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Electroluminescence and multiphoton effects in a resonator driven by a tunnel junction
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We study a transmission line resonator which is driven by electrons tunneling through a voltage-biased
tunnel junction. Using the Born-Markovian quantum master equation in the polaron basis we investigate the
nonequilibrium photon state and emission spectrum of the resonator as well as properties of the transport current
across the tunnel junction and its noise spectrum. The electroluminescence is optimized, with maximum peak
height and narrow linewidth, when the back-action of the tunnel junction on the resonator and the damping of
the resonator are similar in strength. For strong coupling between the resonator and tunnel junction, multiphoton
effects create signatures in the transport current and current noise spectrum.
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I. INTRODUCTION

Circuit quantum electrondynamics (cQED) of on-chip
solid-state systems coupled to a microwave resonator has at-
tracted much attention. The investigations were stimulated by
the possibility of strong coupling between a superconducting
qubit and a transmission line resonator [1–3].

This allowed demonstrating phenomena known from quan-
tum optics in solid-state systems with unprecedented quality.
Some examples are vacuum Rabi splitting [2,3], advanced
applications of quantum state engineering [4–6], as well as
single-qubit lasing and cooling [7–9].

The development of cQED is not restricted to supercon-
ducting systems but has also been extended to solid-state
devices composed of gate-defined semiconductor quantum
dots or multidot systems coupled to electromagnetic resonators
[10–18]. Of particular interest is the interplay of electron
transport through the dots and the excitation of photons in
the resonator. Single-electron tunneling through a double-dot
setup can produce a population inversion and induce a lasing
state in the resonator, accompanied by pronounced features
such as super- or sub-Poissonian noise of the transport current
[13–15]. For a simpler system, a resonator driven by electrons
tunneling through a single quantum dot, the nonequilibrium
photon population has also been investigated [16,17].

Continuing to even more basic systems, the question
arises: What is the nonequilibrium photon state created in
the resonator by electrons tunneling across a single junction
without intermediate quantum dots? Recently, such systems
have been investigated experimentally, with the observation
that the resonator influences the finite-frequency shot noise of
the transport current through the junction similar to a thermal
electromagnetic environment [19]. A comprehensive study
of nonequilibrium effects in the resonator which is strongly
coupled to a biased tunnel junction has not yet been performed,
although the setup may find various applications. For instance,
the system has been used as an effective charge detector for
single-shot read-out of quantum-dot-based qubits [20–23], and
as a displacement detector which can resolve the momentum
and position of nanomechanical resonators with high precision
[24–29]. Furthermore, it has been proposed that a tunnel

junction can be used to generate squeezed light and microwave
photon pairs [30,31].

In the present work we study the nonequilibrium photon
state in a transmission line resonator which is strongly coupled
to the electrons tunneling through a tunnel junction (TJ). We
focus on the electroluminescence of the excited photons in the
driven resonator, as well as the transport current through the
tunnel junction and its noise spectrum.

In Sec. II, we introduce the model of the TJ-resonator
circuit and present the quantum master equation describing the
dynamics of the coupled system. We investigate the system in
Sec. III for moderately strong coupling, where single-photon
processes dominate the dynamics. In this limit we find analytic
results. We then study numerically in Sec. IV multiphoton
effects which get visible in what is called the ultrastrong
coupling limit. We conclude with a summary.

II. METHODOLOGY

A. The system

We consider a superconducting transmission line resonator
strongly coupled to a tunnel junction in a setup as sketched in
Fig. 1. The corresponding Hamiltonian is given by (� = 1),

Htot =
∑
αk

εαkc
†
αkcαk +

∑
kk′

(tkk′c
†
LkcRk′ + H.c.)

+ωra
†a + g

∑
k

(c†RkcRk − c
†
LkcLk)(a + a†). (1)

It describes the tunnel junction between the left and right (α =
L,R) reservoirs with single-particle energies εαk and tunneling
amplitudes tkk′ between the two reservoirs.

