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Chemical disorder as an engineering tool for spin polarization in Mn3Ga-based Heusler systems
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Our study highlights spin-polarization mechanisms in metals by focusing on the mobilities of conducting
electrons with different spins instead of their quantities. Here, we engineer electron mobility by applying
chemical disorder induced by nonstoichiometric variations. As a practical example, we discuss the scheme that
establishes such variations in tetragonal Mn3Ga Heusler material. We justify this approach using first-principles
calculations of the spin-projected conductivity components based on the Kubo-Greenwood formalism. It follows
that, in the majority of cases, even a small substitution of some other transition element instead of Mn may lead
to a substantial increase in spin polarization along the tetragonal axis.
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I. INTRODUCTION

An improved understanding of the influence of disorder in
solids yields potential new approaches to the state-of-the-art
design of multicomponent materials. Despite the popular view
that disorder should be avoided by any means, one can find its
constructive influence on physical properties in various applied
fields. Examples include the disorder-induced mechanical
work hardening of materials [1], “softer” examples such as the
efficient blocking of sound waves in liquid foams [2], and the
Anderson localization of light in disordered photonic crystals
[3]. By carefully reviewing the literature, one finds many more
constructive examples. Constructive disorder simply prevents
the propagation of certain quasiparticles. Indeed, in the first
example, mechanical dislocations are blocked by other types of
random defects; in the second, ultrasonic phonons are blocked
by random foam bubbles; and in the third, electromagnetic
waves are blocked by the breaking of the translational sym-
metry in the photonic crystal. Of course, similar phenomena
also accompany electronic propagation in metals, where the
breaking of translational symmetry (static or dynamic) leads
to a nonzero resistivity. Here, one of the most dramatic
examples is the Anderson localization [4,5], which completely
blocks the propagation of an electron despite the absence
of a semiconducting gap in the density of states. This can
have constructive implications. For example, it was recently
proposed that Anderson localization induced in topologically
nontrivial systems, such as HgTe-type semimetals, should
result in a new class of topological insulator [6–8]. On the
other hand, in “typical” metals (i.e., systems with a conducting
electron density of nF � 5 × 1022 cm−3), the Anderson-Mott
criterion [9] (aBn

1/3
F < 0.25, where aB is the Bohr radius)

cannot be fulfilled, so an unlimited increase in disorder leads
to a saturation of metallic resistivity, which, in practice, is
restricted by the empirical Mooij limit, ρmax � 300 μ� cm
[10].

Here, we would like to demonstrate another interesting
effect that can be induced by disorder in metallic systems, the
so-called spin-selective electron localization. Specifically, we
will justify the possibility of creating such a type of disorder,
which noticeably localizes the conducting electrons of one spin
but almost negligibly affects the conduction of the other spin. It
is rather clear that, since the spin subbands in a magnetic metal
are different, their conductivities also differ (i.e., σ ↑ �= σ ↓).

The extreme case, which is especially interesting in terms of
spintronics, is the half-metallicity (i.e., σ ↑ > 0, σ ↓ = 0 or vice
versa) characterized by the highest possible amplitude of the
spin polarization, P = σ↑−σ↓

σ↑+σ↓ = ±1. It can be realized in the
special class of materials known as half-metals [11,12], which
possess a semiconducting band gap in one spin channel only
(i.e., n

↓
F = 0, n

↑
F > 0 or vice versa). However, as one can see

in the simple Drude picture, σ ∼ nFl. Thus, the conductivity
also scales with an electronic mean free path l, providing the

potential for P = n
↑
F l↑−n

↓
F l↓

n
↑
F l↑+n

↓
F l↓

, to be adjusted by manipulation of

the electron mobilities, l↑(↓), in different spin channels rather
than adjusting the n

↑(↓)
F only.

A large number of mechanisms exist that favor disorder
in solids provided by a diverse manifold of the degrees
of freedom, whether thermal (such as phonons, magnons,
polarons) or fully intrinsic (such as through geometrical
frustration, stoichiometric variations, and electron interaction).
To engineer such mechanisms efficiently, one must understand
their impact on the electronic structure. At present, certain
connections can be established using special mean-field
theories [e.g., the coherent potential approximation (CPA)
[13–15] or dynamical mean-field theory (DMFT) [16–20]],
statistical methods (e.g., Monte-Carlo-based simulations), or
combined approaches.

