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Nature of the metal-insulator transition in NbO2
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We report a theoretical study of the structural phase transition and associated metal-to-insulator transition in
NbO2 within density functional theory using the transition state theory as formulated in the generalized solid-state
nudged elastic band method. Consistent with prior experimental work, we demonstrate that niobium dimerization
is primarily driven by soft modes at the P point of the rutile Brillouin zone. In light of our results, it appears that
the metal-to-insulator transition in NbO2 is driven by a second-order structural transition of the Peierls type.
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Many oxide materials undergo metal-to-insulator transi-
tions (MITs) as a function of temperature, pressure, and
electric field. Applications for such materials include gas
sensors [1], window coatings [2], resistive random ac-
cess memory (RRAM) devices [3], and electronic switches
[4–6]. For many electronic applications, it is desirable that
the transition temperature be at or above room temperature
to isolate field and temperature switching. One promising
material receiving much attention is VO2, which undergoes
a metal-to-insulator transition at 340 K [1,7–10]. In VO2,
vanadium atoms are found to dimerize along the c axis of
the high-temperature rutile phase suggesting a Peierls type
mechanism [7,11–13]. However, given that vanadium is a 3d

transition metal, the role of strong electron-electron corre-
lations cannot be neglected. Indeed, this metal-to-insulator
transition is not just a Peierls distortion, but rather a Mott-
Peierls distortion where both effects are needed to correctly
describe the insulating ground state [8,14,15]. Furthermore,
the proper lattice dynamics for the rutile phase can only be
reproduced if correlations are included [16]. This makes the
analysis of the transition much more complicated. Niobium
dioxide (NbO2), a sister compound to VO2, also undergoes
a metal-to-insulator transition, albeit at a significantly higher
temperature. As niobium is a 4d, rather than 3d, transition
metal, electron correlations should play a lesser role, making
the analysis more tractable. The phase transition in NbO2

is much less studied, and here we present a first-principles
investigation of its mechanism.

NbO2 undergoes the MIT near 1081 K [17–19] accom-
panied by a structural transition from an undistorted rutile
structure (P 42/mnm) with two formula units per conventional
cell shown in Fig. 1(a) to a body-center tetragonal (bct)
distorted rutile structure (I41/a) with 32 formula units per
conventional cell [20–22] shown in Fig. 1(b). During this
transition, pairs of niobium atoms dimerize along the c axis.
The niobium atoms are formally in the Nb4+ oxidation state
with a valence configuration of 4d1. The transition could be
purely of the Peierls type, where dimerization between atoms
occurs due to the instability associated with a quasi-one-
dimensional chain of atoms. However, the precise mechanism
of this transition is still not clear. Neutron scattering in single
crystal NbO2 found evidence of a soft phonon mode at the P
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point, qp = (1/4,1/4,1/2), via critical scattering [23]. Further
experiments, however, found no clear evidence for a soft mode
at qp, but rather quasielastic scattering along rods in reciprocal
space with an instability near qp [24]. Classical shell model
calculations based on the measured phonon dispersion of TiO2

and adapted to other rutile structures using � mode data found
phonon softening at qp [25]. Analysis of thermodynamic data
is mixed, with some indicating that the transition is second
order [19] and others reporting that it is first order in nature
[26,27]. Previous ab initio calculations have shown that density
functional theory using augmented spherical waves does
qualitatively describe NbO2 [28] as does plane-wave density
functional theory [29]. Here, using transition state theory
within density functional theory, we demonstrate that the
driving mechanism for the metal-to-insulator phase transition
in NbO2 is primarily structural in nature.

