Magnetic and transport properties of structural variants of Remeika phases: Th₃Ir₄Ge₁₃ and U₃Ir₄Ge₁₃

Roman Gumeniuk,^{1,2,*} Kristina O. Kvashnina,³ Walter Schnelle,¹ Andreas Leithe-Jasper,¹ and Yuri Grin¹

¹Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany

²Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg, Germany

³ESRF, 71, Avenue des Martyrs, Grenoble France

(Received 21 November 2014; revised manuscript received 19 February 2015; published 18 March 2015)

Th₃Ir₄Ge₁₃ and U₃Ir₄Ge₁₃ crystallize with primitive cubic Tm₃Co₄Ge₁₃ and noncentrosymmetric rhombohedral HT-Y₃Pt₄Ge₁₃ type of structures, respectively, which are derivatives of the cubic Yb₃Rh₄Sn₁₃ prototype. Measurements of magnetic susceptibility, electrical resistivity, specific heat, thermopower, and thermal conductivity reveal that Th₃Ir₄Ge₁₃ is a diamagnetic bad metal and undergoes a first-order phase transition at \approx 200 K. Charge-density wave (CDW) and structural phase-transition scenarios for Th₃Ir₄Ge₁₃ are discussed. U₃Ir₄Ge₁₃ is Curie paramagnetic ($\mu_{eff} = 4.05 \mu_B$) and orders ferromagnetically at $T_C = 15$ K. For U₃Ir₄Ge₁₃ the oxidation state of U is investigated by x-ray absorption spectroscopy. The U 5*f* electrons in this compound are predominantly of itinerant nature.

DOI: 10.1103/PhysRevB.91.094110

PACS number(s): 61.05.cp, 64.70.kd, 75.20.En, 65.40.Ba

I. INTRODUCTION

The primitive cubic Yb₃Rh₄Sn₁₃ type of structure was discovered in the early 1980s by Remeika and co-workers [1]. Its structural arrangement belongs to the group of the so-called cage compounds, where positively charged filler atoms are situated inside large cavities within the covalently bonded atomic framework. Prominent representatives of such structural motif are clathrates and filled skutterudites. The combination of different types of chemical bonding as well as "rattling" effects lead to several exciting physical phenomena making intermetallic cage compounds an object of intensive investigations. More than 100 ternary intermetallic compounds containing fillers like yttrium, alkaline earth (AE), rare earth (RE), some actinides and frameworks consisting of delements of subgroups 8-10, as well as such p elements as In, Si, Ge, Sn, and Pb have been shown to crystallize with $Yb_3Rh_4Sn_{13}$ type of structure [2]. In the last few years special attention was paid to the tin-containing compounds $AE_3TM_4Sn_{13}$ (AE = Ca, Sr; TM = Rh, Ir). Being superconductors with $T_c = 7$ and 5 K, Ca₃Ir₄Sn₁₃ and Sr₃Ir₄Sn₁₃ show a second-order superlattice distortion associated with a charge-density wave (CDW) transition at $T^* = 33$ [3] and 137 K [4], respectively. In both cases, these transitions can be completely suppressed to zero temperature combining chemical and physical pressure leading to a quantum critical point observed in $(Ca_x Sr_{1-x})_3 Ir_4 Sn_{13}$ [5,6]. A recent study also shows that a second-order structural transition at $T^* =$ 138 K in Sr₃Rh₄Sn₁₃ (superconductor with $T_c = 5$ K) can be suppressed by applying physical or chemical pressure (e.g., substituting Ca by Sr). This makes the solid solution $(Ca_xSr_{1-x})_3Rh_4Sn_{13}$ an important system for the understanding of the physics underlying structural quantum criticality [7].

A number of publications was also devoted to intermetallic compounds with 3:4:13 composition containing the actinides Th and U. Such phases are of special interest due to

the dual nature of the U 5 f electronic states, which can be localized or/and itinerant causing unique physical properties. A series of U-containing $U_3M_4Ge_{13}$ (M = Ru, Os, Rh, Ir) compounds crystallizing with primitive cubic Yb₃Rh₄Sn₁₃ type was studied in Ref. [8]. U₃Ru₄Ge₁₃ was shown to be a Kondo system. No magnetic order was detected for U₃Os₄Ge₁₃ down to 4.2 K. In contrast, U₃Rh₄Ge₁₃ orders antiferromagnetically at $T_N = 22$ K, while U₃Ir₄Ge₁₃ is a ferromagnet with $T_C = 15-17$ K [8]. The powder x-ray diffraction patterns of these compounds show a split of the (hhh) reflections corresponding to the $Pm\bar{3}n$ space group and thus do not crystallize with Yb₃Rh₄Sn₁₃ type. The compounds $Th_3M_4Sn_{13}$ (M = Ru, Os, Co, Rh, Ir) were studied in Ref. [9]. Superconducting transitions are observed for Ru-, Os-, Rh-, and Ir-containing stannides at 5.7, 5.6, 1.7 [1], and 2.7 K, respectively. $U_3Rh_4Sn_{13}$ is reported to be a magnetically ordered heavy-fermion compound [10]. Recently we successfully prepared compounds showing different variants (cubic Ca₃Pt_{4+x}Ge_{13-y}, tetragonal Yb₃Pt₄Ge₁₃ [11], rhombohedral HT-Y₃Pt₄Ge₁₃ [12], and monoclinic LT-Y₃Pt₄Ge₁₃ [13]) of structural distortion of the initial primitive cubic Yb₃Rh₄Sn₁₃ prototype, all having interesting physical properties. U₃Ir₄Ge₁₃ seems to extend this series of the Yb₃Rh₄Sn₁₃ derivatives. Taking into account that almost all 3:4:13 compounds containing Th are superconductors and looking for an appropriate reference compound to deeper understand the physical properties of $U_3Ir_4Ge_{13}$, we investigated also $Th_3Ir_4Ge_{13}$. In this work we report on the room-temperature crystal structures, and the magnetic, thermal, and transport properties of the Th₃Ir₄Ge₁₃ and U₃Ir₄Ge₁₃ compounds at low temperatures. In addition, the valence state of U in U₃Ir₄Ge₁₃ is investigated by x-ray near edge absorption spectroscopy.

II. EXPERIMENT

Samples of $Th_3Ir_4Ge_{13}$ and $U_3Ir_4Ge_{13}$ were prepared by arc melting of the metals. Ingots of Th (Goodfellow, 99.5 mass % of metal base and 2 mass % of ThO₂), U (Goodfellow, 99.9 mass %), Ir (ChemPur, 99.9 mass %), and Ge (Chempur

^{*}roman.gumeniuk@physik.tu-freiberg.de

99.9999 mass %) were used for the syntheses. The resulting pieces were placed in carbon crucibles, sealed in tantalum tubes, and annealed at 900 °C for 7 days. All sample handlings were performed in argon-filled glove boxes [$p(O_2/H_2O) < 1$ ppm] in a dedicated laboratory with high safety standard at the MPI CPfS [14].

Powder x-ray diffraction (XRD) of the samples was performed on a HUBER G670 imaging plate Guinier camera [Cu $K_{\alpha 1}$ radiation ($\lambda = 1.54056$ Å)]. The *WinXpow* program package [15] was used for phase identification. The lattice parameters and crystal structures were refined by least-squares full-profile fitting of powder XRD data (program package *WinCSD* [16]).