Here, we will restrict our engineering to a very fundamental
level by improving the ground-state electronic transport
characteristics through a particular type of chemical disorder,
as it is one of the most common phenomena in polyatomic
solid compositions. The simplest way to introduce chemical
disorder is through variation of the stoichiometry. Here, a
convenient test environment is provided by the Heusler family
of materials, which typically have a ternary composition:
two different transition metals (TMs) and one main-group
element (MG). The majority of these substances crystallize
in the fcc-based cubic structure (centrosymmetric Fm-3m or
noncentrosymmetric F -43m) and obey the same chemical
ordering rules [21]. By substituting one TM for another
TM or one MG by another MG, the properties of Heusler
materials can be varied widely without affecting their structure,
from nonmagnetic/semiconducting to magnetic/metallic. In
particular, the latter class includes the majority of the known
half-metals as given in Refs. [11,12]. A nonstoichiomet-
ric substitution will lead to a random occupation of the
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corresponding Wyckoff sites by automatically breaking the
translational invariance. This random site occupation by two
or more elements with localized electronic subbands (e.g.,
3d states) centered at different energies will disturb the
coherent scattering of the delocalized (mobile) electrons at
corresponding energies and result in their partial localization.
Thus, if the nonstoichiometric substitution induces these
random fluctuations within the energy window containing the
Fermi level (EF), the resistivity will increase. The concept is
therefore clear; we must create such an energy window at EF

in one spin channel, and simultaneously shift it away from
EF in the other channel. Such a situation can be maintained,
obviously, only in magnetic systems.

II. RANDOM FLUCTUATION DESIGN: Mn3Ga
AND ITS DERIVATIVES

We select Mn3Ga Heusler as a suitable object, since it
possesses strong local moments and it is not a half-metal. This
is because of its tetragonal distortion, which reduces its point
symmetry to I4/mmm. Chemically speaking it is a binary,
however it contains two types of Mn in the 2a and 4c Wyckoff
positions [marked red and blue, respectively, in Fig. 1(a)] that
differ by their nearest-neighbor environment. Mn(2a) has the
largest local moment (according to different measurements
and first-principles estimations ≈3–4μB) coupled antiparallel
to Mn(4c), which has a smaller moment of ≈2–3μB. Since
the 4c class contains two Mn atoms (in 2c and 2d, which
are equivalent), the total magnetization, M , is oriented
along the 4c local moments. M ≈ 1.7μB/f.u. (f.u. denotes
formula unit) according to the first-principles calculation
(see, e.g., [22]), and M ≈ 1.1μB/f.u. according to experiment
[23–25] (note that the saturation was not achieved).

Let us examine the energetic structures of our future
scattering centers (localized 3d states of Mn). They are
shown schematically in Fig. 1(a). Mn(2a), which exhibits the
strongest magnetic moment, is close to the half-filled state.
Its 3d shell contains five spin-down electrons, whereas the
spin-up states are empty (ideally this should result in 5μB,
however this can differ in calculations since the amplitude
of the local moment depends on the position at which the
“border” between the atoms is set). On the other hand, Mn(4c)
exhibits a smaller moment and weaker exchange split; this
simply means that, whereas the spin-up band is fully filled,
the spin-down band is not fully empty, i.e., it contains EF.
Such a “half-metallic” structure of the localized electronic
subsystem (the delocalized s and p conducting electrons,
which are not shown in the scheme, do not have a band gap
in any of the spin channels) fits well into the framework of
the Anderson impurity model [26], which explains the spin
dependence of the conducting electron scattering on a given
magnetic impurity. In the second-order perturbation theory,
the scattering process involves an intermediate state in which
a conducting electron occupies an impurity level. At EF, this is
a partially filled spin-down 3d subband of Mn(4c). According
to the Pauli exclusion principle, intermediate states in which
the impurity level is occupied by two electrons with the same
spin orientation are forbidden. Thus, the spin-down conducting
electrons will be repelled from the Mn(4c) spin-down subband
more strongly, which results in a relative increase in the

FIG. 1. (Color online) (a) Mn3Ga unit cell: Mn atoms in the
2a (red) and 2c/2d = 4c (blue) Wyckoff sites; Ga atoms are in
2b (gray); arrows indicate atomic magnetic moments. According
to the sequence of Wyckoff positions, 2a 2b 2c 2d , we label this
compound as MnGaMnMn. (b) Substituting a late TM in place of
Mn (Y , light green) results in a MnGaMn[Mn-Y ] alloy with Mn-Y
disorder on 2d sites. (c) Replacing Mn with an early TM (X, light
blue) results in a [Mn-X]GaMnMn alloy with Mn-X disorder on 2a.
(d) Simultaneous combination of (b) and (c): [Mn-X]GaMn[Mn-Y ].
The corresponding spin-projected and atomic-resolved 3d-DOS
scheme for each prototype system (left-oriented peaks are spin-down,
right-oriented are spin-up, as indicated by gray arrows). The atom-
projected DOS contributions obey the same color code as that used
for the atoms; vertical colored bars indicate the energy windows in
which the electronic levels randomly fluctuate.

spin-down resistivity component, ρ ↓. The only ingredient
that is still missing is the chemical disorder on the 4c sites,
which leads to a random fluctuation of the spin-down localized
d-electron subband by causing it to become an efficient
scattering center.

