − ωrfez̃) − αm̃ × (m̃ × h̃eff). (3)

In this transformation, higher terms of α are neglected
because the condition α � 1 is satisfied in conventional
ferromagnetic materials. Note that the fictitious field −ωrfez̃

in the precessional part that originates from the microwave
field acts to promote magnetization switching. We introduce a
potential function g̃ from the field term in the precessional part
of Eq. (3) and choose this function so as to satisfy ∂g̃/∂m̃ =
h̃eff − ωrfez̃. When no damping exists (i.e.,α = 0), g̃ represents
the quantity conserved during magnetization motion, and
the magnetization trajectories trace a constant-energy closed
contour C(g̃0) along which g̃ = g̃0. Depending on hz, hrf , and
ωrf , the condition ∂g̃/∂m̃ = 0 has either two or four solutions.
For two solutions, they are a maximum and a minimum
point of g̃. For four solutions, they are a maximum, a global
minimum, a local minimum, and a saddle point of g̃. When
the magnetization direction is at these points, it does not move
because the right-hand side of Eq. (3) becomes zero. Thus,
we refer to these points as fixed points, which are equivalent
to the fixed points discussed in the previous approach. When
α exists but is small, magnetization trajectories deviate very
little from C(g̃0) within the time scale of one precession period.
Hereafter, we assume that this small-α approximation is valid.

Now, we rewrite Eq. (3) such that the field term of the
damping part coincides with that of the precession part, as
follows:

dm̃
dτ

= −m̃ × (h̃eff − ωrfez̃) − αm̃ × (m̃ × (h̃eff − ωrfez̃))

−αωrfm̃ × (m̃ × ez̃). (4)

This yields a third term on the right-hand side that has a form
similar to the spin-torque term [18–20]. We can therefore apply
the derivation of the effective energy in spin-torque switching
[21] to the case of MAS and define the effective energy as

ε(g̃) =
∫ g̃

g̃ref

M(g̃′)
M(g̃′)

dg̃′. (5)

This value represents the normalized energy necessary for
the magnetization to move from one reference constant-energy
contour C(g̃ref) to another contour C(g̃) in the presence of a
microwave field. Because of the continuous nature of ε, g̃ref

can take any value of g̃, and we thus set g̃ref to the maximum
value of g̃. Herewith, ε(g̃) serves as the energy potential

of the magnetization in C(g̃). The functions M(g̃0) and
M(g̃0) are the line integrals M(g̃0) = − ∮

C(g̃0) (m̃ × h̃eff) · dm̃

andM(g̃0) = − ∮
C(g̃0) (m̃ × (h̃eff − ωrfez̃)) · dm̃, respectively.

The former line integral is proportional to the change in g̃

induced by one precession motion along C(g̃0). The actual
change in g̃ is given by −αM(g̃0). If the third term of Eq. (4)
is omitted, the change in g̃ is then given by the following
expression using the latter line integral: −αM(g̃0). The two
functions, g̃ and ε, are both potential functions, but they are
different in that the former reflects only the fictitious field
−ωrfez̃ in the precessional part of Eq. (4), whereas the latter
reflects both the fictitious field and the third term of Eq. (4). In
other words, ε includes all the effects that originate from the
microwave field. Because the third term of Eq. (4) mostly acts
to prevent magnetization switching, M(g̃0) can take zero or
negative values, whereas M(g̃0) is always positive. When the
condition M(g̃0) = 0 (i.e., dε/dg̃|g̃=g̃0

= 0) holds, precession
motion along C(g̃0) does not change g̃. This means that the
trajectory C(g̃0) is energetically balanced and represents a limit
cycle along which the magnetization continues to precess.
Limit cycles can be either attractive (stable) or repulsive
(unstable), depending on the shape of the ε profile. Switching
paths are determined according to the existence and stability
of the fixed points and limit cycles.

Furthermore, ε profile can provide the barrier height
for thermally activated magnetization switching. At finite
temperatures, the switching rate is governed by the barrier
height and thermal fluctuations. The thermal fluctuations
are equivalent to a random field Hth that has the Gaussian
noise properties and has components in the laboratory frame
H th

a (a = x, y, z) that satisfy the following equations [22]:〈
H th

a (t)
〉 = 0 (6)

and 〈
H th

a (t)H th
b (t ′)

〉 = μδabδ(t − t ′), (7)

where μ = 2αKBT/γMsV , KB is the Boltzmann constant,
and V denotes the volume of a magnetic body. These noise
properties are maintained even when the random field is de-
fined in the rotating frame. This is proved by rewriting Eqs. (6)
and (7) in the rotating frame, which yields the following
equations: 〈H th

ã (t)〉 = 0 and 〈H th
ã (t)H th

b̃
(t ′)〉 = μδãb̃δ(t − t ′)

(ã, b̃ = x̃, ỹ, z̃). Because the noise properties are the same
regardless of the chosen frame, the effective energy of MAS
defined in the rotating frame can be used in discussing the
barrier height for thermally activated magnetization switching.
The effective-energy barrier height has the following relation
with the actual energy barrier height 
E: 
E = 2V Keff

u 
ε.

