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Many-body localization provides a generic mechanism of ergodicity breaking in quantum systems. In contrast
to conventional ergodic systems, many-body-localized (MBL) systems are characterized by extensively many
local integrals of motion (LIOM), which underlie the absence of transport and thermalization in these systems.
Here we report a physically motivated construction of local integrals of motion in the MBL phase. We show that
any local operator (e.g., a local particle number or a spin-flip operator), evolved with the system’s Hamiltonian and
averaged over time, becomes a LIOM in the MBL phase. Such operators have a clear physical meaning, describing
the response of the MBL system to a local perturbation. In particular, when a local operator represents a density
of some globally conserved quantity, the corresponding LIOM describes how this conserved quantity propagates
through the MBL phase. Being uniquely defined and experimentally measurable, these LIOMs provide a natural
tool for characterizing the properties of the MBL phase, in both experiments and numerical simulations. We
demonstrate the latter by numerically constructing an extensive set of LIOMs in the MBL phase of a disordered
spin-chain model. We show that the resulting LIOMs are quasilocal and use their decay to extract the localization

length and establish the location of the transition between the MBL and ergodic phases.
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I. INTRODUCTION

A central postulate of statistical mechanics is that quantum
systems of many interacting particles, prepared in physical
initial states, reach local thermal equilibrium as a result of
Hamiltonian evolution. Such systems are called ergodic. The
dynamics of ergodic systems is constrained by only a handful
of extensive conserved quantities, with energy, momentum,
and particle number being familiar examples, and their
subsystems thermalize to Gibbs ensembles set by the values
of these conserved quantities. Microscopically, thermalization
is believed to follow from the eigenstate thermalization
hypothesis (ETH), which conjectures that individual many-
body eigenstates in ergodic systems locally appear thermal
[1-3]. Thus, eigenstates with the same values of the globally
conserved quantities are locally indistinguishable.

While the majority of many-body systems (e.g., a weakly
interacting Fermi gas) are empirically known to thermalize,
there is mounting evidence that a large class of disordered
systems avoids thermalization via a mechanism akin to
Anderson localization [4] in the Hilbert space [5-7]. In such
many-body-localized (MBL) systems, the laws of statistical
mechanics do not apply.

In contrast to ergodic systems, MBL systems are character-
ized by extensively many local conservation laws [8—10]. This
property underlies the breakdown of ETH: two eigenstates
with the same total energy and particle number generally have
different values of local integrals of motion and therefore
are locally distinguishable; thus, the subsystems cannot be
described by the same Gibbs ensemble. Further, an MBL
system retains memory of its initial state during quantum
evolution because the values of local integrals of motion cannot
change.

In addition to providing a fundamental example of a system
where statistical mechanics breaks down, the MBL phase can
be used for storage and manipulation of quantum information
by preparing superpositions of states with different values of
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local integrals of motion (LIOM). The dynamics in the MBL
phase is limited to slow dephasing between different parts
of the system [8—11], which can be suppressed by preparing
particular initial states [8]. Moreover, quantum information
can be recovered using spin-echo techniques [12]. It was also
recently argued that MBL can preserve symmetry breaking,
as well as topological and symmetry-protected topological
order, at nonzero temperature even when statistical mechanics
forbids it [13—18]; this raises an interesting possibility of
topological quantum computation in MBL systems.

The choice of LIOMs in the MBL phase is highly arbitrary.
For example, a linear combination or a product of two or
more LIOMs is also a LIOM. Which principle should be
used to construct LIOMs in MBL systems? Previously, LIOMs
have been viewed formally as quasilocal operators which label
eigenstates. In Refs. [8,10], it was argued that, in principle, for
a finite-size system in which all states are MBL, one can define
a minimal complete set of LIOMs, such that their eigenvalues
uniquely label eigenstates. However, there are exponentially
many ways to define a minimal complete set of LIOMs, and
therefore, its construction is practically challenging and is
currently lacking.