This type of disorder can be introduced by substituting
some other TM in place of Mn. One of the general rules
that holds quite unambiguously for Heusler alloys concerns
their chemical ordering (see, e.g., [21]; several total energy
comparisons based on the first principles are presented in
Sec. A). Specifically, the earliest TM (which is located closer
to the left side of the Periodic Table, i.e., it belongs to the
earliest group) shares the same atomic layer as the MG element
(e.g., if Ga occupies 2b, the earliest TM occupies the 2a
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Wyckoff site). Thus, for Mn-Y substitution with the later
TMs, Y = Fe, Co, Ni, Cu, the earliest TM is Mn, which
therefore remains in 2a. For this reason, Y will randomly
occupy the 4c Wyckoff sites. As follows from the present
calculations (in the case of Y = Fe, Co, Ni it is also known
experimentally [23,24]), such substitution preferably occurs
on one of the two 4c sites (2c or 2d; here, let us choose 2d)
by rendering them nonequivalent [see Fig. 1(b)]. According
to the sequence 2a 2b 2c 2d, we label the resulting compound
MnGaMn[Mn1−yYy]. Statistically, its point symmetry reduces
from I4/mmm to I -4m2 (no inversion). Due to the similarity
with Mn(2c/2d), the magnetic moments of Y (2d) are coupled
negatively to Mn(2a), i.e., they are oriented up. Since Y (2d)
has a smaller magnetic moment compared to Mn(2c/2d)
(because of its more complete d shell), its partially occupied
spin-down subband is downshifted energetically with respect
to Mn(2c/2d), whereas its fully occupied spin-up subband
is centered below EF, similar to the spin-up subband of
Mn(2c/2d). It is clear that such substitution yields the spin-
down random fluctuation window including EF, whereas the
spin-up window is situated below EF [see Fig. 1(b)].

A similar effect can be maintained by replacing Mn with
earlier TMs: X = Cr, V, Ti, and Sc. According to the afore-
mentioned chemical ordering rules, the earlier TMs occupy
the 2a Wyckoff site, which is represented in formal notation
as [Mn1−xXx]GaMnMn [see Fig. 1(c)]. This does not change
the I4/mmm point symmetry. Because of the similarity with
Mn(2a), the magnetic moments of X(2a) are also coupled
negatively to Mn(4c), i.e., they are down-oriented. Since the
d shell of the X element is less than half-filled, its spin-up
subband is fully empty (it is situated above EF), whereas
the spin-down subband is partially filled (contains EF). This
again provides two randomly fluctuating energy windows:
one including EF in the spin-down channel, and the other
one above EF in the spin-up channel. An additional energy
regime of random fluctuations that occurs in the spin-down
channel relatively far below EF exists, which is caused by the
deepest fluctuating spin-down subband of Mn(2a), as shown
in Fig. 1(c). Since both substitutions [Mn1−xXx]GaMnMn and
MnGaMn[Mn1−yYy] are independent, they can be simultane-
ously combined into [Mn1−xXx]GaMn[Mn1−yYy], as shown
in Fig. 1(d). The resulting compound statistically corresponds
to the lowest I -4m2 symmetry, and its fluctuation spectrum
represents a superposition of the energy windows in cases (b)
and (c).

III. FIRST-PRINCIPLES JUSTIFICATION

A. Technical details

All the present computations were performed using the fully
relativistic SPR-KKR (spin-polarized relativistic Korringa-
Kohn-Rostoker) Green’s function method [27], using the
generalized gradient approximation (GGA) in a form proposed
by Perdew, Burke, and Ernzerhof (PBE) [28]. The wave-
function basis is constructed using the relativistic solutions
in the spherical potential up to l = 3 harmonics; 824 and
106 k vectors were used to sample the irreducible part of
the Brillouin zone during the self-consistent cycle and for the
subsequent calculations of residual resistivities, respectively

(see Secs. III B and III D). To treat all the systems on an equal
footing, in all cases the most general point group symmetry
I -4m2 was assumed. Numerical accuracy for the total energies
is set to 10−8 Ry/f.u..