We hypothesize the MIT in NbO2 to be driven purely
by the Peierls instability. To gain insight into the transition
mechanism, we search for the minimum energy pathway
(MEP) between phases utilizing transition state theory as
formulated in the generalized solid-state nudged elastic band
(G-SSNEB) method [30] implemented in the VTST extension
of the Vienna ab initio simulation package (VASP) [31]. The
benefit of the G-SSNEB method compared to the standard
nudged elastic band method [32,33] is that it allows for cell
deformation due to stress and strain in addition to atomic
movement between the initial and final phases (in the case of
NbO2, only strain deformations are needed). Our initial cell is
taken to be the undistorted bct cell based on the rutile lattice
described below, while the final cell is the ground state bct
lattice. We employed seven intermediate images initialized
by interpolation of the atomic positions and lattice vectors.
After convergence, we obtained the MEP between the two
phases of NbO2 and analyzed each intermediate image along
the MEP to gain further insight into the mechanism.

We conducted density functional calculations within the
local density approximation (LDA) parametrization of Perdew
and Zunger [34]. Projector augmented wave pseudopotentials
[35,36] were employed with valence configurations of
4p65s14d4 for niobium and 2s22p4 for oxygen. A plane-wave
cutoff energy of 750 eV with 8 × 8 × 12 and 8 × 8 × 8
�-centered Monkhorst-Pack grids [37] for rutile and the
primitive body-center tetragonal cells, respectively, were
used to give convergence of 1 meV per NbO2 unit for total
energy. During relaxation of rutile NbO2, the first-order
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FIG. 1. (Color online) Crystal structure of (a) high-temperature
rutile and (b) low-temperature body-center tetragonal phases of
NbO2.

Methfessel-Paxton [38] scheme with a σ value of 0.17 was
used for partial occupancies, while the tetrahedron method
with Blöchl corrections [39] was used for self-consistent total
energy calculations.

The optimized rutile structure for NbO2 within LDA has
aR = 4.93 Å and cR = 2.90 Å versus experimental values
of aR = 4.8463 Å and cR = 3.0315 Å [22]. The optimized
coordinate for the oxygen atom at the 4f Wyckoff position is
found to have u = 0.289 versus u = 0.2924 experimentally.
The structural parameters for the LDA calculation of the bct
structure are compared against powder neutron data [22] in
Table I. Compared to experiment, the lattice constants of
a = 13.64 Å and c = 6.01 Å represent a −0.45% and +0.45%
deviation, respectively, which is typical for such calculations.
Furthermore, the calculated niobium-niobium dimer length is
2.70 Å compared with 2.71 Å experimentally. As can be seen
from the table, the overall agreement between the theory and
experiment is very good.

To use transition state theory, a common cell allowing for
a one-to-one mapping of the atoms between phases is needed.
The lattice vectors of the rutile and bct cells can be related by
abct

1 ≈ 2(aR
1 − aR

2 ), abct
2 ≈ 2(aR

1 + aR
2 ), and abct

3 ≈ 2aR
3 ; while

the origin for the atomic coordinates is shifted by ( 1
8 , 1

8 ,0)
relative to the bct lattice vectors. Furthermore, a primitive cell
of the bct lattice can be generated, which contains half as many
NbO2 units as the conventional cell. The primitive cell lattice
vectors are given in terms of the rutile cell vectors as a

prim
1 ≈

2aR
2 + aR

3 , a
prim
1 ≈ −2aR

2 + aR
3 , and a

prim
1 ≈ 2aR

1 − aR
3 . The

lattice vector lengths and atomic positions for this enlarged
rutile cell are given in Table I.

In Fig. 2(a), we plot the MEP between the high-temperature
and low-temperature phases and band gap as a function of the
reaction coordinate (image number). From the energy plot,
we see that no barrier exists between the phases indicating
that the transition is second order in nature. The enthalpy

FIG. 2. (Color online) (a) The diamonds show total energy per
NbO2 (the insulating phase is the 0 of energy) with cubic spline
interpolation, while the squares show the band gap as a function of
G-SSNEB image number. (b) Nb-Nb distance for each pair of dimers
tracked through the calculation showing that dimerization occurs on
two sublattices.