In this paper, we introduce an extensive set of measurable
LIOMs in systems which are MBL at all energy densities.
We show that any local operator O, time-evolved with the
Hamiltonian and averaged over time (which we denote by O),
becomes a local integral of motion in the MBL phase. LIOMs
constructed in this way describe the state of an MBL system
at long times, following a local perturbation by the operator
O. Thus, O is physically measurable. The LIOMs have a
particularly intuitive meaning for the cases when O represents
a conserved density, e.g., when O is a local particle number
or an energy density operator. The LIOM O determines how
far the corresponding conserved quantity, initially perturbed
locally, propagates through the MBL system. In contrast to
previous constructions [8,10], LIOMs introduced in this paper
are unique (for any local operator the corresponding LIOM is
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uniquely defined) and can be obtained numerically in various
models of many-body localization.

We also note that two recent works have perturbatively con-
structed LIOMs [19,20] of the kind considered in Refs. [8,10]:
Ref. [19] proves the existence of LIOMs near the diagonal
limit of a one-dimensional (1D) spin model, while Ref. [20]
follows the approximate perturbative arguments of Basko
et al. [6] near Anderson localized free fermions. In order
to explore the characteristics of LIOMs more generally,
such as the decomposition in terms of physical operators
and localization length, it is necessary to have a physically
motivated nonperturbative construction. This is the goal of our
work.

We demonstrate the power of our approach by explicitly
constructing extensive sets of LIOMs in the MBL phase of
a disordered spin model. We explore the properties of the
resulting LIOMs, including their decomposition in terms of
physical operators. We find that in the MBL phase, integrals
of motion (IOMs) are local and have exponentially decaying
tails, which we use to extract the localization length. We
also define an order parameter for the MBL phase using
the projection of the time-averaged conserved density on the
site about which the IOM is localized. In the MBL phase,
the order parameter is nonzero in the thermodynamic limit.
On the other hand, we show that in the delocalized phase the
order parameter approaches zero, the localization length di-
verges, and the IOMs are nonlocal in the thermodynamic limit.

II. MANY-BODY LOCALIZATION AND LOCAL
INTEGRALS OF MOTION

We start by reviewing the properties of the MBL phase,
following Refs. [8,10]. We consider systems in which all
eigenstates are MBL. It was conjectured [8] that the key
property of the MBL phase is that the system’s Hamiltonian
can be diagonalized by a sequence of quasilocal unitary
transformations. This is closely related to the small amount
of entanglement between remote degrees of freedom in MBL
eigenstates. This conjecture has several implications. First, all
MBL eigenstates, except for an exponentially small fraction,
have an area-law entanglement entropy, typical of ground
states in gapped systems; this is supported by numerical
simulations of spin chains [8,14]. A second implication, which
is of interest to us, is the existence of a complete set of LIOMs.
Third, as we briefly describe at the end of the section, this
conjecture allows one to understand dynamical properties of
the MBL phase. We also note that numerical, perturbative,
and rigorous studies support the conjecture formulated above
[8,19,20].

To be specific, consider a 1D XXZ spin chain with
nearest-neighbor interactions and random magnetic field in
the z direction, described by the Hamiltonian

H=J; Z (of 0y +00ly,) + U Zaizaia-l + Zhioiz’
; ;

ey
where h; on each site is randomly distributed in an interval
[—W; W]. Numerical studies [21-25] indicate that this model
exhibits an MBL phase at sufficiently strong disorder. As
disorder strength is decreased, the system undergoes a phase
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transition into an ergodic phase, in which the eigenstate
thermalization hypothesis holds [21].

Let us consider a product state basis, |s152 - - - sy) = [51) ®
[$2) ® -+ ® |sn), si =71,, which is an eigenbasis for all
o} operators (N is the number of spins). Then, there exists
a quasilocal unitary transformation U, which relates the
eigenstates of Hamiltonian (1) in the MBL phase to product
states [8] (see also Ref. [19], which considers a different 1D
spin model). In terms of this unitary transformation, LIOMs
can be defined as follows:

P =UoU'. 2)

Here 7/ can be viewed as a pseudospin-1/2 operator, which is
diagonal in the basis of eigenstates of H, with an eigenvalue
given by s;; thus, it is an integral of motion. Moreover, since
it is obtained by acting with a quasilocal unitary on a local
operator o, it is quasilocal; that is, its action on remote
spins is exponentially close to unity. Thus, the operator 7}
can be approximated by a sum of o} operators and their
products, acting on spins within distance k from site i, with an
exponential accuracy in distance |i — k.