III. MAGNETIZATION SWITCHING UNDER
MICROWAVE ASSISTANCE

A. Phase portraits and switching paths

Figure 3 shows various phase portraits that appear depend-
ing on hz, hrf , and ωrf . First, we show a bistable system without
limit cycles. In Fig. 3(a), four fixed points—corresponding
to a maximum, a global minimum, a local minimum, and a
saddle point of g̃—and the constant-energy contour of the
saddle point are plotted on a plane of the rotating polar
coordinates (θ -φ) that represent the magnetization direction
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FIG. 3. (Color online) (a) Four fixed points: a maximum, a global minimum, a local minimum, and a saddle point presented in the rotating
polar coordinates (θ, φ) of the magnetization direction for the phase portrait (s |ud| s). The stability of each fixed point is represented by either
an open circle (stable) or a cross (unstable) except for the saddle point represented by a filled box. The constant-energy contour of the saddle
point is shown as a solid line. Arrows show the downward direction of the effective energy on each path connecting the fixed points. The
initial magnetization direction along the +z direction corresponds to the right side of the figure (θ = 0◦). (b) Corresponding effective energy
ε profile plotted versus g̃. The prior notation for the stability of the fixed points is used. Barrier height is represented by 
ε. (c) Two fixed
points, maximum and minimum points, for the phase portrait (s|u). (d) Corresponding ε profile. (e) Four fixed points and a repulsive limit cycle
(a dashed line) for the phase portrait (sr |ud| s). (f) Corresponding ε profile. A cross denotes the repulsive limit cycle. (g) Two fixed points,
a repulsive limit cycle, and an attractive limit cycle, for the phase portrait (sr|au). (h) Corresponding ε profile. An open circle denotes the
attractive limit cycle. (i) Two fixed points and a repulsive limit cycle for the phase portrait (s |r| s). (j) Corresponding ε profile. (k) Four fixed
points and a repulsive limit cycle for the phase portrait (sr |sd| s). (l) Corresponding ε profile.

where θ is the cone angle, and φ is the lead angle with respect
to the microwave field. Parameters are hz = 0.3, hrf = 0.05,
and ωrf = 0.2. These values are also shown in the figure.
Figure 3(b) shows the corresponding ε profile plotted versus
g̃. Because we set g̃ref in Eq. (5) to the maximum of g̃, the
right ends of the profiles always match ε = 0. The stability

of the fixed points can be evaluated from this ε profile. The
maximum point is unstable, and the global minimum and
local minimum points are stable. Saddle points are always
unstable. According to these results, the magnetization that
initially points in the +z direction (θ = 0◦) falls to the local
minimum point and oscillates in synchronization with the
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microwave field. Because the lead angle is zero (φ = 0◦) at
the local minimum point, the direction of the microwave field
and the magnetization direction are parallel when projected
onto the x-y plane (in-phase oscillation). For magnetization
switching, it is necessary to overcome the saddle point, and
the effective-energy barrier height 
ε for this switching is
given by the difference in the effective energy between the
local minimum and the saddle point. This phase portrait
is represented by (s |ud| s). The first symbol indicates the
stability of the global minimum point and can be either stable
(s) or unstable (u). The second symbol indicates the stability of
the maximum point. The letter d in this symbol means that this
fixed point is doubly connected to the saddle point, as shown
in Fig. 3(a), where the two arrows connecting the maximum
and saddle points head toward the positive and negative φ

direction, respectively. The last symbol indicates the stability
of the local minimum point.

Deterministic switching occurs when there is neither a
stable fixed point nor an attractive limit cycle other than the
stable switched state. Figures 3(c) and 3(d) show the results of
identical analysis using another set of parameters that satisfies
this condition for deterministic switching. Different from the
previous (s |ud| s) phase portrait, the system has two fixed
points corresponding to maximum and minimum points of
g̃. From the monotonic ε profile, it is clear that the initial
magnetization falls straight to the switched state without any
barrier. This phase portrait is represented by (s|u), where these
two symbols indicate the stability of the minimum and the
maximum point in this order.