change between the two phases is 43 meV/NbO2, similar to
experiments ranging from 26.1 to 35.5 meV/NbO2 [19,26,27].
The calculated electronic density of states (DOS) for each
phase [see Fig. 3(a) for rutile and Fig. 3(d) for body-center
tetragonal], shows that the rutile phase is metallic with the
Fermi energy within the Nb 4d t2g-derived bands, while in
the bct phase there is a band gap of 0.35 eV. As is common
with LDA calculations, this band gap is smaller than recently
reported experimental measurements [29,40], however LDA
giving a gap strongly suggests that the calculation qualitatively

TABLE I. Comparison of the experimental and LDA-calculated lattice parameters for the body-center tetragonal phase of NbO2. The last
column shows the enlarged rutile cell used for transition state theory calculations.

Parameter Experimental [22] Theoretical Enlarged rutile

Lattice vector a 13.696 Å 13.640 Å 13.943 Å
Lattice vector c 5.981 Å 6.012 Å 5.794 Å
Nb(1) coordinate (0.116, 0.123, 0.488) (0.112, 0.122, 0.475) (0.125, 0.125, 0.500)
Nb(2) coordinate (0.133, 0.124, 0.031) (0.132, 0.126, 0.027) (0.125, 0.125,0.000)
O(1) coordinate (0.987, 0.133, −0.005) (0.986, 0.128, −0.021) (0.980, 0.125, 0.000)
O(2) coordinate (0.976, 0.126, 0.485) (0.970, 0.122, 0.509) (0.980, 0.125, 0.500)
O(3) coordinate (0.274, 0.119, 0.987) (0.274, 0.125, 0.000) (0.270, 0.125, 0.000)
O(4) coordinate (0.265, 0.126, 0.509) (0.262, 0.124, 0.502) (0.270, 0.125, 0.500)
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FIG. 3. (Color online) For the Nb1-Nb2 dimer pair, we show the density of states and partial charge density for the occupied d orbitals
at (a) the rutile phase (image 0), (b) prior to the large drop in distance (image 4), (c) following the large drop in distance (image 5), and the
body-center tetragonal phase (image 8). In the density of states, the solid line is the total density of states, the large dashed line (red) is the site
projection for sublattice 1, the small dashed (green) is the site projection for sublattice 2, and the dotted (orange) comes from hybridization of
oxygen p orbitals.

describes the ground state correctly. To gain insight into the
behavior of the band gap opening, we plot the niobium-
niobium distance for all eight pairs of dimerizing Nb atoms. As
seen in Fig. 2(b), we can separate the niobium-niobium dimer
pairs into two groups: those that show a sharp drop in length
of ∼0.12 Å between images 2 and 3 and those that show a
similar drop between images 4 and 5. In each case, the change
represents almost 60% of the total difference between the
niobium-niobium distances in the high- and low-temperature
phases. Moreover, the two sets of dimers correspond to
splitting the A and B sublattices of niobium atoms in the
high-temperature phase such that one of the sublattices has
an alternating modulation along the (100) direction and the
other along the (010) direction (relative to the rutile lattice).
That is, dimerization occurs with half of the A sublattice and
half of the B sublattice dimerizing first, followed by the other
half of each sublattice (please see Appendix A). By focusing
on a specific pair of dimers, we can track the contribution of
these atoms to the overall DOS. In Fig. 3, we plot the site
projected DOS and charge density of the occupied d states
for the rutile phase, predimerization, post-dimerization, and
body-center tetragonal phase. Through the phase transition,
there is a clear evolution from two separate dxy orbitals on
the niobium atoms to a bonding state in which the charge
density is shared between the atoms. This can be attributed to
the splitting of the pseudo-one-dimensional dxy band in rutile
from the other t2g bands to form distinct occupied bonding
and unoccupied antibonding states [29]. Because dimerization
occurs separately on two different sets of atoms, it is not until
all atoms have dimerized that the gap opens for the entire

system. Given that 4d states are more extended than 3d states
and that LDA correctly predicts the gap in the ground state,
these results strongly suggest that Peierls-type dimerization is
indeed the primary mechanism of the transition.