For metallographic investigations a piece of the Th₃Ir₄Ge₁₃ sample was examined by energy-dispersive x-ray spectroscopy (EDXS) using a Jeol JSM 6610 scanning electron microscope equipped with an UltraDry EDS detector (ThermoFisher NSS7). The semiquantitative EDXS analyses were performed with 25 keV acceleration voltage and \approx 3 nA beam current. The $\phi(\rho z)$ metrics correction model was applied to calculate the Th_{3.0(3)}Ir_{4.0(3)}Ge_{13.0(3)} composition from the intensities of Th*M*, Ir*L*, and Ge*K* lines.

The x-ray absorption near edge structure (XANES) measurements were performed at beam line ID26 of the European Synchrotron Radiation Facility (ESRF) in Grenoble [17]. The incident energy was selected using the (111) reflection from a double Si crystal monochromator. Rejection of higher harmonics was achieved by three Si mirrors at an angle of 3.5 mrad relative to the incident beam. XANES spectra were measured in high energy resolution fluorescence detection (HERFD) mode using an x-ray emission spectrometer [18]. The U HERFD spectra at the M_4 edge were obtained by recording the intensity of the U $M\beta$ emission line (3336.0 eV) as function of the incident energy. The emission energy was selected using the (220) reflection of five spherically bent Si crystal analyzers (with 1 m bending radius) aligned at 75° Bragg angle. The paths of the incident and emitted x rays through air were minimized in order to avoid losses in intensity due to absorption. A combined (incident convoluted with emitted) energy resolution of 0.7 eV was obtained as determined by measuring the full width at half maximum (FWHM) of the elastic peak.

The magnetization was measured (MPMS XL-7, Quantum Design) in external fields between $\mu_0 H = 2$ mT and 7 T and temperatures of 1.8–400 K. The electrical resistivity and the heat capacity were studied down to 0.4 K (PPMS, Quantum Design) using an ac resistivity bridge (LR-700, Linear Research) and the HC option of the PPMS, respectively. Electrical contacts were made with silver-filled epoxy. The Seebeck coefficient and the thermal conductivity were determined simultaneously on the TTO option of a PPMS.

The electronic structures of Th₃Ir₄Ge₁₃ and U₃Ir₄Ge₁₃ were calculated within the local-density (LDA) and local spin-density (LSDA + U, U = 2 eV) approximations of the density-functional theory (DFT) using the full-potential FPLO code (version 9.01-35) [19] with the basis set of local orbitals. In scalar relativistic calculations the exchange-correlation potential by Perdew and Wang [20] was used. The k mesh included 120 points in the irreducible part of the first Brillouin zone for both compounds.

III. RESULTS AND DISCUSSION

A. Crystal structure

All peaks (besides the weak reflections of ThO₂ and free Ge as impurity phases, which were excluded from the refinement) in the powder XRD pattern of Th₃Ir₄Ge₁₃ [Fig. 1(a)] were indexed in a primitive cubic lattice with the unit cell parameter a = 9.0586(3) Å. No broadening or atypical asymmetry of the reflections was observed. The FWHM slightly increases with increasing 2θ values varying within the range of $0.10^{\circ}-0.15^{\circ}$ [inset to Fig. 1(a)]. Reflections (*hhl*), in the performed indexing, fulfill extinction conditions l = 2n, which suggests space group (SG) $Pm\bar{3}n$ for the crystal structure of Th₃Ir₄Ge₁₃. The structure of the Yb₃Rh₄Sn₁₃ prototype [1] was chosen as the starting model for the refinement. The final values of the reliability factors were $R_I = 0.093$ and $R_P = 0.131$.

FIG. 1. (Color online) X-ray powder diffraction patterns of $Th_3Ir_4Ge_{13}$ [(a) structure type $Tm_3Co_4Ge_{13}$] and $U_3Ir_4Ge_{13}$ [(b) structure type HT-Y₃Pt₄Ge₁₃]. Experimental intensities are shown as circles (black), calculated ones as lines (red, upper part of each panel), and the differences are given as lines (black) in the bottom parts of each panel. The inset shows the observed angular dependence of the full widths of half maximum (FWHM).

TABLE I. Crystallographic data for Th₃Ir₄Ge₁₃ [two different structure types, SG $Pm\bar{3}n$; a = 9.0586(3) Å; $R_I = 0.058$, $R_P = 0.091$ (Tm₃Co₄Ge₁₃ type)] and U₃Ir₄Ge₁₃ [SG R3c; a = 12.6329(1) Å, c = 15.5505(1) Å; $R_I = 0.049$, $R_P = 0.070$].

Atom	Site	x	у	z	$B_{\rm iso}/{ m \AA}^2$	CN
		TI	$h_3Ir_4Ge_{13}$ (Yb ₃ Rh ₄ Sn ₁₃ ty	/pe)		
Th	6 <i>c</i>	1/4	0	1/2	1.36(2)	16
Ir	8 <i>e</i>	1/4	1/4	1/4	0.91(2)	9
Ge1	2a	0	0	0	0.14(7)	12
Ge2	24k	0	0.1442(2)	0.3064(2)	4.18(4)	14
		Th	$n_3 Ir_4 Ge_{13}$ (Tm ₃ Co ₄ Ge ₁₃ ty	ype)		
Th	6 <i>c</i>	1/4	0	1/2	1.36(2)	16
Ir	8e	1/4	1/4	1/4	1.22(1)	9
Ge1	2a	0	0	0	2.04(1)	12
Ge2 ₁ ^a	24k	0	0.1288(3)	0.2483(3)	1.45(4)	14
Ge22 ^b	24k	0	0.1528(2)	0.3336(2)	0.91(3)	14
		U ₃	Ir ₄ Ge ₁₃ (HT-Y ₃ Pt ₄ Ge ₁₃ t	ype)		
U	18 <i>b</i>	0.0012(1)	0.2505(1)	0.0000(1)	1.14(4)	16
Ir1	6 <i>a</i>	0	0	0.0033(1)	0.75(2)	9
Ir2	18 <i>b</i>	0.3318(1)	0.1656(1)	0.1690(1)	1.01(1)	9
Ge1	6 <i>a</i>	0	0	0.2564(2)	1.16(2)	12
Ge2	18 <i>b</i>	0.1751(2)	0.0073(2)	0.4170(1)	1.06(3)	11
Ge3	18 <i>b</i>	0.1434(2)	0.1537(2)	0.1072(1)	1.30(3)	11
Ge4	18 <i>b</i>	0.0599(2)	0.2825(2)	0.1914(1)	1.54(3)	12
Ge5	18 <i>b</i>	0.2086(1)	0.1649(2)	0.2959(1)	1.50(2)	13

^aSplit position G = 0.36(1).

^bSplit position G = 0.64(1).

The corresponding values of the atomic coordinates and displacement parameters are given in Table I.

The refined model is characterized by high *R* factors, unphysically large displacement parameter for the Ge2 atom, and—as usually observed for these structural arrangements [1]—an enlarged Ge1-Ge2 distance of 3.07(1) Å. Taking into account that no visible signs of a possible symmetry reduction were observed in the XRD pattern of Th₃Ir₄Ge₁₃ and to resolve the situation with the displacement parameter for the Ge2 atom, the split of the crystallographic 24*k* position was performed, assuming the coordinate $x \neq 0$ (Wyckoff site 48*l* for Ge2 with occupancy 0.5). However, this operation did not lead to changes of the *R* factors, *B*_{iso} for Ge2 as well as the Ge1-Ge2 distance.