Operators 7/ are independent and commuting; they form
a complete set of LIOMs in the sense that specifying their
eigenvalues uniquely specifies an eigenstate. In order to obtain
the full set of operators, which can be used to generate any state
in the Hilbert space, define “dressed” x, y pseudospin operators
as follows:

 =UoU, ' =UsUt 3)

The 7/ operators inherit commutation relations of the o
operators, that is, [t® ,ff 1= 2i8;;**t}. Operators 1, o =
0,x,y,z, and their various products form a basis in operator
space, and any operator can be expanded in such a basis.

The original Hamiltonian (1) has a particularly simple
representation in terms of T operators. Since it commutes with
every 7/, it can involve only 7 operators [8—10]:

H= ZHr +ZJ,, T+ Tt T+ ()

ijk

The couplings between remote clusters of pseudospins decay
exponentially with the separation between them:

igl/&1), &)

where we put lattice spacing to 1 and &; is a characteristic
length scale (note that this length scale may be different
from the localization length defined in terms of the range
of LIOMs operators, which will be introduced below). The
representation of the Hamiltonian (4) and (5) implies that the
dynamics in the MBL phase is limited to an exponentially
slow dephasing between remote pseudospins. It was argued
[8-10] (see also Ref. [11] for an alternative, strong-disorder
renormalization-group approach) that this dephasing underlies
the generation, logarithmic in time, of entanglement entropy
[22,23] for a broad class of initial states. This reflects the
fact that information propagation in the MBL phase is very
different from conventional ergodic many-body systems: MBL
systems satisfy [26] the zero-velocity Lieb-Robinson bound
[27], as opposed to finite-velocity entanglement spreading in
ergodic systems [28].

Ji, i, o exp(—max|iy, —
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III. CONSTRUCTING LOCAL INTEGRALS OF MOTION

In this section, we describe the construction of LIOMs. One
straightforward approach would be to attempt to construct the
quasilocal unitary U that diagonalizes the MBL Hamiltonian
and then obtain the complete set of 7 operators using (2).
While, in principle, possible, practically finding a maximally
local representation for the unitary diagonalizing the Hamilto-
nian turns out to be a challenging task, especially at moderate
disorder [29].

Therefore, we take an alternative approach, inspired by
the expectation that a local perturbation affects the MBL
phase only locally. The key idea is to start with a local
physical operator O (that is, acting on a finite number of
local degrees of freedom, e.g., one spin) and evolve it with the
MBL Hamiltonian: O(t) = e/’ Oe~'#" | Although transport of
energy and spin is absent, the MBL Hamiltonian does generate
long-range entanglement (over an exponentially long time)
[8-11,22]; thus, as time ¢ grows, the operator O(f) becomes
more and more nonlocal. However, as we now show, long-time
averaging turns it into a local operator because the nonlocal
terms are oscillating in time. The time-averaged operator is
given by

_ 1 7

O = lim — / dt O(1). (6)
T—oo T Jy

The operator O is clearly an IOM because it is diagonal in the

energy eigenbasis:

2N
O =) o, (7)
1

where I runs over all energy eigenstates. We now show that it
is also local by expressing O and O in the basis of * operators.

Being local, operator O can be expressed in terms of a finite
number of ¢ operators and their products. Using the relation

of =U'tU,

let us expand O in terms of 7} operators:
o o a
0= Ajarr - 1, (8)
{i.}

where i= (i1,is,...,in), @ = (a1,02,...,ay), and «; =
0,x,y,z (tio is an identity operator). Coefficients A satisfy the
normalization condition Z{i,a} |A{i.a}|2 = TrO?/2" (here O
should be viewed as an operator in the 2V -dimensional Hilbert
space). The quasilocality of U guarantees that the coefficients
A decay as follows:

Ay, o exp[—max(|iq —igl.lio — ial)/82], ©))

where ip are drawn from the support of O and &, is a
characteristic length scale.