The previous two phase portraits contain no limit cycles,
and the two potential functions g̃ and ε have a monotonic
relation. This means that the difference between g̃ and ε does
not affect the switching behavior at 0 K, and the condition
for such switching can be determined solely by g̃ in which
the microwave field is treated simply as the fictitious field
along the −z direction with an amplitude of ωrf . Therefore,
the boundary between the (s |ud| s) and (s|u) phase portraits
is derived from the Stoner-Wohlfarth model that considers
two static magnetic fields: along an in-plane direction with an
amplitude of hrf and along the −z direction with an amplitude
of hz + ωrf . This interpretation based on the Stoner-Wohlfarth
model is naturally valid at ωrf = 0, where all the applied fields
become static and the fictitious field disappears. This fact is
reflected in the phase diagram of the phase portraits plotted in
the ωrf-hz plane [Fig. 2(b)], in which the boundary between the
(s |ud| s) and (s|u) phase portraits exists from ωrf = 0 up to
the critical frequency. Above the critical frequency, one needs
to take limit cycles into account, which we discuss next.

When ωrf is increased, limit cycles appear, and they play an
important role in determining switching paths, as seen in the
phase portrait analyzed in Figs. 3(e) and 3(f). This system has
four fixed points, just as the (s |ud| s) phase portrait does. The
profile of ε, however, indicates the existence of a repulsive limit
cycle in the path from the saddle to the global minimum point.
The initial magnetization falls to the local minimum point and
oscillates in-phase with the microwave field. For switching it
needs to overcome the repulsive limit cycle. This phase portrait
is represented by (sr |ud| s) where the first symbol sr means
that the stable global minimum point is surrounded by the
repulsive limit cycle (r).

In the phase portrait analyzed in Figs. 3(g) and 3(h), the
system has two fixed points, and the profile of ε indicates
the existence of an attractive limit cycle and a repulsive limit
cycle in the path from the unstable maximum to the stable
minimum point. The initial magnetization falls to the attractive
limit cycle and shows periodic magnetization motion along the
limit cycle path in the rotating frame. Because the period of this
limit cycle motion and the period of the rotating microwave
field are independent, this magnetization motion becomes
quasiperiodic in the laboratory frame. The repulsive limit cycle
serves as the barrier to prevent switching. This phase portrait
is represented by (sr|au), where the second symbol au means
that the unstable maximum point is surrounded by the attractive
limit cycle (a).

Figures 3(i) and 3(j) show a phase portrait of a system with
two fixed points, which is characterized by the fact that both
maximum and minimum points are stable and separated by
a repulsive limit cycle. The initial magnetization falls to the
maximum point and oscillates in antiphase with the microwave
field because φ = 180◦ at the maximum point. This phase
portrait is symmetric in that the repulsive limit cycle equally
surrounds the two stable fixed points. This phase portrait is
represented by (s |r| s).

Interestingly, there are conditions under which switching
becomes a two-step process with an intermediate state, as
shown in Figs. 3(k) and 3(l). The initial magnetization falls
to the local minimum point and needs to overcome the
repulsive limit cycle in the path from the saddle to the global
minimum point for switching. Other than that, switching can
take advantage of the stable maximum point, which makes
the switching a two-step process and lowers the individual
barrier height of each transition. The first transition needs to
overcome the saddle point to reach the stable maximum point,
and the second transition needs to overcome the repulsive
limit cycle for switching. This phase portrait is represented by
(sr |sd| s). By slightly changing parameters, another phase
portrait, (sr |uad| s) appears, in which an attractive limit
cycle surrounds the maximum point and the maximum point
becomes unstable. Since the difference between these two
phase portraits is the same as that between (sr|au) and (s |r| s),
figures explaining the (sr |uad| s) phase portrait are not shown.
In the (sr |uad| s) phase portrait, the switching path consists
of two transitions and the attractive limit cycle serves as the
intermediate state.