In the next step of the refinement a split of the Ge2 position in the (100) plane was undertaken by the introduction of an additional Ge2₂ atom occupying the 24*k* crystallographic site. This led to a significant reduction of the *R* factors and to more realistic displacement parameters of Ge atoms. The final values of $R_I = 0.058$ and $R_P = 0.091$ were obtained. The corresponding calculated XRD pattern is given in Fig. 1(a) and the atomic parameters are listed in Table I.

The obtained structural model is presented in Fig. 2. It indicates the same basic motif as observed for the $Yb_3Rh_4Sn_{13}$ type (Fig. 5 in Ref. [11]), with the only difference that in Th₃Ir₄Ge₁₃ the vertices of the icosahedra, trigonal prisms, and the Sn₄-like rectangles (marked by blue color) are now "doubled" due to the split of Wyckoff site occupied by Ge. In such a structural arrangement the Ge2₁-Ge2₂ distance is 0.802(3) Å, while the Ge1-Ge2₁ and Ge1-Ge2₂ contacts become now 2.534(3) and 3.324(1) Å. The shortening of one of the contacts between the icosahedron centering atom (Ge1) and

its vertices (Ge2₁) is in agreement with theoretical calculations for different modifications of Ca₃Pt_{4+x}Ge_{13-y} and Y₃Pt₄Ge₁₃, which predict structures with shorter Ge-Ge contacts within the icosahedra to be energetically beneficial, due to the separation of Ge 4*p* states into bonding and antibonding states [11,13].

Interestingly, the crystal structure of $Tm_3Co_4Ge_{13}$ [21] adopts the same split of the Ge position, as found here for Th₃Ir₄Ge₁₃. In Ref. [21] this has been discussed as a hint to a commensurately modulated structural model with zero modulation vector. Further refinement of the crystal structure of Tm₃Co₄Ge₁₃ from powder XRD data assuming super SG $P\bar{4}3n(000)$ led to a completely ordered model and a reduction of the reliability factor R_1 from 7.4% to 4.3%, as well as to the bonding character of Ge1-Ge2 contacts within the icosahedra. Our attempts to use the same commensurately modulated structural model in the case of Th₃Ir₄Ge₁₃ failed. A refinement resulted in slightly larger $R_I = 0.065$ (instead of 0.058 for the disordered structure) and in an ordered model. However, it was characterized by long Ge1-Ge2 distances of 3.2 Å, thus indicating almost no bonding, in contradiction with theoretical studies (see Sec. III G).

The strongest peaks in the powder XRD pattern of $U_3Ir_4Ge_{13}$ can be indexed using a cubic primitive lattice with $a_{cub} \approx 9$ Å. However, a clear split of (hhh) reflections into two with intensity ratio 1 : 2, of (hll) into three reflections, as well as single (h00) peaks is observed. Such splitting pattern was recently found for rhombohedral HT-Y₃Pt₄Ge₁₃. [12] Selected ranges of powder XRD patterns of HT-Y₃Pt₄Ge₁₃ and of $U_3Ir_4Ge_{13}$ together with the refined profiles in the rhombohedral SG R3c and possible indexing in the cubic $Pm\bar{3}n$ and rhombohedral R3c SGs are shown in Fig. 3. The structural model of the HT-Y₃Pt₄Ge₁₃ type was taken

FIG. 2. (Color online) Structural units in the crystal structures of $Th_3Ir_4Ge_{13}$ and $U_3Ir_4Ge_{13}$: distorted icosahedra Ge_1Ge_{24} and Ge_1Ge_{12} (yellow), distorted trigonal prisms $IrGe_{12}$ and $IrGe_6$ (light gray), as well as distorted Ge_8 rectangles (blue, observed only in cubic $Th_3Ir_4Ge_{13}$) and broken quadrangle Ge_4 (green, for $U_3Ir_4Ge_{13}$).

for the further refinement of the structure of $U_3Ir_4Ge_{13}$. Crystallographic data, final values of the atomic coordinates, and displacement parameters are presented in Table I; the refined profile is shown in Fig. 1(b).

The obtained rhombohedral unit cell parameters for U₃Ir₄Ge₁₃ are related to the initial cubic ones as following: $a_{\text{rhom}} = b_{\text{rhom}} \approx a_{\text{cub}}\sqrt{2}$, $c_{\text{rhom}} \approx a_{\text{cub}}\sqrt{3}$, which corroborates the close relationship of the atomic arrangement of U₃Ir₄Ge₁₃ and of the cubic Yb₃Rh₄Sn₁₃ prototype. Indeed, both structures show the same structural motif (cf. Figs. 2 and 5 in Ref. [11]). The only difference is that in the cubic prototype icosahaedra and trigonal prisms are regular, while in the derivative U₃Ir₄Ge₁₃ structure they are distorted. It should be noted that interatomic distances in the *p*-element networks are very different in the two types. In Fig. 2 the interatomic contacts which do not exceed the sum of atomic radii of elements ($d_{\text{(Ge-Ge)}} = 2.46$ Å [22]) multiplied by $\sqrt{2}$ are marked by lines.

FIG. 3. (Color online) Selected ranges of powder XRD patterns of $U_3Ir_4Ge_{13}$ (top) and HT-Y₃Pt₄Ge₁₃ (bottom). Indexes of the reflections in different models are shown in the bottom part of each panel.

In $U_3Ir_4Ge_{13}$ some Ge-Ge contacts exceed this limit, which leads to the disappearance of Sn_4 -like rectangles (Fig. 5 in Ref. [11]) as observed in the $Yb_3Rh_4Sn_{13}$ prototype and also to the reduction of the coordination number (CN) of some Ge atoms (Table I).

Other interatomic distances in the structures of $Th_3Ir_4Ge_{13}$ and $U_3Ir_4Ge_{13}$ are in most cases in agreement with the sums of atomic radii of the constituents [22]. There are no Ir-Ir contacts, as it is similarly observed in cubic Yb₃Rh₄Sn₁₃ prototype. Th-Ge, U-Ge, and Ge-Ge distances are slightly larger than the sums of corresponding radii. The shortest contacts are Ir-Ge, where shrinking by 2.8% and 4.3% was observed for Th₃Ir₄Ge₁₃ and U₃Ir₄Ge₁₃, respectively.