The time evolution affects different terms in the expansion
(8) differently: the diagonal terms which are products of one
or more 77 (o; = 0,z for all i, k =1, ...,N) commute with
the Hamiltonian, and therefore, they are invariant under time
evolution. The off-diagonal terms which involve at least one t*
or 77 operator become oscillatory: in general, the frequency of
these oscillations depends on the state of other pseudospins.
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The oscillatory terms average to zero at long times, while
products of t°’s retain their values. Thus, time averaging turns
the local operator O into a local integral of motion.

The LIOMs constructed in this way are quite different from
the 77 IOMs introduced in the previous section as they do not
satisfy a Pauli algebra. For example, their eigenvalues are not
+1, and O does not square to the identity. In general, the 2"
eigenvalues of O are nondegenerate; thus, they uniquely label
the eigenstates. However, in practice, many eigenvalues are
exponentially close to each other (in system size N), and we
will consider an extensive number of such LIOMs.

The LIOMs (7), however, have several advantages. Most
importantly, as discussed in the next section, they have a clear
physical interpretation and are measurable. Further, LIOMs
constructed in this way are uniquely defined and do not involve
an arbitrary choice in labeling eigenstates (as in previously
suggested schemes for constructing LIOMs [8,10]). Finally,
LIOM s of this kind can be constructed numerically and provide
a useful tool for characterizing the properties of the MBL
phase.

IV. PHYSICAL INTERPRETATION

We now turn to the physical interpretation and measure-
ment of the LIOMs O. We will argue below that when O
represents the density of some extensive conserved quantity,
O describes the propagation of that conserved quantity through
the infinite-temperature ensemble. This interpretation suggests
a systematic way to measure the LIOMs. Further, we will use
its disorder-averaged value to define an order parameter for
the MBL phase as well as the localization length. Below we
use square brackets to denote disorder averaging.

The model (1) has two global conserved quantities: energy
and z projection of the total spin,

N

—_ Z

S, = E o;.
i=1

Let us first take O = 0. Consider the infinite-temperature
ensemble with the following density matrix:
p(0) =27V (1+07) ® 1, (10)

where 1;/ is a unity operator acting on the bare spins j # i.
This density matrix describes a state with magnetization 1 at
site i and O elsewhere. All other correlation functions are zero.
The up spin on site i spreads into a region of a finite size

with time. Upon time averaging, the density matrix takes the
following form:

p=2""(1+357), (1)
1 [e¢}
&' = lim ~ / oi(t)dr. (12)
T—oo T 0

Note that the operator &° acts nontrivially on all spins, not
just on spin i. Measuring different correlation functions in p
indicates how far the up spin has propagated from site i. In
particular, the time-averaged magnetization M;; on site j is

085425-3



CHANDRAN, KIM, VIDAL, AND ABANIN

given by

Te(5.07)

% = 27N Tr(5/07). (13)

ij
Here &7 is considered to be an operator acting in the many-
body Hilbert space.

To better understand the physical meaning of LIOMs and
quantities M;;, it is instructive to consider the single-particle
localized phase. To be specific, we consider a fermionic 1D
tight-binding model with on-site disorder. Such a model is
equivalent to the model (1) in which J, = 0 (the equivalence is
established by the Jordan-Wigner transformation). We denote
the creation (annihilation) operator on site i by aj (a;) and the
creation (annihilation) operator of localized eigenstates by cj

(c;); operators cj, ¢; correspond to a localized orbital centered
near site i. The two sets of operators are related by

a; = E Aijcj»
J

where coefficients A;; give amplitudes of the localized wave
functions, which decay exponentially with distance |i — j|.
We choose O as the density operator on site i, O = n; = aj a;.
Then the corresponding LIOM is given by

= 2
n; = Z|AU| C;Cj.
J

This is a quadratic operator, which characterizes how a particle
initially created at site i spreads through the system. In
particular, the probability to find the particle at site k at long
times, given by

Puo= Y |AiPIAuI,
J

decays exponentially with distance |i — k|. Coefficient P;;
gives the return probability (a generalized participation ratio),
which remains finite in the localized phase, and can be used
as a diagnostic of localization.