The resonator is modeled by a harmonic oscillator with
frequency ωr . The coupling of the two subsystems with
strength g is assumed to be induced by the electric field of
the resonator across the tunnel junction, as illustrated in Fig. 1,
which shifts the chemical potentials of the two reservoirs. Here
we assume shifts of equal magnitude for both sides, but the
generalization is straightforward.

We proceed using the polaron transformation, H̃ =
UHU † with U = exp[ g

ωr

∑
k(c†RkcRk − c

†
LkcLk)(a† − a)]. It
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FIG. 1. (Color online) Schematic view of a tunnel junction-
resonator circuit. The junction is placed at a maximum of the electric
field of the transmission line resonator in order to maximize the dipole
interaction.

transforms the Hamiltonian (1) to

H̃tot =
∑
αk

εαkc
†
αkcαk + ωra

†a

+
∑
kk′

(tkk′c
†
LkcRk′e−λ(a†−a) + H.c.). (2)

Here we neglected a trivial energy shift in the electrodes and
introduced the dimensionless coupling strength λ ≡ 2g/ωr .
The coupling of the transmission-line resonator to its reservoir
is also slightly affected by this transformation, and we
discuss this effect in the appendix. In the interaction picture
with respect to the electronic reservoirs HB = ∑

αk εαkc
†
αkcαk ,

we recast the Hamiltonian (2) as H̃tot(t) = Hr + H ′(t) with
Hr = ωra

†a and coupling

H ′(t) = F †(t)Q + Q†F (t). (3)

The operators F †(t) = ∑
kk′ tkk′c

†
LkcRk′ei�kk′ t with �kk′ =

εLk − εRk′ and Q = exp[−λ(a† − a)] refer to the tunnel
junction and resonator, respectively. For later use we introduce
the correlation functions of the bath accounting for forward
(L to R) and backward tunneling, C(+)(t) ≡ 〈F †(t)F (0)〉B and
C(−)(t) ≡ 〈F (t)F †(0)〉B, respectively. Here 〈...〉B stands for
the statistical average over both electron reservoirs. They are
assumed to be in thermal equilibrium, which implies that the
correlators reduce to

C(±)(t) =
∑
kk′

e±i�kk′ t |tkk′ |2f ±
Lkf

∓
Rk′ . (4)

Here we introduced the Fermi-Dirac function of the α

lead f +
αk ≡ fαk = [eβ(εαk−μα) + 1]−1 with β = 1/(kBT ) and

f −
αk = 1 − fαk . We focus on the limit of a tunnel junction

with tunneling probabilities of each channel much smaller
than unity, and we assume momentum-independent tunneling
amplitudes, tkk′ = t . Combined with the densities of states να

of the α reservoir they determine the tunneling resistance R and
dimensionless tunneling strength η = 1/(2e2R) = π |t |2νLνR .
We assume η � 1 to be small. The bath correlators in Fourier
space, C̃(±)(ω) = ∫ ∞

−∞ dt eiωtC(±)(t), thus become

C̃(±)(ω) = 2η(ω ± eV)

1 − e−β(ω±eV)
. (5)

They account for forward and backward tunneling processes
with energy absorption (ω > 0) and emission (ω < 0). Here

eV = μL − μR is the applied bias voltage across the tunnel
junction.

B. Quantum master equation

Starting from the total density operator ρtot(t) of the
combined TJ-resonator system one obtains the reduced density
matrix of the resonator by tracing out the bath degrees of
freedom of the two electronic reservoirs, ρ(t) = trB[ρtot(t)].
Treating H ′(t) as perturbation and expanding up to second
order leads to the Born-Markovian master equation,

ρ̇(t) = −i[Hr,ρ(t)] + Lκρ(t) + LBρ(t) ≡ Lρ(t). (6)

The first term describes the coherent evolution, while the
second term is the standard decay term of the resonator with
decay rate κ , and the third accounts for the effect of the tunnel
junction. They are given by