B. X-ray absorption spectroscopy

XANES (HERFD) at the U M_4 edge is a method to directly probe the U 5f shell and thus the valence state of uranium species [23]. In Fig. 4 experimentally obtained HERFD spectra of U₃Ir₄Ge₁₃ and UO₂ are shown. They are very similar and show almost the same features with the only difference that the spectrum of U₃Ir₄Ge₁₃ (i) is characterized by the absence of two high energy features (marked by [green] asterisks) appearing in oxide due to the U-O bonding, (ii) slightly shifted towards lower energies (i.e., 0.2 eV), (iii) a

FIG. 4. (Color online) HERFD XANES spectra at the U M_4 edge for U₃Ir₄Ge₁₃ and UO₂. The green asterisks indicate high energy features observed only for uranium (+4) oxide. Inset: Theoretically calculated U 5*f* partial DOS of U₃Ir₄Ge₁₃ in comparison with experimentally obtained spectra. The dashed line indicates the Fermi level E_F .

bit broadened, and (iv) shows an additional feature A (inset to Fig. 4), which is not so clearly visible in the spectrum of UO₂. Since the main feature B is found at almost the same energy position and has also a similar FWHM in both spectra, an oxidation state +4 for the U atoms in $U_3Ir_4Ge_{13}$ could be anticipated. In particular we noted that the energy shift depends on the screening of the core hole by conduction electrons. This effect leads to the shift of the U L_{III} XAS spectrum of UPd₃ by \sim 1.5 eV in comparison to UO₂ despite that both of them were formally understood as U 5 f^2 systems [24]. Therefore, the determination of the oxidation state of uranium in U₃Ir₄Ge₁₃ requires further investigations. Taking into account all differences between both spectra the presence of UO_2 on the $U_3Ir_4Ge_{13}$ sample surface is rather unlikely. However, additional studies devoted to the issue of possible surface contamination are necessary to draw final conclusions.

The contribution of U 5*f* electrons to the electronic DOS is shown in the inset to Fig. 4. The indicated Fermi level E_F separates the occupied and unoccupied states. The experimentally measured spectra of U₃Ir₄Ge₁₃ and UO₂ were shifted to coincide with the maximum of U 5*f* partial density of states (DOS, feature B). All main spectral features in the HERFD of U₃Ir₄Ge₁₃ are roughly reproduced with the U 5*f* description in FPLO. The only difference is that the experimental spectrum is somewhat broader than the theoretically calculated one. Interestingly, feature C is mostly due to the U 5*f* contributions of one channel ("spin down") in the spin-resolved DOS.

C. Magnetic susceptibility

Th₃Ir₄Ge₁₃ is diamagnetic in the whole studied temperature range with a molar susceptibility $\chi_0 = -400 \times 10^{-6}$ emu mol⁻¹ [Fig. 5(a)]. A small step in the susceptibility observed at $T_k^{\text{mag}} = 210$ K could indicate a first-order structural phase transition, the formation of a CDW or other opening of a gap at the Fermi surface. Taking into account that both magnetic susceptibility and specific heat are proportional to the DOS at E_F , the Sommerfeld-Wilson ratio [25] was used to

FIG. 5. (Color online) (a) Magnetic susceptibility of Th₃Ir₄Ge₁₃ vs temperature. (b) Inverse magnetic susceptibility of U₃Ir₄Ge₁₃ together with Curie-Weiss fit. Left inset: Temperature dependence of magnetization. Right inset: Hysteresis loop for fields up to $\mu_0 H = \pm 1$ T at T = 1.8 K.

estimate the reduction of DOS corresponding to the gapping at T_k^{mag} . The jump $|\Delta\chi_0|$ at the transition temperature is 15×10^{-6} emu mol⁻¹. Assuming the Sommerfeld-Wilson ratio for free electrons, one obtains $\Delta\gamma_0 = \Delta\chi_0 R_0$, where $R_0 = \pi^2 k_B^2 / \mu_B \sqrt{3}$. Hence, $\Delta\gamma_0 = 1$ mJ mol⁻¹ K⁻², which corresponds to the reduction of DOS at T_k^{mag} by only ~0.4 states eV⁻¹ f.u.⁻¹. Here it has to be emphasized that the jump $|\Delta\chi_0|$ in the magnetic susceptibility of Th₃Ir₄Ge₁₃ is of the same order of magnitude as observed in the LaPt₂Si₂ CDW system [26] and one order of magnitude smaller than reported for the Sr₃Ir₄Sn₁₃ system (second-order superlattice distortion) [5].

The inverse magnetic susceptibility of $U_3Ir_4Ge_{13}$ is shown in Fig. 5(b). It is described by a modified Curie-Weiss law down to 50 K. An effective magnetic moment $\mu_{eff} =$ $4.19 \ \mu_B f.u.^{-1}$, the Weiss temperature $\theta_P = 4.3$ K and $\chi_0 =$ $+620 \times 10^{-6}$ emu mol⁻¹ are determined from a nonlinear fit to χ . $U_3Ir_4Ge_{13}$ orders ferromagnetically at $T_C = 15$ K [left inset Fig. 5(b)], in good agreement with data reported in [8]. The magnetization per formula unit [left inset Fig. 5(b)] reaches about 1.76 μ_B f.u.⁻¹ at 1.8 K in the highest external field of our magnetometer (7 T). A minor hysteresis loop for fields up to $\mu_0 H = \pm 1$ T at T = 1.8 K is shown in Fig. 5(b) (right inset). The coercive field at this temperature is about 0.3 T.

D. Electrical resistivity

The electrical resistivity ρ vs *T* for Th₃Ir₄Ge₁₃ is given in Fig. 6(a). In the temperature range up to 160 K in cooling mode and up to 180 K in warming regime it increases with

FIG. 6. (Color online) (a) Electrical resistivity ρ vs T for Th₃Ir₄Ge₁₃ together with the fit to the Bloch-Grüneisen formula (cyan line) for 20 < T < 70 K. Inset: $d\rho/dT$ of Th₃Ir₄Ge₁₃ vs temperature for cooling and warming modes. (b) Electrical resistivity ρ vs T for U₃Ir₄Ge₁₃ with a fit (magenta line) to $\rho_0 + c\ln T$ [$\rho_0 = 11.17(3) \mu\Omega$ m and c = 0.78(5)] for 100 < T < 220 K. Inset: Low temperature resistivity together with a fit to the $\rho_0 + A_{FL}T^2$ formula (red line) for 1.9 < T < 4.5 K.

increasing temperature. In the range 20 < T < 70 K $\rho(T)$ is fitted well by the Bloch-Grüneisen equation (1),

$$\rho(T) = \rho_0 + A \left(\frac{T}{\Theta_D}\right)^5 \int_0^{\Theta_R/T} \frac{x^5}{(e^x - 1)(1 - e^{-x})} dx, \quad (1)$$

which indicates simple metallic resistance behavior due to the scattering of electrons by phonons [27]. The fit parameters are the residual resistivity due to defect scattering $\rho_0 = 28.15 \,\mu\Omega$ m; the coefficient depending on the phonon contribution $A = 0.133 \,\mu\Omega$ m, and the Debye temperature $\Theta_D = 153$ K. The low value of Θ_D obtained here in comparison with that from specific heat is explained by the fact that the former takes into account only longitudinal phonons [28].

Further increase of temperature leads to a sharp drop of the resistivity of Th₃Ir₄Ge₁₃ and appearance of a hysteresis while measuring in cooling and warming. The temperatures $T_k^{\text{warm}} = 211$ K and $T_k^{\text{cool}} = 194$ K are defined as maxima in $-d\rho/dT$ [inset to Fig. 6(a)]. Such temperature behavior of $\rho(T)$ is reminiscent of the one reported for Lu₂Ir₃Si₅, where a thermal hysteresis of 40 K is observed [29], and is a hallmark of a first-order structural phase transition. For the canonical CDW system $\text{Er}_5\text{Ir}_4\text{Si}_{10}$ [30] the electrical resistivity is characterized by the absence of a thermal hysteresis. However, a CDW scenario for $\text{Th}_3\text{Ir}_4\text{Ge}_{13}$ cannot be completely excluded taking into account the predisposition of the 3 : 4 : 13 structures to structural modulation [21].