The chemical disorder was treated within the CPA [13–15],
as implemented in SPR-KKR. The electronic structure is
represented via the Bloch spectral function (BSF), defined
as a Fourier transform of the real-space Green’s function
G(�r,�r ′,E) with

A(�k,E) = − 1

πN
Im

N∑
n,m=1

ei�k( �Rn− �Rm)

×
∫

d3r〈G(�r + �Rn,�r + �Rm,E)〉,

where 〈〉 is the CPA average and �Rn,m are the atomic site
coordinates. A(�k,E) can be interpreted as a �k-resolved DOS
function, since

n(E) = 1

�BZ

∫
�BZ

d3k A(�k,E),

with n(E) indicating the total DOS function, and �BZ is the
Brillouin zone volume.

B. Assumptions and limitations

Since we want to figure out the general trends of transport
characteristics, by following the idea proposed in Sec. II we are
going to treat many systems on an equal footing. Since most
of them were not reported experimentally, we need to make
reasonable assumptions concerning their crystal structure,
chemical order, and magnetic order, as it is impossible
to optimize all these degrees of freedom simultaneously.
Moreover, since the numerical models used in ab initio
methods are approximate anyway, there is no guarantee that the
result obtained within such a resource-demanding procedure
will be physically reasonable, despite the fact that it can be
fully correct. Thus, our main assumptions are the following:
(i) We assume all the systems have the same crystal parameters
as the tetragonal phase of Mn3Ga. Several experimental
results [23,24] demonstrate that the structural parameters of
these tetragonal phases are indeed quite close: For example, for
Mn3Ga: a = 3.9 Å, c/a = 1.81; Mn2.7Co0.3Ga: a = 3.874 Å,
c/a = 1.84; Mn2.8Fe0.2Ga: a = 3.874 Å, c/a = 1.83. (ii) We
assume the chemical ordering follows the rules discussed in
Sec. II. Despite the absence of a general physical explanation,
almost all the experimentally known Heusler materials (cubic
or tetragonally distorted) follow these rules quite unambigu-
ously. In addition, in Sec. A we show a few examples of the
total energy comparison that validate these rules. (iii) All the
local magnetic moments are assumed to be collinear. Indeed,
for the group of Heusler materials based on Mn and Ga, the
noncollinear order has not been reported yet. Second, our own
calculations for the Mn3Ga parent compound (not shown here),
using the PY-LMTO package [29] as well as the SPR-KKR, do
not indicate that this system is proximate to the noncollinear
state. Among the tetragonal Mn-containing Heusler systems,
the strong canting of local moments was indicated theoretically
and confirmed experimentally so far only for Mn2RhSn,
Mn2IrSn, and Mn2PtIn [30]. As follows from the theoretical
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analysis, the noncollinear order in these systems is caused by
the additional antiparallel coupling between the second nearest
Mn-containing atomic (001) planes, which crucially depend on
the type of MG atom (Sn or In).

It is clear that the lower the substitution rate is (x or y), the
less probable (or less noticeable) would be the unexpected
structural or electronic changes, and thus the assumptions
(i)–(iii) gain more validity. For this reason, among all the
cases considered here, the practically interesting examples are
those in which the substitution rate does not exceed 10–20 %
(0 < x,y � 0.2). Nevertheless, since it is interesting to also
track the spin polarization at the disorder rate maximum, we
will study Mn3−yYyGa and Mn3−xXxGa within a wide range
(0 � x,y � 0.5). To examine the effects of the combined sub-
stitution (in Mn3−x−yXxYyGa), we will ensure for consistency
that the sum of these rates does not exceed the maximal rate
(x = y, x + y � 0.5).

The use of the CPA alloy theory means that we assume
the Mn-X or Mn-Y interchange occurs equirandomly; it is
clear that in this case, the short-range-order effects, caused by
a particular type of the nearest atomic environment, are not
described properly, such as chemical segregation or relaxation
of the structure around the impurity. On the other hand,
the CPA still remains the only practical technique, which
reproduces from first principles the most essential properties of

disorder, such as the energy-dependent shifts and broadening
of the electronic states, although they are approximate. In turn,
these properties are necessary for further calculations of the
linear-response transport coefficients.