Figure 2(b) shows the complete phase diagram of phase
portraits for hrf = 0.05. The number of letters s in each
symbolic expression corresponds to the number of stable
fixed points. In this regard, the phase diagram shows exact
agreement with the conclusion obtained from the previous
approach [Fig. 2(a)], which finds the number of stable fixed
points. Because our approach provides a more detailed phase
diagram, it can be seen that the region with only one stable
fixed point actually consists of (s|u) and (sr|au), and in the
latter phase portrait, deterministic switching does not occur.
The switching conditions derived from the two approaches, the
monostable region in Fig. 2(a) and the (s|u) region in Fig. 2(b),
share the tendency that the switching field linearly decreases as
ωrf increases, and suddenly increases. The previous approach,
however, overestimates the critical frequency at which the
sudden increase in the switching field occurs.
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Because we neglect higher terms of α in the derivation
of Eq. (3), the phase diagram shown in Fig. 2(b) does not
depend on α. In contrast, the previous approach takes α into
account in the calculation of the determinant and trace. The
boundaries obtained from the determinant and trace, however,
differ very little between α = 0.02 and α = 0.1 [Fig. 2(a) and
inset]. This fact suggests that our approach is also valid for
values of α in this range, which covers most of the conventional
ferromagnetic materials.

B. Barrier height for magnetization switching

In the previous section, we showed that our approach to
MAS through utilizing an effective energy can treat switching
paths including fixed points and limit cycles. Furthermore,
the approach enables us to calculate the barrier height 
ε by
considering the variety of equilibrium states before switching
and the barrier states. Figure 4(a) shows 
ε as a color map in
the ωrf-hz plane. The microwave field amplitude hrf is set to
0.05. The black region corresponds to (s|u), where no barrier
exists. For the phase portraits (sr |sd| s) and (sr |uad| s),
where switching consists of two transitions, only the higher of
the two barrier heights is plotted. As ωrf increases from zero
up to the critical frequency around ωrf = 0.25, the (s|u) region
grows toward the lower hz, and the contours with a constant
barrier height also decrease linearly with respect to ωrf .
Figure 4(b) compares hz dependencies of the barrier height in
this frequency range which all show a monotonic decrease with
respect to hz. Increasing ωrf shifts the hz dependencies toward
the negative hz direction and makes the slope slightly steeper.

FIG. 4. (Color online) (a) Color map of barrier height calculated
for hrf = 0.05. Black lines are boundaries between the phase portraits.
The solid line denotes a contour of 
ε = 0.013. (b) and (c) Barrier
heights for different values of ωrf plotted versus hz.

Above the critical frequency, the value of hz necessary
for the deterministic switching suddenly increases, with only
a small (s|u) region existing near hz = 1. This small (s|u)
region gradually vanishes as ωrf further increases. In addition,
a trench in the barrier height protrudes from the tip of the (s|u)
region toward the lower right direction in the (sr |sd| s) and
(sr |uad| s) regions. This trench is attributed to the two-step
magnetization switching because such switching distributes
the barrier height to two distinct transitions and consequently
lowers the individual barrier heights. As ωrf increases further,
the trench disappears and the hz dependencies of the barrier
height show a monotonic decrease again. Figure 4(c) compares
the hz dependencies in this frequency range and also shows
the analogous curve for the case without a microwave field.
Microwave fields above the critical frequency modify the
barrier height considerably for hz < 0.7. On the other hand, for
hz > 0.7, where the barrier height is low, the barrier heights
change little and coincide with the barrier height without a
microwave field, showing that this lower part of the barrier is
not susceptible to microwave fields. The lower part is essential
for studying fast magnetization switching, such as that in the
writing process in recording applications. This is because the
magnetic materials used in these applications have intrinsic
Keff

u high enough to attain long-term thermal stability and
the barrier height must be drastically reduced by means of
a magnetic field, a spin-torque current, or other methods for
magnetization switching to occur within the time required for
device operation. As can be seen in Fig. 4(c), the application of
microwave fields above the critical frequency has a negligible
influence on the lower part of the barrier and might therefore
not affect fast magnetization switching. This is consistent with
the experimental result that a microwave-assisted switching
field becomes almost the same as that without a microwave
field when frf is higher than the critical frequency [15].

C. Macrospin simulations

To confirm the validity of the calculated barrier height, we
performed macrospin simulation based on the following LLG
equation without normalization: dm/dt = −γ (m × Heff) +
αm × (dm/dt). The effective anisotropy field is chosen to be
H eff

k = 3600 Oe, which yields an intrinsic FMR frequency of
approximately 10 GHz and Keff

u = 1.08 × 106 erg/cm3. The
Gilbert damping constant α is set to 0.02. Thermal fluctuation
at T = 300 K is taken into account through a random thermal
field. The amplitude of the random thermal field is calculated
from Eqs. (6) and (7) by assuming a cylindrical magnet with
a diameter of 50 nm, a thickness of 5 nm, and a saturation
magnetization of 600 emu/cm3. The nonuniformity in the
demagnetizing field of the shape is neglected.