The resistivity of U₃Ir₄Ge₁₃ in the temperature range 1.9–4.5 K fits to $\rho_0 + A_{\rm FL}T^2$ [inset to Fig. 6(b)] with a residual resistivity $\rho_0 = 6.97 \ \mu\Omega$ m from impurity scattering, and the cross section of the quasiparticlequasiparticle scattering $A_{\rm FL} = 1.34 \times 10^{-2} \,\mu \Omega$ m K⁻². The Kadowaki-Woods ratio [31] $R_{\rm KW} = A_{\rm FL}/\gamma^2 = 1.0 \times 10^{-5} \ \mu\Omega \ {\rm cm} \ {\rm K}^{-2} ({\rm mol} \ {\rm K}^2 \, {\rm mJ}^{-1})^2$ for U₃Ir₄Ge₁₃ is the same as reported for Fermi liquids and thus metallic systems. In the second derivative $d^2 \rho / dT^2$ a broad weak anomaly at ≈ 20 K [not shown in Fig. 6(b)] corresponding to the ferromagnetic ordering is observed. With increasing temperature $\rho(T)$ of U₃Ir₄Ge₁₃ passes through a broad maximum centered at \approx 250 K and then decreases (a small drop of the resistivity observed at \sim 50 K is an artifact). Such behavior is reminiscent of that observed for U-containing intermetallic compounds with high p-element content such as, e.g., UAuSi [32], UCu₅Al, [33], and $U_{1,2}Fe_4Si_{9,7}$ [34], the former two are also considered as Kondo systems. Since the electrical resistivity of Th₃Ir₄Ge₁₃ is affected by a first-order phase transition we cannot take a closer look at the U 5f-electron contribution to the resistivity of U₃Ir₄Ge₁₃ and make conclusions on the possible Kondo behavior of this compound.

E. Specific heat

The low-temperature specific heat of Th₃Ir₄Ge₁₃ is given in Fig. 7. For T < 6 K it is described by $\gamma T + \beta T^3 + \delta T^5$, where γ is the Sommerfeld coefficient of the electronic specific heat, and β and δ are the first terms of the harmonic lattice approximation for the phonon contribution. A fit results in $\gamma = 4.72(3)$ mJ mol⁻¹ K⁻², $\beta = 1.41(3)$ mJ mol⁻¹ K⁻⁴,

FIG. 7. (Color online) Specific heat of $U_3Ir_4Ge_{13}$ vs temperature near the ferromagnetic transition in different magnetic fields and of Th₃Ir₄Ge₁₃. The (red) line shows the fit (see text). Inset: Hightemperature specific heat of Th₃Ir₄Ge₁₃ (circles) near the T_k together with an estimated background (line).

FIG. 8. (Color online) Temperature dependence of the specific heat of U₃Ir₄Ge₁₃ after subtraction of phonon reference (Th₃Ir₄Ge₁₃) and γ_{mag} in $c_{\text{mag}}/T(T)$ representation (brown scales) together with magnetic entropy (blue scales).

which is equivalent to a Debye temperature $\Theta_D = 302$ K, and $\delta = 7.06(5) \times 10^{-3}$ mJ mol⁻¹ K⁻⁶. The small value of γ indicates a low DOS at the Fermi level of ≈ 2.0 states eV^{-1} f.u.⁻¹ and metallic properties of Th₃Ir₄Ge₁₃ being well in agreement with the band-structure calculations (see Sec. III G). In the temperature range 220-320 K the specific heat of $Th_3Ir_4Ge_{13}$ shows a broad anomaly (inset to Fig. 7). The "jump" Δc_p centered at ≈ 240 K is ≈ 30 J mol⁻¹ K⁻¹. It is comparable with the jumps observed in typical CDW compounds such as $\text{Er}_{5}\text{Ir}_{4}\text{Si}_{10}$ ($\Delta c_{p} = 160 \text{ J mol}^{-1} \text{ K}^{-1}$) [30] or Lu₅Ir₄Si₁₀ ($\Delta c_p = 160 \text{ J mol}^{-1} \text{ K}^{-1}$) [35]. Latent heat could not be detected at the phase transition, which is partially due to used experimental method and setup. For low temperatures, Th₃Ir₄Ge₁₃ is considered as phonon reference for U₃Ir₄Ge₁₃ taking into account the close structural relationship, and the almost identical molar masses and unit cell volume.

The specific heat of $U_3Ir_4Ge_{13}$ in various magnetic fields is shown in Fig. 7. A clear anomaly, associated with the ferromagnetic ordering, is observed at $T_C = 15.2$ K in zero field. The specific heat of U₃Ir₄Ge₁₃ consists also of, besides electronic and phonon parts, a magnetic contribution $c_{mag}(T)$. To obtain the electronic c_{el} part the c_P of Th₃Ir₄Ge₁₃ was subtracted from $c_P(T)$ of U₃Ir₄Ge₁₃. This results in a 5f related electronic term $\gamma_f = 320(2) \text{ mJ mol}^{-1} \text{ K}^{-2}$ at 0.35 K. The magnetic contribution c_{mag} (Fig. 8) was obtained by further subtraction of the obtained γ_f . The integration of $c_{\text{mag}}(T)/T$ yields the magnetic entropy $S_{\text{mag}} \approx 0.42 R \ln 2$ at the transition temperature (Fig. 8). The value is very similar to those observed for ferromagnetic U-containing compounds as, for instance, UPtAl ($T_C = 43$ K, $S_{mag} \approx 0.71 R \ln 2$) [36], UIrAl $(T_C = 62 \text{ K}, S_{\text{mag}} \approx 0.33 R \ln 2)$ [37], or URhSi $(T_C = 10.1 \text{ K},$ $S_{\text{mag}} \approx 0.17 R \ln 2$ [38]. The small values of magnetic entropy and the large γ_f suggest the predominant itinerant nature of the U moments. However, the shortest U-U distance of 4.473(1) Å in the structure of $U_3Ir_4Ge_{13}$ is considerably larger than these observed in the case of the above listed 1:1:1 compounds with $d_{(U-U)} < 3.7$ Å and thus is well above the Hill limit, which amounts $d_{(U-U)} = 3.5 \text{ Å} [39]$. From this point of view the nature of U 5 f states in $U_3Ir_4Ge_{13}$ can be phenomenologically considered to be at least partially itinerant.

FIG. 9. (Color online) (a) Thermopower *S* vs *T* for Th₃Ir₄Ge₁₃ and U₃Ir₄Ge₁₃ together with the fits (see text). Inset: -dS/dT of Th₃Ir₄Ge₁₃ vs *T*. (b) Temperature dependence of the thermal conductivity $\kappa(T)$ of Th₃Ir₄Ge₁₃(**I**) and U₃Ir₄Ge₁₃(**O**), with their electronic (κ_{el} , continuous line) and phonon (κ_{ph} , \Box and \bigcirc) contributions.