As the G-SSNEB suggests that the phase transition of
NbO2 would, in fact, be a second-order transition, we can
gain further insight via Ginzburg-Landau theory [41]. In this
approach, the symmetry change is described by an order
parameter with a value of zero in the high symmetry phase
which becomes nonzero as the system undergoes the transition
to lower symmetry. The dimensionality of the order parameter
is determined by symmetry. Previous work [21,23] identifies
the wave vector qp = (1/4,1/4,1/2) as playing a role in the
phase transition. The star of this wave vector, constructed by
applying elements of the rutile point group and excluding
vectors connected by a reciprocal lattice vector, contains
four vectors: p1 = (1/4,1/4,1/2), p2 = (1/4,−1/4,1/2), p3 =
(−1/4,1/4,1/2), p4 = (−1/4,−1/4,1/2); while the symmetry
group associated with this k star is C2v . This group has
four one-dimensional irreducible representations implying
the order parameter is four dimensional. It should be noted
the order parameter of VO2 is also four dimensional, but
due to different symmetry arguments [42]. For structural
phase transitions, the order parameter represents a set of
displacements that connect the phases; therefore, it should
be possible to use the distortions for each of these P points as
components of the order parameter.

Using the forces calculated by VASP converged to
10−4 eV/Å and the harmonic approximation as implemented
in Ref. [43] with a 3 × 3 × 5 supercell, we calculate the
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FIG. 4. (Color online) (a) The phonon density of states for NbO2

calculated within the harmonic approximation showing a peak in the
soft mode density at 3.89i THz. (b) Plot of the wave vectors within
the Brillouin zone in a window of 4.09i to 3.69i THz showing the
origin of this peak.

phonon dispersion of NbO2 and find soft modes around
the Z, A, R, and P points of the Brillouin zone (BZ) [44].
The calculated Debye temperature was determined to be
608 K which is similar to the measured low-temperature
phase’s Debye temperature measured to be between 588 and
596 K [45–47]. Plotting the phonon DOS [Fig. 4(a)], we notice
a peak in the soft mode DOS around f = 3.89i THz. In
Fig. 4(b) we plot the k vectors associated with the frequency
window from 4.09i to 3.68i and find that these modes are
primarily in the vicinity of the P point. Furthermore, we can
project the initial displacement of the G-SSNEB onto each
soft mode eigenvector to determine the relative importance
of each soft mode (please see Appendix B). For each of
the displacement vectors at the Z, A, and R type points
(including each possible wave vector on the (kx,ky,

1
2 ) plane

and both imaginary frequencies at each point), the overlaps
range between 0.0 and 0.07 in magnitude. However, at each
of the P points, the displacement vector for the upper soft
phonon branch are 0.19, 0.13, −0.02, and 0.35 confirming the
importance of the P point determined in experiment [23,24]
compared to Z, A, and R points. Furthermore, as the P point
displacements should be able to represent the order parameter,
it is interesting to note that the soft mode vectors at the P
point obey the following mappings under the generators of the
rutile space group, denoting the four vectors p1, p2, p3, p4 as
1,2,3,4: (1234) goes to (4321) for C2z; (3142) for (C4z| 1

2 , 1
2 , 1

2 ),

(2143) for (C2y | 1
2 , 1

2 , 1
2 ), and is negated for inversion. Mukamel

discussed that either the A1 or A2 irreducible representation
of C2v was responsible for the phase transition in NbO2

[48]. Using the multiplier representation [49], Pynn et al.
[21] constructed the expected form of the polarization basis
vector for p1 displacements and concluded that A1 (S1 in
their notation) was responsible. Using their construction, we
however find that the upper soft phonon branch, which matches
our G-SSNEB calculation, takes the form of their A2 vector
(S4 in their notation, S2 in the notation Ref. [50]). Our lower
soft phonon branch matches their A1 vector’s form.