Lκρ = κ(nth + 1)
[
aρa† − 1

2 (a†aρ + ρa†a)
]

+ κnth
[
a†ρa − 1

2 (aa†ρ + ρaa†)
]
, (7a)

LBρ = 1
2 (Q̃−ρQ† + QρQ̃

†
− − Q†Q̃−ρ − ρQ̃

†
−Q

+ Q̃
†
+ρQ + Q†ρQ̃+ − QQ̃

†
+ρ − ρQ̃+Q†). (7b)

Here nth = [exp(βωr ) − 1]−1 is the thermal photon number in
the resonator, and we introduced the operators,

Q̃± =
∫ ∞

−∞
dt C(±)(t)e±iHr tQe∓iHr t .

The further calculations are done in the basis of Fock states,
Hr |n〉 = nωr |n〉, of the photons in the resonator, for which
the operator entering the coupling Eq. (3) is expressed as
Q = ∑

nm Qmn|m〉〈n|, with Qmn = 〈m|e−λ(a†−a)|n〉. Corre-
spondingly, the elements of the operator Q̃± are calculated via
〈m|Q̃±|n〉 = C̃(±)(±ωmn)Qmn, with ωmn ≡ (m − n)ωr and
C̃(±)(±ωmn) given by Eq. (5).

To proceed, we truncate the Hilbert space of the resonator
to a finite number N of photon number states. The numerical
evaluation is performed by recasting Eq. (6) in vector form
[32], 	ρ = G 	ρ. The reduced N × N density matrix ρ is
arranged as an N2-dimensional vector 	ρ, and G is a N2 × N2

superoperator acting on the Liouvillian space of the system.
Based on the master equation in the stationary limit, the

emission spectrum of the resonator,

Sr(ω) ≡ lim
t→∞

∫ ∞

−∞
dτ 〈a†(t)a(t + τ )〉eiωτ , (8)

as well as the second-order correlation function g(2)(τ ) =
limt→∞〈a†(t)a†(t + τ )a(t + τ )a(t)〉/〈a†(t)a(t)〉2 can be cal-
culated via the quantum regression theorem [33]. Starting from
I (t) = −e d〈nR(t)〉/dt with nR = ∑

k c
†
RkcRk we obtain the

transport current [34] I (t) = 〈Î (t)〉 = Tr[Î ρ(t)] with current
operators,

Î ρ(t) = e

2
[Q†ρ(t)Q̃+ − Q̃−ρ(t)Q† + H.c.]. (9)
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From this we calculate the average current I (t) and the current
noise spectrum,

SI (ω) =
∫ ∞

−∞
dt 〈{δÎ (t),δÎ (0)}〉eiωt , (10)

with δÎ (t) = Î (t) − I . Here we consider the symmetrized
correlation function since it is real and corresponds most
directly to what is measured by a classical detector [35].
Also the noise spectrum can be calculated using the quantum
regression theorem [15].

In the present work we concentrate on the sequential-
tunneling regime of single-electron processes, valid in the
limit η � 1. We assume that the resonator has a high Q factor.
Specifically we will present results for Q = 2 × 104, corre-
sponding to a decay rate κ = 5 × 10−5ωr . It is much smaller
than both the tunneling rate and coupling strength, κ/ωr �
η,λ. Under these conditions the Born-Markov approximation
is valid for stationary quantities for nonzero temperatures at
all voltages, which allows us to study stationary quantities
like the current for all voltages, eV �= 0. For the calculation of
dynamic quantities, like the spectral functions of the current
and the photon emission, the Born-Markov approximation is
sufficient as long as the frequencies satisfy ω � eV. Since we
will concentrate on the regime where a substantial number of
photons are created, we will operate in the limit of moderately
large voltages and the Born-Markov approximation is well
justified.