The scheme, which is used to calculate the residual
resistivities, is based on the Kubo-Greenwood linear-response
formalism [31,32]. In this case, the ensemble average of the
two-particle Green’s function is approximated by the product
of the two one-particle averaged Green’s functions, delivered
by the CPA. To check the significance of this assumption, we
have taken into account the so-called vertex corrections [33],
which change the bare result by 1% of its magnitude at most.

C. Visual analysis of the Bloch spectral function

By comparing the calculated spin-projected Bloch spectral
function (BSF) (red and blue indicate spin-up and spin-
down, respectively) of Mn3Ga [Fig. 2(a)] with Mn2.5Co0.5Ga
[Fig. 2(b)] and Mn2.5V0.5Ga [Fig. 2(c)], one can identify
all the fluctuation regimes (visualized as broadened regions)
schematically presented in Fig. 1. In the case of Mn-Co substi-
tution, the random fluctuations in the spin-down channel span
a wide energy window ≈EF ± 2 eV, whereas no broadening
is observed for the spin-up states crossing EF, as the spin-up
fluctuations begin only at 1 eV below EF. In the case of Mn-V,

FIG. 2. (Color online) Spin-projected BSF (red and blue indicate spin-up and spin-down, respectively) along the X-�-M path
and the spin-projected total DOS computed for (a) MnGaMnMn, (b) MnGaMn[Mn0.5Co0.5], (c) [Mn0.5V0.5]GaMnMn, and (d)
[Mn0.25V0.25]GaMn[Mn0.25Co0.25], corresponding to the schemes in Figs. 1(a), 1(b), 1(c), and 1(d), respectively.
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the spin-down fluctuation region is even wider: it roughly spans
the −3.5 to 2 eV range as a fluctuating superposition of the
lower and higher bands of Mn(2a) and V(2a), respectively.
Again, almost no broadening of the spin-up states is observed
at EF, as the spin-up fluctuation window is now shifted above
EF (from 0.5 to 2 eV). In the combined Mn2.5V0.25Co0.25Ga
case [Fig. 2(d)], the fluctuation regime clearly represents a
superposition of the fluctuation energy windows in Figs. 2(c)
and 2(d).

Before we examine the quantitative estimates, it is instruc-
tive to note the difference in informational content provided by
the BSF and DOS. In all cases, the spin-resolved DOS indicates
that at EF, n

↑
F < n

↓
F, which may lead us to naively assume a

negative spin polarization, i.e., P ∼ n
↑
F − n

↓
F < 0. Such an

estimate is used quite often, even today. In certain cases, this
estimate can be improved upon if, instead of the total DOS,
only its s- and p-electron projections are considered, but even
such an improvement can be efficient only when the electron
mobility values in both spin channels are close. In contrast, we
see from the BSFs that the electron momentum uncertainties
(�k ∼ l−1) at EF produced by disorder are also very different
for the two spins (�k↑ < �k ↓) and suggest the opposite
conclusion, i.e., a positive spin polarization, P ∼ l↑ − l↓ > 0.
Obviously, in such situations, a final conclusion can be made
only if it is based on approaches adequately accounting
for both factors. For this reason, we compute the spin-
projected resistivities as functions of x and y in Mn3−xXxGa,
Mn3−yYyGa, and Mn3−x−yXxYyGa alloys in the following,
using the Kubo-Greenwood linear-response formalism [31,32]
and applying the relativistic spin-projection scheme [34].

D. Quantitative analysis of spin polarization

Since we examined the tetragonal systems, we will distin-
guish their properties along the in-plane (xy, or the ab plane
of the tetragonal lattice) and out-of-plane (along z, or the c

axis of the tetragonal lattice) directions. Figures 3(a) and 3(c)
represent the in-plane transport properties (spin-projected
resistivities and spin polarizations, respectively), whereas
Figs. 3(b) and 3(d) represent the out-of-plane characteristics. In
all cases, we assume that M is oriented along the z axis because
of the magnetocrystalline anisotropy. Here, we consider the
diagonal elements of the resistivity tensor, ρxx = ρyy �= ρzz, as
being responsible for the direct current, �j (jα = Eα/ραα , �E is
the external electric field, and α is the spatial index x, y, or z).
The corresponding spatial components of spin polarization are

defined as Pαα = ρ
↓
αα−ρ

↑
αα

ρ
↓
αα+ρ

↑
αα

, where ρ↑, ↓
αα are the corresponding

spin projections.
As follows from Figs. 3(a) and 3(b), with increasing chemi-

cal disorder induced by Mn-X or Mn-Y substitution, almost all
spatial/spin resistivity components grow monotonously within
0 � x,y � 0.5 (with very few exceptions, e.g., for ρ