F. Thermal transport

The temperature dependence of the Seebeck coefficient S(T) of the thermopower of Th₃Ir₄Ge₁₃ is presented in Fig. 9. It is positive in the whole studied temperature range implying the dominance of the hole-type carriers. In the range 1.8 < T < 50 K it is well fitted to $S = \alpha T$ with $\alpha = 0.36 \,\mu\text{V}\,\text{K}^{-2}$. In a one-band model with an energy-independent relaxation time α is estimated as $\pi^2 k_B^2/2eE_F$. The value $E_F = 0.1$ eV, obtained from this formula is lower than usually observed for systems with metallic behavior (e.g., $E_F = 0.72$ eV for LaAgSb₂ [40]). The dimensionless parameter $q = N_A e \alpha / \gamma_{exp}$ (Faraday constant $N_A e \approx 96485$ C mol⁻¹), which characterizes the thermoelectric material in terms of an effective charge carrier concentration per f.u. (or the Fermi volume V_F of the charge carriers) [41], is estimated to be 7.4, which is larger than $q \sim 1$ expected for Fermi liquids.

With further increasing temperature S(T) of Th₃Ir₄Ge₁₃ increases and than shows a sudden drop after which it decreases further. The maximum in -dS/dT at \approx 193 K [inset to Fig. 9(a)] coincides with $T_k^{cool} = 194$ K obtained from $-d\rho/dT$ [S(T) is measured in cooling, too]. The Seebeck coefficient is a sensitive probe for changes in the DOS (e.g., for CDW ordering, structural phase transitions, and any gap formation on the Fermi surface) [29,40,42]. Interestingly, in typical CDW compounds as Lu₅Ir₄Si₁₀ [42] or Lu₂Ir₃Si₅ [29] the discontinuity in S(T) at the transition temperature is 2–3 μ V K⁻¹, while in the present case it is $\approx 14 \mu$ V K⁻¹, which suggests larger changes at E_F and represents thus most probably a first-order structural phase transition.

The Seebeck coefficient S(T) of $U_3Ir_4Ge_{13}$ decreases in the whole studied temperature range [Fig. 9(a)]. This decrease shows logarithmical character for T < 25 K [inset, Fig. 9(a)]. The negative value of the Seebeck coefficient of $U_3Ir_4Ge_{13}$ implies predominant electron-type carriers. At room temperature the Seebeck coefficient is 16.6 μ V K⁻¹, which is in the range $\sim 10-15 \mu$ V K⁻¹ expected for normal actinide intermetallic compounds in absence of many-body effects [43]. Interestingly, no anomaly is visible in S(T)and $\kappa(T)$ of $U_3Ir_4Ge_{13}$ at the temperature of ferromagnetic ordering ($T_C = 15$ K). This can be explained by the small ordered magnetic moments and low magnetic entropy involved in this transition.

The thermal conductivity $\kappa(T)$ for Th₃Ir₄Ge₁₃ and $U_3Ir_4Ge_{13}$ is presented in Fig. 9(b). Both compounds show low thermal conductivity, which is comparable with that observed for cage compounds (e.g., filled skutterudites) [44,45]. $\kappa(T)$ may be decomposed into electronic κ_{el} and phonon κ_{ph} contributions. κ_{el} is calculated from the Wiedemann-Franz law $\kappa_{\rm el}(T) = L_0 T / \rho(T)$, where L_0 is the Lorenz number 2.44 × 10^{-8} W Ω K⁻² and the phonon contribution $\kappa_{\rm ph}$ is estimated by subtracting κ_{el} from the measured κ . For Th₃Ir₄Ge₁₃, $\kappa(T)$ decreases with decreasing temperature down to 200 K showing a minimum in agreement with the presence of the first-order phase transition. Interestingly, the electronic contribution to the thermal conductivity at the transition is negligible. With further decreasing temperature $\kappa(T)$ of Th₃Ir₄Ge₁₃ increases, passes through a maximum at \approx 30 K and rapidly drops following roughly a linear law for T < 5 K.

No anomalies were observed in the thermal conductivity of U₃Ir₄Ge₁₃. It decreases smoothly with decreasing temperature down to 50 K and then rapidly drops down towards smaller values. The phonon contribution κ_{ph} of U₃Ir₄Ge₁₃ at 300 K is very low; $\kappa_{ph}^{300K} = 0.9$ W m⁻¹ K⁻¹, and it is of the same order of magnitude as for such well known thermoelectrics as (Bi/Sb)₂Te₃ ($\kappa_{ph}^{300K} = 0.6$ W m⁻¹ K⁻¹) [46] or Yb₁₄Mn_{1-x}Al_xSb₁₁ ($\kappa_{ph}^{300K} = 0.55$ W m⁻¹ K⁻¹) [47]. The dimensionless figure of merit of U₃Ir₄Ge₁₃ as a thermoelectric material is negligible (*ZT* = 0.006 at 300 K).

G. Electronic structure

The optimized electronic structure of idealized Th₃Ir₄Ge₁₃, assuming Yb₃Rh₄Sn₁₃ type [1], is presented in Fig. 10. The obtained DOS is reminiscent of those reported for thorium [48,49], rare-earth [50], and alkaline-earth [51] containing platinum germanium filled skutterudites and {Ca, Y,Yb}₃Pt₄Ge₁₃ [11,13] compounds and shows almost the same features. The separate DOS structure in the energy range between -13 and -7 eV is mostly due to the mixing of the Ge2 4s and Ir 5*d* states. The broad valence band extending from -6 eV upon to the Fermi level (E_F) is due to hybridization of Ge2 4*p*, Ir 5*d*, and Th 6*d* states. The Fermi level is situated in a spike of the DOS with $N(E_F) = 4.87$ states eV⁻¹ f.u.⁻¹,

FIG. 10. (Color online) Calculated electronic density of states (DOS) for the idealized Th₃Ir₄Ge₁₃ structure. The Fermi level is indicated by the dashed line. Inset: Ge1 partial DOS in the close vicinity to the Fermi level for different interatomic Ge1-Ge2 distances: $d_{Ge1-Ge2} = 3.324$ Å (brown line), $d_{Ge1-Ge2} = 3.062$ Å (magenta line), and $d_{Ge1-Ge2} = 2.551$ Å (dark yellow line).

which would correspond to $\gamma^{\text{theor}} = 11.5 \text{ mJ mol}^{-1} \text{K}^{-2}$ in disagreement with the experimentally observed value of 4.72(3) mJ mol⁻¹ K⁻². These findings indicate instability of the idealized Th₃Ir₄Ge₁₃ structure. The Fermi level is mostly populated by the Ge1 4p (0.62 states eV^{-1} f.u.⁻¹), Ge2 4p (2.15 states eV⁻¹ f.u.⁻¹), and Th 6d and 5f (\approx 1.1 states eV^{-1} f.u.⁻¹). Calculations assuming different lengths of Ge1-Ge2 contacts in the structure of Th₃Ir₄Ge₁₃ have been performed. As one can see from the inset to Fig. 10, the shortening of this distance from 3.324 to 3.062 Å leads to the separation of the Ge1 4p into bonding and antibonding states and thus to a remarkable reduction of the DOS at E_F . Further shrinking of $d_{\text{Ge1-Ge2}}$ does not affect the DOS. Also, changes of the Ge1-Ge2 distance do not influence the Ge2 4p states. Thus, only changes in the bonding situation between Ge1 centering the icosahedra and the Ge2-atoms from the framework, caused by the strong reduction of the symmetry (e.g., $\{Ca, Y, Yb\}_3Pt_4Ge_{13}$ [11,13]) or by the splitting of Ge2 site, as observed in the crystal structure of Th₃Ir₄Ge₁₃ (which cannot be simulated theoretically) are leading to low DOS and the appearance of a dip at E_F . The broad maximum above E_F is due to the Th 5f, 6d, and 7s states, which are unoccupied. This suggests transfer of these electrons towards the Ir-Ge framework in the idealized Th₃Ir₄Ge₁₃ structure.