III. MODERATE COUPLING STRENGTH

For weak to moderate coupling strength, λ � 1 (but still
κ/ωr � λ), we proceed in an expansion up to second or-
der, i.e., Q = e−λ(a†−a) ≈ 1 − λ(a† − a) + 1

2λ2(a† − a)2. We
assume low temperatures, where the electrons tunnel only
from the left to the right lead without the reverse process
[i.e., C̃(−)(ω) = 0], and the number of thermal photons in the
resonator vanishes, nth = 0. In this case the master equation
for the oscillator reduces to

ρ̇ = −i[Hr,ρ(t)] + (κ + �+)
[
aρa† − 1

2 (a†aρ + ρa†a)
]

+�−
[
a†ρa − 1

2 (aa†ρ + ρaa†)
]
, (11)

with rates �± = λ2C̃(+)(±ωr ). In the considered limit we could
make use of the rotating wave approximation. The resulting
master equation (11) accounts for single-photon processes, i.e.,
processes where electrons tunneling through the junction are
associated with the emission or absorption of a single photon in
the resonator with rates �− and �+, respectively. Interestingly,
the second-order term of the expansion of Q does not enter the
master equation, however, it does modify the average current
to be studied later.

From Eq. (11) we see that the resonator is subject to an
effective decay rate [36],

κeff = �+ − �− + κ ≈ 4ηλ2ωr + κ , (12)

and the average photon number is

n̄ = �−
�+ − �− + κ

≈ ηλ2(eV − ωr )

2ηλ2ωr + κ/2
�(eV − ωr ) . (13)

Here, � is the step function, n̄ = 〈a†a〉 = ∑
n nPn with Pn =

ρnn. The corresponding photon distribution, Pn ≈ 〈n〉n/(1 +
〈n〉)n+1 reduces to a Bose-Einstein distribution with effective
temperature,

kBTeff ≈ωr/ ln

[
ηλ2(eV + ωr ) + κ/2

ηλ2(eV − ωr )

]
� (eV − ωr ), (14)

which coincides with the intensity distribution of classical
chaotic light [37,38]. A similar result has been derived for
a resonator driven by electrons tunneling through a single
quantum dot [16]. The effective temperature has also been
obtained in previous work [26–29] on quantum point contacts
coupled to a mechanical oscillator in the limit eV  ωr . If
λ is sufficiently small to neglect higher order resonances and
4ηλ2ωr  κ , we recover the result kBTeff ≈ eV/2 obtained
previously.

For the second-order correlation function we get

g(2)(τ ) = 1 + e−κeffτ . (15)

It displays bunching, g(2)(0) = 2, for vanishing time delay and
approaches g(2)(τ → ∞) = 1 in the opposite limit when no
correlations exist between the excited photons.

From the master equation we can determine the emission
spectrum of the resonator, with the result,

Sr(ω) = κeff n̄

(ωr − ω)2 + (κeff/2)2
. (16)

It has a maximum height at ω = ωr ,

Sr(ωr ) = 4n̄

κeff
≈ 2ηλ2(eV − ωr )

(2ηλ2ωr + κ/2)2
�(eV − ωr ). (17)

Interestingly, with increasing coupling strength λ or tunneling
strength η, the height of the peak first increases and then
decreases with simultaneous broadening of the linewidth
as shown in Fig. 2. This nonmonotonic behavior arises
because the electron tunneling through the junction not only
excites photons in the resonator but simultaneously introduces
dissipation, as described by the contribution 4ηλ2ωr to the
decay rate Eq. (12). From Eq. (17) we find that the emission
is strongest when the parameters satisfy the relation,

ηpλ
2
p = κ

4ωr

, (18)

FIG. 2. (Color online) The emission spectrum of the resonator
Sr (ω) near the one-photon resonance, (a) for η = 0.01 and different
coupling strengths λ, and (b) for λ = 0.02 and different tunneling
rates η. The other parameters are as follows: low temperature
kBT = 0.02ωr and bias voltage eV = 3ωr .
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leading to Smax
r (ωr ) = (eV − ωr )�(eV − ωr )/(2κωr ), while

the linewidth is still narrow, (κeff)p/2 = κ .
This means that the electroluminesence is optimized when

the dissipation induced by the tunnel junction, 4ηλ2ωr , is
similar in strength to the decay rate κ of the resonator.