We estimate the switching probability Psw by calculating
the time evolution of the magnetization motion over 100 ns
and counting the switching events for 50 trials. The initial
magnetization direction is the +z direction. To be precise, the
macrospin simulations and the barrier heights calculated from
the effective energy treat magnetization switching differently.
In the former, the magnetization evolves from the initial
+z direction, while in the latter, 
ε is measured from the
equilibrium magnetization state before switching. That is, the
initial +z direction in the macrospin simulations is slightly
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FIG. 5. (Color online) Color map of switching probability ob-
tained from macrospin simulations. The solid lines denote the con-
tours of 10%, 50%, and 90%. Because the effective anisotropy field
H eff

k = 3600 Oe yields an intrinsic FMR frequency of approximately
10 GHz, the horizontal axis up to 10 GHz and the vertical axis up to
3.6 kOe are comparable to the axes in Fig. 4(a).

excited compared to the equilibrium magnetization state before
switching. In most cases, however, the increase in ε in the
initial state is very small and has little influence on the
switching probability. Figure 5 shows the results as a color map
in the frf-Hz plane. The microwave field amplitude is 180 Oe,
making the ratio to the effective anisotropy field equivalent
to that used to produce Fig. 4(a) (Hrf/H

eff
k = 0.05). The

correspondence between the switching probability and barrier
height is obvious, and the contour of Psw = 10% shows exact
agreement with that of 
ε = 0.013 except in the (sr |uad| s)
region where only the higher value of the two barrier heights is
plotted and the actual switching probability decreases because
of the existence of the other transition. The agreement is
considered qualitatively reasonable, as judged according to the
Néel-Arrhenius law, Psw = 1 − exp[−tf0 exp(−
E/KBT )]
[23] where t is the simulation time. In this evaluation, a typical
value of 10 GHz is used for the attempt frequency f0.

Finally, we give one example of two-step magnetization
switching. Figure 6(a) shows the time evolution of the
magnetization direction calculated for Hz = 1692 Oe, and
frf = 3.13 GHz, which corresponds to the (sr |uad| s) phase
portrait. Before the magnetization switches to the −z direction
at around 100 ns, the magnetization clearly exhibits two kinds
of motion: one kind appears from 5 to 20 ns and from
70 to 85 ns, and the second kind appears from 20 to 70
ns and from 85 ns until the switching occurs. In the first
kind, the magnetization precesses around the +z direction,
as shown by the typical magnetization trajectory in Fig. 6(d).
To understand this magnetization motion, we calculate the
time evolution of ε and the corresponding ε profile [Figs 6(b)
and 6(c)], which clearly shows that the first kind originates
from the magnetization fluctuating around the local minimum
point. This result is consistent with the magnetization motion
[Fig. 6(d)] because the local minimum point corresponds
to the magnetization rotation with a constant cone angle in
synchronization with the microwave field. Analyzed from the
viewpoint of ε, the second kind corresponds to the attractive
limit cycle. The complex magnetization dynamics shown in
Fig. 6(e) can therefore be understood as the quasiperiodic

FIG. 6. (Color online) (a) Time evolution of x, y, z components
of magnetization direction. (b) Corresponding time evolution of the
effective energy ε. (c) Profile of ε that is classified into the (sr |uad| s)
phase portrait. (d) and (e) Trajectory of magnetization direction from
7 to 12 ns and from 50 to 60 ns, respectively. These time ranges are
shown in (a) by shading.

motion resulting from the attractive limit cycle in the rotating
frame.

IV. CONCLUSIONS

We studied thermally activated magnetization switching for
a uniaxial system in a microwave magnetic field. We derived
an effective energy from the LLG equation formulated in
the rotating frame that reflects both static and microwave
magnetic fields, and classified switching paths according to
the effective-energy profiles. Limit cycles as well as fixed
points are found to affect the switching paths, and, under
certain conditions, the switching becomes a two-step process.
The results from the effective-energy approach agree with the
previous studies, and the switching field for deterministic
switching is predicted by the Stoner-Wohlfarth model that
takes account of the fictitious field originating from the
microwave field. Moreover, our approach provides the precise
critical frequency because the critical frequency is given by
the boundary above which limit cycles prevent switching.
The barrier heights for thermally activated switching can also
be calculated from the effective energy. Applying microwave
fields below the critical frequency shifts the Hz dependencies
of the barrier heights toward the lower Hz direction and makes
the slope steeper. Applying microwave fields above the critical
frequency modifies only the higher part of the barrier height
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and affects the lower part very little, which means that fast
magnetization switching is not susceptible to such microwave
magnetic fields. The barrier height quantitatively explains
the switching probability calculated from the macrospin
simulations.
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