The electronic structure of $U_3Ir_4Ge_{13}$ calculated within LSDA + U approach is given in Fig. 11. It shows nearly the same features as described above for idealized Th₃Ir₄Ge₁₃: the separate DOS (-13 to -7.5 eV) due to the mixing of the Ge 4s and Ir 5d states; the broad valence band (-6 to 0 eV) due to the hybridization of Ge 4p, Ir 5d, and U 5f states in the close vicinity to the E_F . The Fermi level is mostly populated by U 5f spin up states [2.65 states eV⁻¹ f.u.⁻¹ of $N(E_F) = 5.15$ states eV⁻¹ f.u.⁻¹ (inset to Fig. 11). The number of 5f electrons estimated from the band-structure calculation is 2.92 which would indicate a configuration close to U 5f³ for U₃Ir₄Ge₁₃.

FIG. 11. (Color online) Calculated electronic density of states (DOS) within the LSDA + U (U = 2 eV) approach for the rhombohedral U₃Ir₄Ge₁₃ structure. The Fermi level is indicated by the dashed line.

-4 *E* (eV) 0

4

E(e)

-8

-20

-12

A similar number of 5f electrons (i.e., 2.89) [52] is calculated theoretically and confirmed by high-energy-resolution corelevel and valence-band photoelectron spectroscopic studies for UFeGa₅ – a compound with itinerant nature of 5f states and enlarged U-U contacts ($d_{U-U2} = 4.26$ Å) [53]. The electronic structure of UFeGa₅ is also characterized by a hybridization of Fe 6d and U 5f states in the close vicinity to E_F , similar as it is observed for U₃Ir₄Ge₁₃ (hybridization of Ir 5d and U 5f). All these findings are in line with the observed prevalent itinerant character of U 5f electrons in U₃Ir₄Ge₁₃.

The band-structure calculations result also in a ferromagnetic ground state for $U_3Ir_4Ge_{13}$ with a magnetic moment of 2.33 μ_B per formula unit, which is in fair agreement with experimentally observed value of 1.76 μ_B f.u.⁻¹. A possible explanation for this discrepancy could be the reduction of the ordered moment by sizable spin fluctuations not included in the framework of LSDA.

IV. CONCLUSIONS

Th₃Ir₄Ge₁₃ crystallizes with primitive cubic Tm₃Co₄Ge₁₃ type of structure, where the 24*k* Wyckoff position occupied by Ge2 is split. This leads to the appearance of bonding contacts (Ge1-Ge2₁) between Ge atoms centering icosahedra and these from the framework. U₃Ir₄Ge₁₃ shows the noncentrosymmetric rhombohedral structural arrangement observed

for HT-Y₃Pt₄Ge₁₃ type. Both structures are derivatives of the well known primitive cubic prototype Yb₃Rh₄Sn₁₃. Theoretical calculations within LDA approach clearly indicate the instability of the ideal structural arrangement observed in the Yb₃Rh₄Sn₁₃ prototype for the Th₃Ir₄Ge₁₃ compound. XANES performed at the U M_4 edge indicates an oxidation state of uranium close to +4 for uranium in U₃Ir₄Ge₁₃.

Sharp anomalies at ≈ 200 K are observed in the magnetic susceptibility, electrical resistivity, specific heat, thermopower, and thermal conductivity of Th₃Ir₄Ge₁₃. From the jump of the magnetic susceptibility $|\Delta\chi_0|$ a small reduction of the DOS by $\sim 0.4 \text{ eV}^{-1}$ f.u.⁻¹ was deduced. This value as well as the jump in the specific heat $\Delta c_p \approx 30 \text{ J mol}^{-1} \text{ K}^{-1}$ are reminiscent of the effects observed for typical CDW systems. However, the fact that the electrical resistivity of the warming and cooling runs at the transition temperatures for Th₃Ir₄Ge₁₃ do not coincide as well as a large drop of ${\approx}14\,\mu\mathrm{V}\,\mathrm{K}^{-1}$ in the thermopower would rather indicate a first-order structural phase transition. Finally, to shed light on the structural changes in Th₃Ir₄Ge₁₃, temperature dependent high-resolution x-ray diffraction experiments on high quality single crystals have to be performed. All our attempts to prepare single crystals suitable for such a study failed until now.

 $U_3Ir_4Ge_{13}$ is a ferromagnet with $T_C = 15$ K, effective magnetic moment μ_{eff} of 4.19 μ_{B} f.u.⁻¹ and coercive field ≈ 0.3 T at 1.8 K. The small value of magnetic entropy $S_{\rm mag} \approx 0.58 R \ln 2$, deduced from the specific heat at the ordering temperature, the absence of large effects at T_C in the thermopower and the thermal conductivity, as well as the strong contribution of U 5 f partial DOS at the Fermi Level in the electronic structure suggest a predominantly itinerant nature of the uranium 5f states. The decrease of the electrical resistivity of U₃Ir₄Ge₁₃ with increasing temperature as well as the reduced jump in specific heat at T_C and small magnetic entropy of the transition (also reported for some typical Ce- and Yb-containing Kondo lattices, e.g., CePd₂Ge₂, YbAuCu₄, etc.) [54] hint to a possible Kondo scenario. However, since the uranium 5 f-electrons contribution to the resistivity could not be separated, this statement requires an additional confirmation. Interestingly, the phonon contribution to the thermal conductivity of U₃Ir₄Ge₁₃ at 300 K is of the same order of magnitude as some well known thermoelectrics, nonetheless, the efficiency of $U_3Ir_4Ge_{13}$ as a thermoelectric material is negligible.

ACKNOWLEDGMENTS

The authors thank H. Borrmann and U. Burkhardt for help during x-ray diffraction and EDXS experiments and L. Akselrud for fruitful discussions.

- J. Remeika, G. Espinosa, A. Cooper, H. Barz, J. Rowell, D. McWhan, J. Vandenberg, D. Moncton, Z. Fisk, L. Woolf *et al.*, Solid State Commun. 34, 923 (1980).
- [2] P. Villars, Pearson's Handbook, Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1997).
- [3] K. Wang and C. Petrovic, Phys. Rev. B 86, 024522 (2012).
- [4] C. N. Kuo, H. F. Liu, C. S. Lue, L. M. Wang, C. C. Chen, and Y. K. Kuo, Phys. Rev. B 89, 094520 (2014).
- [5] L. E. Klintberg, S. K. Goh, P. L. Alireza, P. J. Saines, D. A. Tompsett, P. W. Logg, J. Yang, B. Chen, K. Yoshimura, and F. M. Grosche, Phys. Rev. Lett. **109**, 237008 (2012).