In the considered limit (i.e., up to order λ2) we get from
Eq. (9) and Eq. (10) the average current,

I = (1 − λ2)C̃(+)(0) + λ2C̃(+)(−ωr )

≈ 2η(1 − λ2)eV + 2ηλ2(eV − ωr )�(eV − ωr ). (19)

Below the onset of single-photon processes the transport
current is suppressed by the coupling to the resonator. This
effect is described by the Franck-Condon factor (1 − λ2/2)2

renormalizing the tunneling rate [16]. Above the threshold,
when photons can be exited, the current grows as described by
the second term.

The properties of the current noise at ω = ωr are dominated
by single-photon processes, which are described by the linear
term in the coupling Hamiltonian Eq. (3), Q ∝ 1 − λ(a† − a).
Proceeding in this first-order approximation we find that the
current noise at ω = ωr is proportional to the difference be-
tween the rate for tunneling with photon emission C̃(±)(−ωr )
and the one with photon absorption C̃(±)(ωr ),

SI (ω)≈2eI +
∑
+,−

c1κeff/2

(ω ± ωr )2 + (κeff/2)2
�(eV − ωr ), (20)

with

c1 = 4eηλ2
∑
±

[C̃(±)(−ωr ) − C̃(±)(ωr )] (21)

= −8eη2λ2ωr [eV + (n̄ − 1/2)ωr ]. (22)

The result is displayed in Fig. 3. The combination of electrons
tunneling through the junction with the emission and absorp-
tion of photons in the resonator leads to a dip in the spectrum at
ω = ±ωr . The dip gets deeper, i.e., |S(ωr ) − 2eI | ≈ 2|c1|/κeff

increases, with growing coupling or tunneling strengths. The
linewidth κeff of the current noise dip is the same as linewidth
of the emission spectrum of the resonator. A comparison with
the numerical solution of the full problem, presented in the
following section, shows that analytic results obtained so far

FIG. 3. (Color online) The noise spectrum of the transport
current through the junction SI (ω), (a) for η = 0.01 and different
coupling strengths λ, and (b) for λ = 0.02 and different tunneling
rates η. The parameters are the same as in Fig. 2.

are valid for weak to moderate coupling strength as long as
λ � 0.2.

IV. ULTRASTRONG COUPLING

We turn now to the so-called ultrastrong-coupling regime
where the coupling strength between tunnel junction and
resonator is of the same order as the resonator frequency.
Specifically we consider 0.2 < λ = 2g/ωr � 2. Although
more difficult to realize in an experiment, these values are still
realistic, and this limit displays interesting new properties.

In the strong coupling regime the expansion up to order λ2

analyzed in Sec. III is no longer sufficient. Instead processes
associated with the excitation of multiple photons, which
follow from expanding Q = e−λ(a†−a) to higher orders in λ,
gain importance. In order to study these processes we solved
the equations introduced above numerically without further
approximations. In contrast to the single-photon limit, the
average photon number, shown in Fig. 4, in general depends
nonlinearly on the bias voltage and even decreases with
increasing coupling strength.

The photon state differs from a thermal state; e.g., as shown
in the inset of Fig. 4(b), the second-order correlation function
deviates from the value g

(2)
thermal(0) = 2, which would be found

for a thermal (chaotic) state.
The effect of the multiphoton processes on the transport

current manifests itself in a nonlinear dependence on the bias
voltage as shown in Fig. 5(a). Simultaneously, the multiphoton
effects enhance the current fluctuations and induce the super-
Poissonian behavior in the zero-frequency shot noise, as shown
in Fig. 6(a). The multiphoton effects can also be observed in
the current noise spectrum. In an expansion up to fourth order
in the coupling we obtain the noise spectrum near ω = 0 and
ω = ±2ωr ,

