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Effects of a tilted magnetic field in a Dirac double layer
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We calculate the energy spectrum of a Dirac double layer, where each layer has the Dirac electronic dispersion,
in the presence of a tilted magnetic field and small interlayer tunneling. We show that the energy splitting
between the Landau levels has an oscillatory dependence on the in-plane magnetic field and vanishes at a
series of special tilt angles of the magnetic field. Using a semiclassical analysis, we show that these special tilt
angles are determined by the Berry phase of the Dirac Hamiltonian. The interlayer tunneling conductance also
exhibits an oscillatory dependence on the magnetic field tilt angle, known as the angular magnetoresistance
oscillations (AMRO). Our results are applicable to graphene double layers and thin films of topological insulators.

DOI: 10.1103/PhysRevB.91.085418 PACS number(s): 73.50.Jt, 71.70.Di

I. INTRODUCTION

Recently, there has been considerable interest in the effects
of a magnetic field in materials with the Dirac dispersion in
the electronic energy spectrum [1]. Most studies focus on a
perpendicular magnetic field applied to a two-dimensional
(2D) Dirac material, e.g., graphene [2] or the surface of a
topological insulator (TI). The Landau quantization of Dirac
fermions produces the unconventional quantum Hall effect [3],
which is often taken as an experimental signature of Dirac
fermions in the system [4,5]. In addition, a number of papers
consider the case with an in-plane component of the magnetic
field [6–17]. The in-plane component produces a relative shift
in momentum space of the Dirac cones in adjacent layers. This
effect results in an unusual energy spectrum and dependence of
the interlayer tunneling current on the magnetic field [6–9,12].
Magnetoresistance and tunneling spectroscopy for the in-plane
magnetic field were measured in thin films of TIs [10,11],
a graphite mesa [12], and a graphene double layer [13]. A
relative twist of the layers in a graphene bilayer also produces
an effect similar to the in-plane magnetic field [14,18,19].
The Landau levels in a tilted magnetic field were studied for
graphene multilayers [15,16]. An unusual dependence of the
resistance on the magnetic field orientation was found in a bulk
TI [17].

The oscillatory dependence of resistance on the orientation
of a tilted magnetic field, called the angular magnetoresistance
oscillations (AMRO), was first observed in organic conduc-
tors [20]. AMRO are characteristic for layered materials,
such as organic conductors [21], intercalated graphite [22,23],
Sr2RuO4 [24–26], and high-Tc cuprates [27–29] (see more ref-
erences in Refs. [30–32]). AMRO are manifested as resistivity
oscillations periodic in tan θ = By/Bz, where the tilt angle
θ is expressed in terms of the in-plane By and out-of-plane
Bz components of the magnetic field. The effect is distinct
from the usual quantum oscillations, which are periodic in
1/Bz = 1/B cos θ . Although AMRO were originally studied
for an infinite layered crystal [33], it was later shown that
the effect exists even for two layers [30]. AMRO can be
interpreted in terms of the interlayer Aharonov-Bohm (AB)
effect in the following way [31,32]. Consider a double layer
of the distance d between the layers in the tilted magnetic

field B = (0,By,Bz), as shown in Fig. 1(a). The perpendicular
magnetic field Bz induces cyclotron motion of the radius
Rc = pF /eBz in each layer, where pF is the Fermi momentum,
and e is the electron charge. The cyclotron diameter 2pF

and the interlayer distance d form the area SAB = 2Rcd

shown by the shaded rectangle in Fig. 1(a). The flux of the
in-plane magnetic field By through this area determines the
interference condition BySAB = 2π�(N + const)/e between
electron trajectories involving in-plane cyclotron motion and
interlayer tunneling. For materials with the parabolic elec-
tronic energy spectrum, destructive interference suppresses
interlayer tunneling [31] at the following “magic” angles θN :

pF d tan θN = �

(
πN − π

4

)
, N = 1,2, . . . . (1)

Alternatively, the same condition can be obtained in the
momentum space p = (px,py). The in-plane magnetic field
By shifts the relative momenta of the Fermi circles in the
adjacent layers by [6,8]

� px = q = x̂eByd, (2)

as illustrated in Fig. 1(b). The perpendicular magnetic field
Bz induces cyclotron motion indicated by the arrows, and
interference between the two circular orbits is controlled by
the shaded areas Sp ≈ 2pF q shown in Fig. 1(b). The Onsager-
like interference condition Sp/eBz = 2π�(N + const) gives
Eq. (1) as well.