↑
xx in the

case of X = Sc and Ti at higher x rates, due to a certain increase
in n

↑
F). This growth is most efficient for small x or y, and it tends

to saturate close to x ≈ y ≈ 0.5 (maximal disorder). For the
ordered Mn3Ga, all resistivity components are exactly zero; for
this reason, we estimate its spin polarization by extrapolating
corresponding expressions to x,y → 0. Here, we find that
the pure Mn3Ga represents a rather large spin-polarization

FIG. 3. (Color online) Spatial components of residual resistivi-
ties, ρxx = ρyy (a) and ρzz (b) (their spin projections, ρ↑(↓), are
distinguished by the hollow up- and filled down-oriented triangles),
computed as functions of Mn1−yYy (Y = Fe, Co, Ni, Cu) and Mn1−xXx

(X = Cr, V, Ti, Sc) random substitutions; the substitution rates x and y

increase in the directions indicated by the arrows. Spatial components
of spin polarization, Pxx = Pyy (c) and Pzz (d), are derived from
the spin projections of the corresponding residual resistivity spatial
components. The corresponding schemes with electric current, �j ,
magnetization, �M , and the unit-cell relative orientations are shown
above.

spatial anisotropy: Pxx = Pyy ≈ −0.75 [Fig. 3(c)], whereas
Pzz ≈ +0.25 [Fig. 3(d)], which indicates that the spin-
polarization estimates for anisotropic systems (e.g., [22])
based on a spin-resolved DOS at EF can be improved by
considering the spatially resolved DOS in momentum space.
The resistivity spin component trends as functions of x and y

show that ρ↓ grows faster than ρ↑, which essentially justifies
the proposed scheme (see Sec. II). Indeed, both Pxx and Pzz,
as functions of x or y, evolve toward larger positive values.
The absolute disorder-induced change of the Pxx component
is very large, from −0.75 to approximately +0.65 (for Mn-Ti,
Mn-V, and Mn-Co substitutions), i.e., �Pxx ≈ 1.4. Despite
the fact that this particular effect is not especially interesting,
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since absolute spin polarization does not increase, it clearly
demonstrates the importance of disorder.

An interesting point worth mentioning is that the disorder
influence is stronger for those alloys in which the substituting
type (X or Y ) is further from Mn (e.g., in terms of the
group or valence electrons number), i.e., a larger potential
difference leads to a stronger random fluctuation amplitude.
Indeed, for the types “closest” to Mn, i.e., X = Cr and Y =
Fe, the corresponding resistivity components are comparably
small (e.g., at x = y = 0.5): ρ

↑
xx : 18 ∼ 33, ρ

↓
xx : 41 ∼ 55,

ρ
↑
zz : 2.3 ∼ 7.5, and ρ

↓
zz : 75.3 ∼ 75.7 μ� cm. At the same

time, for the types “most distinct” from Mn, i.e., X = Sc
and Y = Cu, certain resistivity components are much larger,
but not always comparable: ρ

↑
xx : 53 � 481, ρ

↓
xx : 152 ∼ 197,

ρ
↑
zz : 6.9 � 212, and ρ

↑
zz : 327 ∼ 411 μ� cm. This simply

indicates that, whereas substitution of Mn with “too similar”
elements is not yet appropriately efficient, substitution with
“too distinct” elements rapidly escapes control, since the band
structure is strongly affected not only in the sense of the
Bloch-wave broadening, but also in the sense of dispersion,
EF position, etc. The most inefficient situation is observed
for Mn-Cu substitution. Here, ρ↑ and ρ↓ grow rapidly by

FIG. 4. (Color online) Residual resistivities, ρ (averaged over spins and spatial directions) and spin-polarization spatial components
(Pxx = Pyy, within the xy plane; Pzz, out-of-plane) calculated for Mn3−x−yXxYy compositions (X = Cr, V, Ti, Sc; Y = Fe, Co, Ni, Cu; formally,
we also include Mn). The total amount of substituted Mn is fixed to either x + y = 0.05 (weak disorder, left side) or to x + y = 0.5 (strong
disorder, right side). Thus, for the strong disorder, if, for example, x = 0, then y = 0.5, and vice versa, or if both x,y > 0, then x = y = 0.25.
For the compositions with P > 0.8 and ρ < 15 μ� cm, the corresponding values are shown explicitly.
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achieving large absolute values, but their ratios, and thus
the spin polarization, remain unsatisfactorily low. In contrast,
substitution with “intermediate” elements, X = V, Ti, or Y =
Co, Ni, appears to be very efficient. Specifically, at x,y ≈ 0.1
the out-of-plane spin polarization achieves Pzz ≈ 0.91–0.95
and grows further with increased disorder rate. As follows
from Fig. 3(b), such growth is mainly due to the increase of the
ρ

↓
zz component, whereas ρ

↑
zz remains almost unaffected, as was

supposed in Sec. II during the discussion of the constructive
disorder design.