SI (ω) ∝ eη2λ4

[
c0κeff

ω2 + κ2
eff

+
∑
+,−

c2κeff

(ω ± 2ωr )2 + κ2
eff

]
,

with positive coefficients c0 > 0 and c2 > 0. The two-photon
processes lead to peaks in the noise spectrum at ω = 0 and

FIG. 4. (Color online) The average number of photons excited in
the resonator (a) as a function of the bias voltage eV for different
coupling strengths λ, and (b) as a function of the coupling strength λ

for eV = 3ωr . The other parameters are as follows: low temperature
kBT = 0.02ωr and tunneling rate η = 0.001. In the inset in (a)
we compare results for moderate coupling strength based on the
numerical calculation (solid line) and analytical expression of Eq. (13)
(dashed line).
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FIG. 5. (Color online) (a) The average tunneling current through
the junction versus bias voltage for different coupling strength.
With increasing λ multiphoton effect becomes more significant.
(b) For better resolution the lowest order tunneling current is
subtracted, i.e., �I = I − 2ηeV. For moderate coupling strength we
compare the numerical results based on the exact Eq. (9) (solid line)
and approximate expressions of Eq. (19) (dashed line). The other
parameters are the same as in Fig. 4.

ω = ±2ωr with linewidth determined by κeff , as shown in
Figs. 6(a) and 6(c). The feature at zero frequency corresponds
to single-electron tunneling processes accompanied by a
virtual emission and absorption of a photon, while the feature
at ω = ±2ωr comes from single-electron tunneling processes
which are accompanied by emission (absorption) of two
photons.

Approximately, we find c0 ∝ ∑
+,−[2C(+)(±ωr ) −

C(+)(0)]2 > 0 and c2 ∝ ∑
+,−[2C(+)(±ωr ) −

C(+)(±2ωr )]2 > 0.
Compared to the features at ω = ±ωr , the noise spectra

at ω = 0 and ω = ±2ωr are more sensitive to the coupling
strength, as the comparison of Figs. 6(a)–6(c) demonstrates.

FIG. 6. (Color online) The noise spectrum of the transport cur-
rent through the tunnel junction for strong coupling (a) around zero-
frequency, (b) for single-photon, (c) two-photon, and (d) generally
many-photon processes, respectively. The dotted line in the insets
of (b) is obtained in the weak/moderate coupling approximation
Eq. (20). It well describes the single-photon process in the noise
spectrum for λ � 0.2. The parameters are the same as in Fig. 4.

The peaks at ω = 0, ± 2ωr are always positive even at
higher temperatures. Three-photon effects, which we find by
expanding further, lead again to a dip in the noise spectrum at
ω = ±3ωr , as shown in Fig. 6(d), with properties similar to
the one-photon signal. We expect that the noise spectrum in
the low temperature limit shows alternating dips and peaks for
odd- [at ω = (2n + 1)ωr ] and even-photon-number processes
(at ω = 2nωr , n = 0,1,2 . . .), respectively. This alternation
of dips and peaks would be modified if also higher modes
of the resonator couple to the tunnel junction. For instance,
a first harmonic mode with frequency 2ωr would induce a
dip resonant feature due to the single-photon processes at
ω = 2ωr , which could be larger than the second-order peak
due the two-photon process with the frequency ωr .