In summary, our results indicate that the MIT of NbO2 is
driven by a second-order structural transition of the Peierls
type via dimerization of chains of Nb atoms. We have studied
the structural phase transition within density functional theory
using transition state theory. Furthermore, we demonstrate that
dimerization alone (as opposed to strong electron correlation
effects) is responsible for opening the band gap after all pairs
of niobium atoms have dimerized. Analyzing the phonon
dispersion together with the transition path, we identify the
soft phonon modes of the high-temperature metallic phase
primarily associated with Nb dimerization. In agreement with
prior experimental work [21,23,24], the importance of the P
point wave vector has been confirmed theoretically. In addi-
tion, our results suggest that additional modes in the vicinity
of the P point may also play a role as predicted in Ref. [24].
Our work shows, that unlike in VO2, the phase transition in
NbO2 can be described by a purely structural transition.

This work is supported by the Semiconductor Research
Corporation Contract 2013-VJ-2299 and the Texas Advanced
Computing Center (TACC). We thank Ilya Karpov for useful
discussions and Richard Hatch and Chungwei Lin for their
help in preparing this manuscript.

APPENDIX A: IDENTIFYING THE TWO SUBLATTICES
FOR DIMERIZATION

In Fig. 2(b) of the main text, it is shown that there are two
sublattices of the NbO2 primitive cell that dimerize at separate
points along the G-SSNEB path. In this Appendix, we show
explicitly how these two sublattices result from a modulation of
the A and B sublattices of the niobium atoms in the rutile phase.
In Fig. 5, the first group of atoms to dimerize is represented

FIG. 5. This figure lays out the three steps to relate (a) the
observed dimerization pattern via (b) labeling and rotation to
(c) the pattern in the initial rutile cell.
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by a “+”; while the second group of atoms to dimerize is
represented by a “−.” Furthermore, the A sublattice of the
high-temperature rutile lattice is represented by a closed circle
(•) and the B sublattice by an open circle (◦). In all cases, the
figures are assumed to be looking along the (001) direction.
First [Fig. 5(a)], we show how the two sets of sublattices
appear in the low-temperature cell of NbO2 (directions used
are relative to the rutile cell, which the low-temperature cell
is rotated 45° with respect to). The next step [Fig. 5(b)] is
to label the atoms that are representative of the A and B
sublattices. Furthermore, we show how the rutile lattice sits
within this pattern. The final step [Fig. 5(c)] is to undo the
rotation of the low-temperature cell so that we are explicitly
aligned along the (100) and (010) directions of the rutile lattice
(we also enlarge the number of included atoms for clarity).
From this final figure, the 90° rotated modulations of the A
versus B sublattices become readily apparent. Furthermore,
it should be noted that these modulation patterns also obey
the screw axis that transforms the A sublattice to the B
sublattice.

APPENDIX B: CALCULATING THE PROJECTION
BETWEEN G-SSNEB AND SOFT MODE DISPLACEMENTS

In the main text, we discuss the projection of the G-SSNEB
initial displacement onto the displacements for each of the soft
modes found from the phonon calculation. We define the initial
displacement of the G-SSNEB calculation χ as the difference
between the atomic positions at image 0 and image 1. For a
given wave vector and soft mode frequency, the eigenvector
of the dynamical matrix gives the associated distortion for
the six-atom rutile cell. Using the Bloch theorem and our cell
mappings, we can extend the displacement vector to include
each atom in our undistorted primitive body-center tetragonal
cell, yielding an overall displacement vector ν. Therefore,
we have our displacement vector for the initial distortion
(G-SSNEB calculation) and a displacement vector for a soft
mode at any wave vector, both of which contain 144 entries
(3N). In order to determine which are primarily responsible
for the transition, we compute the projection of the G-SSNEB
displacement onto the soft mode displacement as χ ·ν

‖χ‖‖ν‖ .
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