Quantities M;; introduced above can be viewed as the
many-body generalizations of P;;. In particular, M;; gives
the long-time spin density on the site where spin polarization
was initially created. The disorder average of this quantity
can be used as an order parameter of the MBL phase. In
the MBL phase, it is expected to stay greater than zero as
the system size N is taken to infinity. On the other hand, in the
delocalized phase, which satisfies ETH, the spin polarization
spreads uniformly over the whole system at long times, and
therefore, [M;;] ~ 1/N as N — oo.

Measuring higher point correlation functions in p also
provides a systematic way to construct 5. To see this, let us
expand &/ in the basis of physical spin operators o and their
products:

5i =) Bjao; w0, (14)
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where o = 0,x,y,z. The coefficients B are related to the
correlation functions of p [see Eq. (11)]:

B[_]Ol =0~ NTI‘( 3 zz O_jaNNO.Z) (15)

=Tr(o70 - a7¥p). (16)
Thus, By, = M;; and so on. Due to the quasilocality of the
operator G;, the most important coefficients in the expansion
above [as measured by their contribution to the operator
norm Tr(G676;)] come from the terms involving spins in the
vicinity of site i. Thus, by measuring correlation functions
involving more and more spins farther and farther away from
site i, one can systematically approximate &, to any desired
accuracy.

It is useful to summarize the properties satisfied by M;;.

(i) As total S, is conserved, ) My =1

(i) M;; is symmetric: M;; = M
2*NTr(6faf) = Z*NTr(éféf).

(iii) From Eq (14), it follows that the operator norm
Tr(6/6]) = M;;2N.

@iv) From Eq. (14), it follows that Tr(6°67) =
A i) {J - Using the result above, we obtain the inequal-
ity ), M}, < Mj;.

The LIOMS also provide a natural physical definition of the
localization length. The time-averaged and disorder-averaged
magnetization profile is expected to decay exponentially in the
MBL phase:

because M;; =

[M;;] oc exp(—li — jl/&), 17)

and therefore, it can be used to extract the localization length
&, which diverges as the localization-delocalization phase
transition is approached. In the next section we numerically
confirm this behavior for the random-field X X Z model.
Although we mostly focused on the case when O represents
the local S, density, we emphasize that our approach applies
to any local operator O. In particular, it is possible to con-
struct LIOMs describing the propagation of energy when the
system’s Hamiltonian is given by the sum of local operators:

H=Y (18)

where h; is a local many-body operator of range r, acting on
degrees of freedom situated at i,i £ 1, ...,i £ r [for the case
of XXZ model (1), r = 1].

We construct a set of N LIOMs h;, i=1,...,N by
choosing O = h;. Since the Hamiltonian commutes with itself,
H(t) = H,itcanbe rewritten as a sum of the LIOMs ;, which
are mutually commuting:

H = Zﬁi, [hi.hjl = [H,hi] = 0. 19)

In the MBL phase, each term is expected to be quasilocal
(exponentially decaying tails). The localization length defined
using operators /; is not the same as the localization length
obtained from the operators &;; numerically, we find that the
former generally exceeds the latter. We also note that the
representation (19) can be used to prove the zero-velocity
Lieb-Robinson bound for information propagation in the MBL
phase [26].
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V. CONSTRUCTING LOCAL INTEGRALS OF MOTION
NUMERICALLY

In this section, we explicitly construct an extensive set
of LIOMs for the disordered XX Z model (1) in the MBL
phase. We focus on O = &7 and show its quasilocality in the
MBL phase. By studying the behavior of [M;;] and localization
length & extracted from [log(M;;)], we determine the location
of the transition and examine how locality of IOMs breaks
down when the transition is approached from the MBL side.

We use exact diagonalization to obtain all the eigenstates
|T) in the spectrum and then construct O by projecting it to the
energy eigenbasis and keeping only the diagonal part:

2N

O =) (NOINI)II.

I=1

We choose the parameters in the Hamiltonian (1)
to be J,=J,=1 and present data at system sizes
N =8,10,12,14,16 with periodic and open boundary
conditions. The number of disorder realizations at each
system size varies from 100 to 10 000.