To also study the combined effects (in Mn3−x−yXxYy

compositions), we plot the computed transport characteristics,
Pxx = Pyy and Pzz, together with the spatially averaged
and spin-averaged (effective) resistivity, ρ = (2ρxx + ρzz)/3,
where ραα = 1/

(
1/ρ↑

αα + 1/ρ ↓
αα

)
is computed for the weak

(x + y = 0.05) and strong (x + y = 0.5) disorder regimes, as
shown in Fig. 4. It can be seen that, by moving toward Sc and
Cu, the effective resistivity tends to increase. In both disorder
regimes this larger resistivity is exhibited by all Cu-containing
compositions, with a maximum of approximately 140 μ� cm
for the Mn2.5Cu0.5Ga alloy. At the same time, the spin polar-
ization of metals with large resistivity is always low, since the
spin component with higher resistivity cannot go far beyond
the Mooij limit, whereas the other spin component with lower
resistivity is already sufficiently high. On the other hand, alloys
with lower effective resistivities, such as Co- or V-containing
compositions, exhibit much higher spin polarization. Interest-
ingly, they show a noticeable “complementary” effect, seen, for
example, in the strongly disordered regime; whereas for both
Mn2.5Co0.5Ga and Mn2.5V0.5Ga, Pxx ≈ 0.65, for the combined
composition, Mn2.5V0.25Co0.25Ga, it is already 0.81. It is also
instructive to admit the efficiency of the constructive disorder;
by moving from Mn3Ga through the weakly disordered
Mn2.95V0.025Co0.025Ga to Mn2.5V0.25Co0.25Ga, which is ten
times more strongly disordered, Pzz evolves from 0.25 through
0.91 to 0.98, respectively. This means that, in order to achieve
high spin polarization, the small substitution rate is already
sufficient.

IV. SUMMARY AND OUTLOOK

As we have seen, an increase in spin polarization is observed
almost for any type of Mn-TM substitution within Mn3Ga,
beginning with Sc and ending with Ni. The exception is the
Mn-Cu case, which leads to a very strong random potential
fluctuation affecting both spin channels. The important feature
of Mn3Ga is its tetragonal structure, which causes a large
anisotropy in its transport characteristics. As a result, the spin
polarization along the in-plane and out-of-plane directions
evolves differently. Whereas the disorder-induced change is
strong in both directions, it is the most constructive in the
out-of-plane direction only. At the same time, the constructive
effect is achieved immediately by beginning with a small Mn-
TM substitution rate. This is suitable for spintronics elements
exploiting magnetoresistance effects, as the unnecessarily
high resistance of the electrodes produces unwanted energy
losses. Another positive aspect of the presented scheme is
the improvement in spin polarization specifically for the
“current-perpendicular-to-plane” (CPP) setup. This improve-
ment in combination with perpendicular magnetic anisotropy

is applicable to many state-of-the-art industrial developments.
On the other hand, this also means that the direct experimental
proof of the proposed scheme, at least on a Mn3Ga basis,
requires preparation of the single-crystalline structures with
effective stoichiometric control, which is rather sophisticated.
In this respect, an interesting future focus is constructive
disorder design in cubic systems, as high spin polarization
can be expected in the isotropic case even for polycrystalline
materials. As we have seen, the basic feature that provides
the necessary conditions for such disorder engineering is
the presence of two antiparallel magnetic sublattices. Hence,
suitable cubic candidates for this research can be found within
the same Mn-rich Heusler group.
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APPENDIX

Here we present the first-principles justification of the
chemical ordering rules used to model the Heusler materials
in Sec. II and discussed in Sec. III B [see assumption (ii)]. To
distinguish between different chemical orders within the same
composition, we will note them according to the sequence of
Wyckoff positions, 2a 2b 2c 2d (also see the caption of Fig. 1).
For example, [Mn1−xXx]GaMn and MnGaMn[Mn1−xXx]
configurations are distinguished by the position of the X

element, which occupies 2a Wyckoff site in the first case,
and 2d in the second case, respectively.