- [6] D. A. Tompsett, Phys. Rev. B 89, 075117 (2014).
- [7] S. K. Goh, D. A. Tompsett, P. J. Saines, H. C. Chang, T. Matsumoto, M. Imai, K. Yoshimura, and F. M. Grosche, Phys. Rev. Lett. 114, 097002 (2015).
- [8] B. Lloret, B. Chevalier, P. Gravereau, B. Darriet, and J. Etourneau, J. Phys. Colloques 49, C8-487 (1988).
- [9] G. Espinosa, A. Cooper, and H. Barz, Mater. Res. Bull. 17, 963 (1982).
- [10] F. Mirambet, B. Chevalier, L. Fournes, M. Besnus, P. Gravereau, and J. Etourneau, J. Magn. Magn. Mater. 118, 187 (1993).
- [11] R. Gumeniuk, L. Akselrud, K. O. Kvashnina, W. Schnelle, A. A. Tsirlin, C. Curfs, H. Rosner, M. Schöneich, U. Burkhardt, U. Schwarz *et al.*, Dalton Trans. **41**, 6299 (2012).
- [12] R. Gumeniuk, M. Schöneich, K. O. Kvashnina, L. Akselrud, A. A. Tsirlin, M. Nicklas, W. Schnelle, O. Janson, Q. Zheng, C. Curfs *et al.*, Dalton Trans. 44, 5638 (2015).
- [13] R. Gumeniuk, M. Nicklas, L. Akselrud, W. Schnelle, U. Schwarz, A. A. Tsirlin, A. Leithe-Jasper, and Y. Grin, Phys. Rev. B 87, 224502 (2013).
- [14] A. Leithe-Jasper, H. Borrmann, and W. Hönle, Max Plank Institute for Chemical Physics of Solids, Scientific Report (Dresden, 2003–2005), p. 25.
- [15] STOE Powder Software, WinXPow (version 2), Darmstadt, STOE and Cie GmbH, 2001.
- [16] L. Akselrud and Y. Grin, J. Appl. Crystallogr. 47, 803 (2014).
- [17] C. Gauthier, V. A. Solé, R. Signorato, J. Goulon, and E. Moguiline, J. Synchrotron Rad. 6, 164 (1999).
- [18] P. Glatzel, T.-C. Weng, K. Kvashnina, J. Swarbrick, M. Sikora, E. Gallo, N. Smolentsev, and R. A. Mori, J. Electron Spectrosc. Relat. Phenom. 188, 17 (2013).
- [19] K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999).
- [20] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- [21] L. Akselrud and V. Davydov, Visnyk Lviv. Univ. Ser. Khim. 39, 112 (2001).
- [22] J. Emsley, The Elements (Clarendon Press, Oxford, 1998).
- [23] K. O. Kvashnina, S. M. Butorin, P. Martin, and P. Glatzel, Phys. Rev. Lett. **111**, 253002 (2013).
- [24] C. Booth, Y. Jiang, D. Wang, J. Mitchell, P. Tobash, E. Bauer, M. Wall, P. Allen, D. Sokaras, D. Nordlund *et al.*, PNAS 109, 10205 (2012).
- [25] M. Continentino, Eur. Phys. J. B 13, 31 (2000).
- [26] Y. Nagano, N. Araoka, A. Mitsuda, H. Yayama, H. Wada, M. Ichihara, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn. 82, 064715 (2013).
- [27] N. Mott and H. Jones, *The Theory of the Properties of Metals and Alloys* (Dover, New York, 1958).
- [28] E. Gopal, *Specific Heat at Low Temperatures* (Plenum, New York, 1966).
- [29] Y. K. Kuo, K. M. Sivakumar, T. H. Su, and C. S. Lue, Phys. Rev. B 74, 045115 (2006).
- [30] F. Galli, S. Ramakrishnan, T. Taniguchi, G. J. Nieuwenhuys, J. A. Mydosh, S. Geupel, J. Lüdecke, and S. van Smaalen, Phys. Rev. Lett. 85, 158 (2000).

- [31] K. Kadowaki and S. Woods, Solid State Commun. 58, 507 (1986).
- [32] V. Tran and R. Troć, J. Phys. B: Condens. Matter 186–188, 744 (1993).
- [33] R. Troć, R. Andruszkiewicz, R. Pietri, and B. Andraka, J. Magn. Magn. Mater. 183, 132 (1998).
- [34] S. Noguchi, K. Okuda, T. Adachi, Y. Haga, E. Yamamoto, and Y. Ōnuki, J. Phys. Soc. Jpn. 66, 2572 (1997).
- [35] S. Ramakrishnan and J. Mydosh, J. Magn. Magn. Mater. 310, 207 (2007).
- [36] A. V. Andreev, M. Diviš, P. Javorský, K. Prokeš, V. Sechovský, J. Kuneš, and Y. Shiokawa, Phys. Rev. B 64, 144408 (2001).
- [37] A. Andreev, N. Mushnikov, F. Honda, V. Sechovský, P. Javorský, and T. Goto, J. Magn. Magn. Mater. 272–276, E337 (2004).
- [38] K. Prokeš, T. Wand, A. Andreev, M. Meissner, F. Honda, and V. Sechovský, J. Alloys Compd. 460, 47 (2008).
- [39] H. Hill, in *Plutonium and Other Actinides*, edited by W. Miner (Met. Soc. AIME, New York, 1970), p. 2.
- [40] C. S. Lue, Y. F. Tao, K. M. Sivakumar, and Y. K. Kuo, J. Phys.: Condens. Matter 19, 406230 (2007).
- [41] V. Zlatić, R. Monnier, J. K.Freericks, and K. W. Becker, Phys. Rev. B 76, 085122 (2007).
- [42] Y.-K. Kuo, C. S. Lue, F. H. Hsu, H. H. Li, and H. D. Yang, Phys. Rev. B 64, 125124 (2001).
- [43] R. Troć, Z. Bukowski, C. Sułkowski, H. Misiorek, J. A. Morkowski, A. Szajek, and G. Chełkowska, Phys. Rev. B 70, 184443 (2004).
- [44] C. Uher, Semicond. Semimet. 69, 139 (2001).
- [45] B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, Phys. Rev. B 56, 15081 (1997).
- [46] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee *et al.*, Science **320**, 634 (2008).
- [47] C. A. Cox, E. S. Toberer, A. A. Levchenko, S. R. Brown, G. J. Snyder, A. Navrotsky, and S. M. Kauzlarich, Chem. Mater. 21, 1354 (2009).
- [48] V. H. Tran, D. Kaczorowski, W. Miiller, and A. Jezierski, Phys. Rev. B 79, 054520 (2009).
- [49] E. Bauer, X.-Q. Chen, P. Rogl, G. Hilscher, H. Michor, E. Royanian, R. Podloucky, G. Giester, O. Sologub, and A. P. Goncalves, Phys. Rev. B 78, 064516 (2008).
- [50] R. Gumeniuk, W. Schnelle, H. Rosner, M. Nicklas, A. Leithe-Jasper, and Y. Grin, Phys. Rev. Lett. 100, 017002 (2008).
- [51] H. Rosner, J. Gegner, D. Regesch, W. Schnelle, R. Gumeniuk, A. Leithe-Jasper, H. Fujiwara, T. Haupricht, T. C. Koethe, H.-H. Hsieh *et al.*, Phys. Rev. B 80, 075114 (2009).
- [52] S.-i. Fujimori, T. Ohkochi, I. Kawasaki, A. Yasui, Y. Takeda, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga *et al.*, J. Phys. Soc. Jpn. **81**, 014703 (2012).
- [53] Y. Grin, P. Rogl, and K. Hiebl, J. Less Comm. Met. 121, 497 (1986).
- [54] M. Besnus, A. Braghta, N. Hamdaoui, and A. Meyer, J. Magn. Magn. Mater. **104–107**, 1385 (1992).