Although many Dirac materials have a layered structure,
the effect of AMRO received limited attention for these
materials. AMRO were measured in intercalated graphite
compounds [22,23], and offsets −0.39π and −π/4 in Eq. (1)
were observed. Recently, the effect of the Berry curvature,
which may be present in gapped Dirac materials, on quantum
oscillations, and AMRO was studied in Refs. [34,35].

Here, we present a theoretical study of AMRO in the
simplest case of the Dirac double layer, where each layer has a
linear electronic energy spectrum. It is realized experimentally
for a double layer of graphene [13] or the opposite surfaces of
a thin film of a TI [7,8,36]. In the presence of a small interlayer
tunneling, we find that the Landau levels spectrum in a tilted
magnetic field has angular dependence similar to AMRO. The
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FIG. 1. (Color online) (a) Double layer of thickness d in the tilted
magnetic field B = (0,By,Bz). The out-of-plane magnetic field Bz

induces the in-plane cyclotron motion of radius Rc. Interference
between the two orbits is controlled by the flux of the in-plane
magnetic field By through the Aharonov-Bohm area shown as the
shaded rectangle. (b) Semiclassical electron orbits in momentum
space in the two layers are shifted by q = eByd . Interference between
the orbits is controlled by the shaded areas Sp . Both real (a) and
momentum (b) space pictures show that the interlayer tunneling w is
suppressed at the magic angles θN in Eq. (1).

levels become doubly degenerate at the “magic” tilt angles θN ,
where the effective interlayer coupling is suppressed due to the
destructive AB interference. We also calculate the interlayer
conductance, which exhibits both the Shubnikov-de Haas and
AMRO oscillations. We find a deviation from the standard
−π/4 offset angle in Eq. (1) and explain it semiclassically
using the Berry phase.

II. HAMILTONIAN OF A DOUBLE LAYER

Consider a Dirac double layer of thickness d as shown
in Fig. 1(a). The Hamiltonian of the model in the second-
quantized form is

H0 =
∫

d2p
[
ψ1

p
†
h( p)ψ1

p + α ψ2
p
†
h( p)ψ2

p

]
, (3)

h( p) = v(σ · p) = v(σxpx + σypy). (4)

Here, ψ
j
p is the wave function of an electron with in-plane

momentum p = (px,py) on the opposite layers labeled by
j = 1,2, and h( p) is the Dirac Hamiltonian. We consider
the simplest case where each layer contains only a single
flavor of the Dirac electrons. However, our analysis can be
extended to multiple Dirac flavors per layer as, for example, in
graphene, where the two flavors correspond to the valley and
spin degree of freedom [2]. The Pauli matrices σ act on the
spinor wave functions ψj = [ψj

↑,ψ
j

↓], where the pseudospin
index ↑↓ corresponds to a sublattice degree of freedom in
graphene and to the real spin in TIs.

The Hamiltonian h( p) has the Dirac cone linear energy
dispersion E p = ±v| p|. The eigenstates corresponding to the
positive and negative energies are the spinors

ψ+, p = 1√
2

[
e−iγ

1

]
, ψ−, p = 1√

2

[−1
eiγ

]
, (5)

where γ = arctan(py/px) is the angle of p in the 2D
momentum space. The eigenstates (5) have parallel and an-
tiparallel locking of the chiral pseudospin and the momentum,
respectively. One can define the Berry phase for the wave
functions in Eq. (5). The winding of the Berry phase along an
arbitrary contour C in the momentum space is

	(C) = i

∫
C
d p 〈ψ±, p|∂ p|ψ±, p〉 = ±�γ

2
, (6)

where �γ is the angle traced by C when viewed from the
origin. Note that the wave functions in Eq. (5) corresponding
to positive and negative energies have opposite Berry phases.
In Sec. VI, we show that the Berry phase can change the magic
angles offset in Eq. (1).

In Eq. (3), the Dirac cones on the opposite layers have
either the same α = 1 or opposite α = −1 chiralities. The
case α = 1 corresponds to a graphene double layer [13], where
the alignment of graphene lattices in the real space translates
into the alignment of the Dirac cones of the same chirality
in the momentum space. The case α = −1 corresponds to a
TI film [8], where the Rashba vectors normal to the opposite
surfaces of the film define the Dirac cones of the opposite
chirality [37].