V. COMPARISON WITH OTHER WORK

Models similar to the one considered in this paper have
been studied in other contexts with partially similar, partially
differing results. For instance, tunnel junctions coupled to
nanomechanical resonators were studied since they allow
probing the amplitude of the position [24,26,27,29]. In that
case the current noise shows a peak at ω = ±ωr rather
than a dip. However, one should note that in this case the
oscillator couples to the height of the barrier and not to
the potential difference, which we considered in our model.
Another example has been studied in Ref. [28]. There the
resonator was coupled to the potential difference of a metallic
double dot with negligible charging energy. In this case a
dip-peak feature was found. A similar dip-peak feature was
obtained in Ref. [15], where a resonator coupled to a small
semiconductor double dot with large charging energy has
been studied. On the other hand, our results concerning
single-electron tunneling through a tunnel junction coupled
to a resonator are quite similar to those found when electrons
tunnel through a single quantum dot coupled to a resonator,
which is the case studied in Ref. [16]. Finally we mention
that electron transport through quantum point contacts with
an energy-dependent transmission may lead to the emission of
antibunched photons [39]. These effects are not observed for
the tunnel junction considered in this work. We conclude that
the noise spectra in the different systems, in spite of having
generally similar properties, are very sensitive to details of the
coupling.

In this work we concentrated on the sequential tunneling
regime, i.e., we ignored higher order correlated tunneling
processes such as co-tunneling and beyond. This is for most
purposes sufficient as long as the tunneling resistance is
high as compared to the quantum resistance, i.e., η � 1. For
extensions to stronger tunneling the approach described in
Ref. [40] would be appropriate. In this work also the effect
of a resonator bath was considered, however, concentrating on
the physics of boson-assisted tunneling due to an equilibrium
bath. Another approach to account for the effect of a fluctuating
environment with arbitrary spectral functions is the so-called
P (E) description [41]. Again the majority of published work
concentrates on an equilibrium bath. The major conclusion
is that the tunneling system exchanges energy with the bath,
which leads to a broadening of all features. As we discuss
in the appendix the damping of the resonator leads to such
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effects. However, for high-Q resonators considered here, the
effect can be ignored.

VI. SUMMARY

In summary, we have investigated the properties of a tunnel
junction coupled to a transmission line resonator. Our study
is based on a Born-Markov master equation in the polaron
description, which accounts for the nonequilibrium state of the
resonator. We presented results for two regimes of coupling
strength between resonator and tunnel junction. For weak
coupling the properties are characterized by single-photon
processes, for stronger coupling multiple photon processes
gain importance.

For weak to moderate coupling, i.e., in the single-photon
limit, we obtained analytical results at low temperatures for
both the average number of the excited photons and the
average current, both showing a threshold behavior when the
bias voltage allows the excitation of photons. The photon
distribution can be parametrized by a thermal one with an
enhanced effective temperature. For the electroluminesence of
the resonator we found the optimal conditions, with maximum
peak height and still narrow linewidth, when the resonator
damping due to the tunnel junction is comparable in strength
to the intrinsic decay rate of the resonator. The current noise
spectrum shows a pronounced dip at the resonator frequency.

These phenomena could be tested in experiments, since
all the parameters are within reach of current technology
[2,10,11,19,30,31,42].

In the strong-coupling regime, multiphoton effects can be
observed. The effect of the tunnel junction on the resonator
no longer reduces to an effective heating. The average number
of photons excited in the resonator, which first grows with
increasing coupling strength, eventually even decreases. The
multiphoton effects are most pronounced in the noise spectrum
of the transport current in the junction. In addition to the dips at
ω = ±ωr it shows peaks at ω = ±2ωr , dips at ω = ±3ωr , and
so forth due to the interplay of the electrons tunneling through
the junction associated with the emission and absorption of
two photons and three photons in the resonator, respectively.
The current voltage characteristic shows a threshold behavior
at voltages eV which are multiples of the resonator frequency.
These noise spectra are very sensitive to the details of specific
system, i.e., tunnel junction versus single- or double-dot
systems with either small or large charging energy, and the
specific coupling mechanism between the electron transport
system and the resonator. This makes the correlation functions
a very useful object of theoretical and experimental studies.
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APPENDIX: DAMPING OF THE RESONATOR

The complete Hamiltonian of the system, including a bath
with annihilation (creation) operators bi (b†i ) coupling to the
resonator, is given by

H =
∑
αk

εαkc
†
αkcαk +

∑
kk′

(tkk′c
†
LkcRk′ + H.c.)