As it follows from the calculations shown in Fig. 5,
for the compositions containing early TMs (X = Cr, V,
Ti, and Sc), the total energy difference, defined as �E =
E[Mn1−xXx ]GaMnMn − EMnGaMn[Mn1−xXx ], appears to be negative
within the whole range, 0 < x < 0.5. This indicates that the

FIG. 5. (Color online) Total energy difference per formula unit
�E between two configurations of the same Mn-TM Ga composition
(for more details, see the text) calculated as a function of the
substitution rate for Mn1−xXx (left, X = Cr, V, Ti, Sc; 0 < x < 0.5),
and Mn1−yYy (right, Y = Fe, Co, Ni, Cu; 0 < y < 0.5). The
substitution rates x and y increase along the directions indicated
by arrows. The data and the legends correspond to the same color
code (as was introduced in Fig. 3).
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earlier TM will substitute Mn preferentially on the 2a Wyckoff
site, rather than on 2c or 2d. In the case of late TM substitutions
(Y = Fe, Co, Ni, and Cu), the total energy difference, defined
as �E = EMnGaMn[Mn1−yYy ] − E[Mn1−yYy ]GaMnMn, appears to be
also negative within the whole substitution range. Thus, the
later TM will substitute Mn preferentially on 2c/2d Wyckoff
sites, rather than on 2a.

By assuming a linear behavior of �E upon x or y, it follows
that the occupation of the “wrong” Wyckoff site costs such a
huge amount of energy that it can be easily identified by even
more rough estimations (from about 0.04 eV for Cu to 0.6 eV
for V or Ti). This also indicates the general validity of these
rules for those Heusler materials that are known experimen-
tally. Here we do not consider more delicate situations, such
as, e.g., distinguishing between MnGaMn[Mn1−yYy] and, say,
MnGa[Mn1−y/2Yy/2][Mn1−y/2Yy/2] configurations, since their
energy differences are smaller by at least by one order of
magnitude, and thus their properties must be rather similar. In

addition, those experiments that claim to distinguish between
the centrosymmetric and the noncentrosymmetric point groups
using x-ray diffraction all indicate the absence of inversion
symmetry for Mn3−yYy MG compositions (where Y is the late
TM, and the MG is the main-group element, i.e., not only Ga).
Hence, in order to consider more complicated chemical config-
urations, we need to have an important experimental precedent,
as in the case of Fe2-based Heusler materials [35,36].

For the combined compositions, such as Mn3−x−yXxYyGa,
one can easily show in the same fashion (we do not present
the corresponding total energies just to prevent a large amount
of unnecessary data) that the lowest energy configurations are
again those that contain the earliest TM atom X in 2a and
the latest TM atom Y on 2c or 2d. The corresponding total
energy differences between the lowest- and the higher-energy
configurations can be closely described by linear combinations
of the total energies of the corresponding single-element
Mn3−xXxGa and Mn3−yYyGa substitutions.
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[19] J.-P. Wüstenberg, R. Fetzer, M. Aeschlimann, M. Cinchetti, J.

Minár, J. Braun, H. Ebert, T. Ishikawa, T. Uemura, and M.
Yamamoto, Phys. Rev. B 85, 064407 (2012).

[20] M. Jourdan, J. Minár, J. Braun, A. Kronenberg, S. Chadov, B.
Balke, A. Gloskovskii, M. Kolbe, H. J. Elmers, G. Schönhense
et al., Nat. Commun. 5, 3974 (2014).

[21] P. J. Webster, Contemp. Phys. 10, 559 (1969).
[22] J. Winterlik, B. Balke, G. H. Fecher, C. Felser, M. C. M. Alves,

F. Bernardi, and J. Morais, Phys. Rev. B 77, 054406 (2008).
[23] V. Alijani, J. Winterlik, G. H. Fecher, and C. Felser, Appl. Phys.

Lett. 99, 222510 (2011).
[24] J. Winterlik, S. Chadov, A. Gupta, V. Alijani, T. Gasi, K.

Filsinger, B. Balke, G. H. Fecher, C. A. Jenkins, F. Casper
et al., Adv. Mater. 24, 6283 (2012).

[25] K. Rode, N. Baadji, D. Betto, Y.-C. Lau, H. Kurt, M. Venkatesan,
P. Stamenov, S. Sanvito, J. M. D. Coey, E. Fonda et al., Phys.
Rev. B 87, 184429 (2013).

[26] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[27] H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74,

096501 (2011).
[28] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[29] A. Perlov, A. Yaresko, and V. Antonov (unpublished).
[30] O. Meshcheriakova, S. Chadov, A. K. Nayak, U. K. Rössler, J.
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