III. EFFECT OF A MAGNETIC FIELD

Now, let us introduce a perpendicular magnetic field Bz.
With the Peierls substitution, the Dirac Hamiltonian becomes
h( p − eA), where we choose the Landau gauge A = −yBz x̂
for the vector potential A. The energy spectrum is given by
the Landau levels labeled by the integer n = 0,±1, . . .:

�n,px
= 1√

2

[
φ|n|,px

sgn(n)φ|n−1|,px

]
, En = sgn(n)

�v
√

2n

l
.

l =
√

�/eBz. (7)

Here, l is the magnetic length, and φm,px
are the usual

harmonic-oscillator wave functions:

φm,px
(y) = e−(y+px l

2/�)2/2l2√
2mm!l

√
π

Hm

(
y + pxl

2/�

l

)
,

where Hm are the Hermite polynomials. The momentum px

is a good quantum number and controls the position yc =
−px/eBz along the ŷ axis around which the wave functions
φm,px

are localized.
Next, let us turn on a parallel magnetic field By , so that

the vector potential becomes A = (zBy − yBz) x̂. For a single
layer, the in-plane magnetic field does not have any orbital
effect. But for a double layer, the term −zBy produces a
relative shift of the in-plane momenta �px = q on the opposite
layers [6,8] given by Eq. (2). The dynamics of electrons can
be understood semiclassically as the cyclotron motion on the
shifted Dirac cones corresponding to the opposite layers, as
shown in Fig. 2. In the quantum description, the momentum
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FIG. 2. (Color online) Dirac cones of the two layers shifted in
momentum space by q = eByd . The out-of-plane magnetic field Bz

induces cyclotron motion in the direction shown by the black arrows.
The two cyclotron orbits intersect at the angle χ at the points A and
F . The red and blue arrows attached to the Fermi circles show the
pseudospin direction for each Dirac cone for α = 1 in Eq. (3). Either
blue or red arrows are reversed for α = −1.

px controls the yc position around which the wave functions
in Eq. (7) are localized. So, the shift q in the momentum space
also produces a relative shift of the wave functions in real
space:

�y = q

eBz

= d
By

Bz

= d tan θ. (8)

For simplicity, we do not include the Zeeman coupling of the
magnetic field to the electron spins and leave it for future
studies.1

IV. INTERLAYER TUNNELING

The spectrum of the Hamiltonian in Eq. (3) in the presence
of the titled magnetic field consists of the Landau levels,
which are double degenerate because of the identical Dirac
Hamiltonians in the two layers. Now suppose the layers are
coupled by the tunneling Hamiltonian

Hw =
∫

d2p
[
ψ1

p
†
W † ψ2

p + ψ2
p
†
W ψ1

p

]
, W = w I . (9)

In general, W is the interlayer tunneling matrix in the
pseudospin space [6], but here we consider the simplest case
where it is proportional to the unit matrix I = diag(1,1). We

1The Zeeman energy EZ = gμBB is linear in the magnetic field,
whereas the energies of the Landau levels (7) scale as the square
root

√
Bz. Thus the effect of the Zeeman coupling can be neglected

for small enough magnetic field B. For larger magnetic fields, the
effect becomes noticeable and is different for graphene and TIs.
For graphene, the Zeeman coupling simply splits the Landau levels.
For TIs, the in-plane magnetic field By generates a term Byσy in
the Hamiltonian and, thus, shifts the Dirac dispersion in the 2D
momentum space [8]. On the other hand, the perpendicular magnetic
field Bz produces a term Bzσz in the Dirac Hamiltonians (4) and,
therefore, generates a gap. A careful consideration of the Zeeman
contribution can be done within our approach, but it complicates the
discussion, so we leave it for future studies.

also assume that the interlayer tunneling is local in real space,
so the in-plane momentum p is conserved, and the amplitude
w does not depend on p.

We expand the wave functions ψ1 = ∑
n ψ1

n�n,px
and

ψ2 = ∑
n ψ2

n�n,px−q in the basis of the Landau functions (7),
where the eigenvalue equation for the Hamiltonian H0 + Hw

in the tilted magnetic field becomes

∑
m

[
(En − E)δnm wn,m

wm,n (αEn − E)δnm

] [
ψ1

m

ψ2
m

]
= 0. (10)

The matrix elements wnm = w〈�n,px
|�m,px−q〉 of Hw between

the Landau functions on the opposite layers are

wn,m

w
= −e−β2/2(−β)|n|−|m|

2η

[√
|m|!
|n|! L

(|n|−|m|)
|m| (β2)

+ sgn(nm)

√
(|m| − 1)!