+ωra
†a + g

∑
k

(c†RkcRk − c
†
LkcLk)(a + a†)

+ (a + a†)
∑

i

gi(bi + b
†
i ) +

∑
i

ωib
†
i bi . (A1)

After a polaron transformation using the unitary operator
U = exp[ g

ωr

∑
k(c†RkcRk − c

†
LkcLk)(a† − a)] we get

H1 =
∑
αk

εαkc
†
αkcαk + ωra

†a

+
∑
kk′

(
tkk′c

†
LkcRk′e− 2g

ωr
(a†−a) + H.c.

)
+ (a + a†)

∑
i

gi(bi + b
†
i ) +

∑
i

ωib
†
i bi

− g

ωr

∑
k

(c†RkcRk − c
†
LkcLk)

∑
i

gi(bi + b
†
i ). (A2)

In this form we note that the bath of the resonator also couples
to the potential difference between the left and right lead. In
the limit 2g/ωr � 1 we can neglect this term, and we arrive
at the model analyzed in this paper. However, we also want to
consider the limit 2g/ωr � 1. In this case the model depends
on the size and distribution of gi . However, we will show now
that the effects introduced by this coupling are small, which
justifies our model in all parameter regimes.

To analyze the effect of the bath-resonator coupling term
we perform another unitary transformation given by

U = exp

[
− g

ωr

∑
k

(c†RkcRk − c
†
LkcLk)

∑
i

gi

ωi

(b†i − bi)

]
.

(A3)
This leads to the Hamiltonian,

H ′
1 =

∑
αk

εαkc
†
αkcαk + ωra

†a

+
∑
kk′

(
tkk′c

†
LkcRk′e− 2g

ωr
(a†−a)e

− 2g

ωr

∑
i

gi
ωi

(bi−b
†
i ) + H.c.

)
.

+ (a + a†)
∑

i

gi(bi + b
†
i ) +

∑
i

ωib
†
i bi

+ g

(∑
i

g2
i

ωrωi

) ∑
k

(c†RkcRk − c
†
LkcLk)(a + a†). (A4)
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Repeating the procedure shown here one more time we get

H ′
2 =

∑
αk

εαkc
†
αkcαk + ωra

†a +
∑
kk′

(
tkk′c

†
LkcRk′e− 2g

ωr
(1+x)(a†−a)e

− 2g

ωr
(1+x)

∑
i

gi
ωi

(bi−b
†
i ) + H.c.

)
+ (a + a†)

∑
i

gi(bi + b
†
i ) +

∑
i

ωib
†
i bi + gx2

∑
k

(c†RkcRk − c
†
LkcLk)(a + a†), (A5)

with x = ∑
i g

2
i /(ωrωi). We did not specify the precise form of the spectral function of the bath of the resonator. However, since

the coupling between resonator and bath is weak we can safely assume x < 1. In this case we can repeat this procedure to all
orders and get

H ′
∞ =

∑
αk

εαkc
†
αkcαk + ωra

†a +
∑
kk′

(
tkk′c

†
LkcRk′e

− 2g

ωr (1−x) (a†−a)
e
− 2g

ωr (1−x)

∑
i

gi
ωi

(bi−b
†
i ) + H.c.

)
+ (a + a†)

∑
i

gi(bi + b
†
i ) +

∑
i

ωib
†
i bi . (A6)

In this form we note that in comparison to the model Hamiltonian (2) we produced a renormalization of the coupling constant
between the tunneling term and the resonator, g → g/(1 − x), and in addition a coupling between the tunneling term and the
reservoir of the resonator exp[− 2g

ωr (1−x)

∑
i

gi

ωi
(bi − b

†
i )]. The latter is well known in quantum transport under the name P (E)

theory [41]. It leads to a broadening of the energy dependence of the rates and all other features discussed in this paper. However,
the effect is small as long as the resonator has a high Q factor.
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