As expected, in the MBL phase, we find that the LIOMs
c‘rzi are quasilocal, while in the delocalized phase, they are
nonlocal. Figure 1(a) illustrates the disorder-averaged mean
of the logarithm of M;; vs [i — j| for different disorder
strengths W = 2,3,3.5,5,7. Note that log(M;;) is the correct
self-averaging quantity. A number of features are worth noting.
First, in the MBL phase (W = 3.5,5,7), the magnetization
profile is localized near site i: [log(M;;)] is of the order 1,
while [log(M;;)] decreases over several orders of magnitude
as a function of distance |i — j|, indicating that the typical
value of M;; falls off exponentially with |i — j|. Further, there
is very little flow with system size. As W decreases, the decay
of [log(M;;)] decreases. In the delocalized phase at W = 2,
M;; is almost independent of |i — j| at the largest system size
N = 16. Further, there is a substantial flow with system size:
the data are consistent with [log(M;;] approaching the value
—log(N) independent of |i — j| at large N, corresponding to
the uniform spreading of the spin polarization throughout the
system in the ergodic phase. We also note that the systematic

llog(0;)]

-12

oH
N
IS
o
®

li—dl
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higher value of M;; at |i — j| = N/2 is due to periodic
boundary conditions.

To demonstrate the quasilocality of the entire operator &;°
in the MBL phase, let us compute the partial norm about site
i as a function of a range r. Denote the contiguous sites from
i —r toi+r by region A and the remaining sites by A. The
number of sites in each region is, respectively, N4 and Np:
Nao+ Np = N, Ny = 2r + 1. The partial norm is defined as

1 A=A
N@) = N, Tr(c"6"), (20)
where
~A __ 1 _=2 2
o = 2TBTrAGi ( 1)

In other words, N () is the operator two-norm of the truncated
LIOM with support only in region A. If the difference
between the total norm and the partial norm approaches zero
exponentially in r, then the operator is quasilocal.

In Fig. 1(b), we illustrate the disorder-averaged value of
log[8N ()], the logarithm of the difference between the total
norm and the partial norm vs r for the LIOM 65. To maximize
the range accessible at finite size, we use open boundary
conditions and restrict our attention to the LIOMs localized
at the ends, i = 1,N. In the MBL phase (W = 3.5,5,7), the
partial norm of the IOM &/ is exponentially localized near
site i with very little flow with system size. The six orders of
magnitude decrease in the typical values of SN (r) at W =7
is particularly striking. Thus, 57 is a LIOM in the MBL phase.
In the delocalized phase, on the other hand, the partial norm
SN (r) at large r (r = 8) increases with system size. Further,
SN (r) approaches a constant nearly independent of r as N is
increased. Thus, 5 is a nonlocal IOM in the delocalized phase.

We argued in the previous section that the disorder-averaged
residual magnetization on site, [M;;], acts as an order parame-
ter for MBL. In Fig. 2 [M;;] is plotted vs W for different system
sizes N, as well as the value obtained by 1/N extrapolation
to the thermodynamic limit. In the MBL phase (W > 4), the
extrapolated value of [M;;] is finite in the thermodynamic
limit. Since [M;;] is nearly independent of N in the MBL
phase, the extrapolated value [M;;](co) is insensitive to the
fitting function used. We find that [M;;](c0) becomes zero,

[log(oN(r))]

FIG. 1. (Color online) (a) The disorder-averaged log(M;;) vs |i — j| for increasing disorder strengths W = 2,3,3.5,5,7 from top to bottom
for LIOMs 67,i = 1, ...,N with periodic boundary conditions. (b) The disorder-averaged logarithm of the partial norm N (r) [Eq. (20)] vs the
range r of LIOMs &7 for i = 1, N with open boundary conditions. From top to bottom, W = 2,3,3.5,5,7.
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FIG. 2. (Color online) [M;;] vs disorder strength W at different
system sizes. This quantity can be viewed as an order parameter
for the MBL phase. The red dashed line shows the linear in 1/N
extrapolation to the thermodynamic limit.

indicating a transition into the delocalized phase at W, =~ 2.
This value is lower than the previous estimates (e.g., Ref. [21]
finds that the transition is located at W, ~ 3). We believe that
this discrepancy is due to the linear extrapolation we used,
which does not correctly capture the finite-size scaling in the
vicinity of the critical point.

Finally, we extracted the localization length & from the
spatial decay of magnetization, [log(M;;)] o< —|i — j|/&.Due
to the finite-size effects, the decay length scale depends
on the system size, and we obtain the localization length
in the thermodynamic limit by linearly extrapolating 1/& for
the three largest system sizes (N = 12,14,16) to N — oo.
The resulting behavior of £(W) is illustrated in Fig. 3. At a
critical W, & 3 the extrapolated localization length diverges,
indicating the transition into a delocalized phase. This critical
value is consistent with previous numerical studies [21].

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we introduced an extensive set of local
integrals of motion in the many-body-localized phase. These

14 ‘
*\ —e N=8
12r \ —e N=10|]
10 —e N=12|]

\ —e N=14
8 ‘\ e N=16[]
i 6L \ - o N-oo ||
\
41 \ i
l\
2* .\‘ - - 1
= i e i
0 | | | | |
3 4 5 6 7

w

FIG. 3. (Color online) The length scale & of decay of M,; «
exp(—|i — j|/&) for different system sizes. The localization length
in the thermodynamic limit (red dashed curve), obtained by a linear
extrapolation of 1/& for the three largest system sizes to N — oo.
The extrapolated localization length diverges at a critical W, ~ 3,
indicating a transition into the delocalized phase.
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LIOMs, obtained by time evolving and averaging local
operators, describe the response of an MBL system to local
perturbations. Our approach allowed us to explicitly construct
LIOMs in a random-field X X Z spin chain, which exhibits the
MBL phase, and to explore their properties. We note that the
existence of LIOMs in the MBL phase was conjectured previ-
ously [8,10], but no method for finding them was available.

The set of LIOMs that we found differs from those
considered in previous works in several ways. First, they
are uniquely defined, with every local operator generating
one integral of motion. This should be contrasted with the
approach of Refs. [8,10], where LIOMs were (nonuniquely)
constructed in terms of projectors onto sets of eigenstates.
More importantly, the LIOMs defined above have a clear
physical meaning and are experimentally measurable. For
cases when the local operator represents a local density of
some conserved quantity, the corresponding LIOM describes
the propagation of that conserved quantity through the system.
The quasilocality of LIOMs reflects the absence of transport
in the MBL phase. Thus, the properties of the LIOMs provide
a natural tool for characterizing the MBL phase, both in
numerical simulations and in experiments. In particular, such
IOMs provide a natural definition of localization length in
the MBL phase, and the breakdown of their locality signals a
transition into the delocalized phase.

Experimentally, systems of cold atoms in optical lattices,
with their tunable interactions and disorder, appear to be
promising candidates for studying many-body localization
[30-32]. In particular, no cooling to low temperatures, which
is a principal challenge for realizing correlated ground states in
these systems, is necessary for seeing MBL. In order to study
LIOMs experimentally, in a disordered spin chain, one would
prepare a spin up on one of the sites and follow the system’s
evolution. The average residual magnetization at long times
[M;;] provides a signature of many-body localization. More-
over, by measuring the magnetization on other sites (M;;), as
well as correlators of different operators, it would be possible
to completely reconstruct the corresponding LIOM and extract
its characteristics. We note that Refs. [12,33] also proposed
experiments for probing slow dephasing, which underlies the
logarithmic growth of entanglement in the MBL phase.

Although in this paper we used exact diagonalization to
construct LIOMs, the LIOMs defined above can be also
obtained using other methods, including matrix-product op-
erator techniques. We also note that there are alternative ways
of constructing LIOMs in the MBL phase, which, however,
appear to be more challenging to implement. One approach,
which will be reported elsewhere [29], is to construct the
quasilocal unitary U which diagonalizes the Hamiltonian and
then obtain 7/ operators via (2).

Finally, we note that our approach is not limited to con-
served quantities: a LIOM can be obtained by time averaging
any local operator, e.g., 0/ 07", ;. Therefore, our approach can be
extended to study many-body localization in systems without
global conservation laws (the energy conservation can be
broken in periodically driven systems). We expect that in such
a system in the MBL phase there will also be an extensive
set of emergent local integrals of motion. We leave a detailed
study of this issue, as well as the existence and structure of
LIOMs in MBL systems with a mobility edge, to future work.
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