(|n| − 1)!
L

(|n|−|m|)
|m|−1 (β2)

]
, (11)

β = ql

�
√

2
= Byd

√
e

2�Bz

. (12)

Here, L
(k)
j (x) are the Laguerre polynomials, and the exponent

is η = 0, 1/2, and 1 for the cases n = m = 0, |n| > m = 0,
and |n| � |m| > 0, respectively. The matrix elements (11) are
derived in Appendix A. Note that the two-component spinor
structure of the wave functions (7) produces the two terms
with the Laguerre functions in Eq. (11). In the case of a simple
parabolic spectrum, the analogous matrix elements have only
one such term [38].

V. DISCUSSION OF THE SPECTRUM

We calculate the energy spectrum in a tilted magnetic field
by solving Eq. (10) numerically and show the results2 for
the same α = 1 and opposite α = −1 chiralities in Figs. 3
and 4. Panels (a) show the energy levels E versus the in-plane
magnetic field By for a fixed Bz. The Landau level index n

is shown on the right vertical axis. We observe splitting of
the Landau levels, which oscillates as a function of By . This
behavior can be understood using perturbation theory in w. For
w = 0, the wave functions �n and �αn localized on different
layers have the same energy En according to Eq. (7). To the
first order in w, the symmetric-antisymmetric (SAS) splitting
of the Landau levels is given by the matrix elements wn,αn:

E±
n = En ± wn,αn, wn,αn = w〈�n,px

|�αn,px−q〉. (13)

The wave functions �n,px
and �αn,px−q have the relative shift

�y = dBy/Bz in real space, as shown in Eq. (8). Since the

2The interlayer tunneling amplitude w is 0.15v
√

2e�Bz in Fig. 3(a),
0.3v

√
2e�Bz in Fig. 4(a), and 0.05EF for panels (b) and (c) in Figs. 3

and 4. We assume that DOS of the Landau levels has finite width
	 as defined in Eq. (B4). We use 	 = 0.1w for panels (b) and
	 = w for panels (c). In order to enhance contrast in panels (c),
we clip the color map at 5% of its maximal value. Namely, we plot
Gzz(By,Bz) for Gzz(By,Bz) < M and M for Gzz(By,Bz) > M , where
M = 0.05 max[Gzz(By,Bz)].
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FIG. 3. (Color online) (a) The energy spectrum of Eq. (10) for
α = 1 vs By for a fixed Bz. The number on the right axis is the
Landau level index n. The numbers on the plot indicate the filling
factor ν, which defines the quantum Hall conductivity. (b) Density of
states (DOS) at the Fermi energy EF = vpF plotted vs By and Bz.
Dashed lines correspond to the magic tilt angles given by Eq. (19).
(c) The out-of-plane conductance Gzz from Eq. (21) vs By and Bz.
The Fermi circles of the two layers shifted by q = Byed are shown
at the top.

wave functions in Eq. (7) oscillate in real space on the scale of
l/

√
n, the overlap between �n,px

and �αn,px−q oscillates as a
function of By , resulting in the oscillatory SAS splitting of the
Landau levels in Figs. 3(a) and 4(a). For a sufficiently strong

FIG. 4. (Color online) (a) The energy spectrum of Eq. (10) for
α = −1 vs By for a fixed Bz. The number on the right axis is the
Landau level index n. The numbers on the plot indicate the filling
factor ν, which defines the quantum Hall conductivity. (b) DOS at
the Fermi energy EF = vpF plotted vs By and Bz. Dashed lines
correspond to the magic tilt angles given by Eq. (20). (c) The out-of-
plane conductance Gzz from Eq. (21) vs By and Bz. The Fermi circles
of the two layers shifted by q = Byed are shown at the top.

By , the distance �y exceeds the width l
√

n of the Landau
wave functions, so the overlap matrix elements wn,αn vanish,
and the Landau levels (13) become degenerate. The positions
of the nodes, where the SAS splitting vanishes, are different
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in Figs. 3(a) and 4(a) for α = ±1 reflecting the difference
between wn,n and wn,−n. In Sec. VI, we show that it is a
consequence of different Berry phase contributions.

The lines in Figs. 3(a) and 4(a) separate regions where
the Hall conductivity has the quantized values σxy = νe2/h

indicated on the plots, assuming that all Landau levels are
filled below the energy E. For two decoupled Dirac layers in
the spinless case, the filling factor runs through the odd integers
ν = 2j + 1, where j is integer. However, in the presence of the
coupling w between the Dirac layers, the even filling factors
ν = 2j becomes available for the energies inside the SAS
splitting, which oscillates as a function of By .

In Figs. 3(b) and 4(b), we plot the same data in a different
way. We fix the chemical potential, so that the Fermi energy
EF = vpF and the Fermi momentum pF are constant, and plot
a map of the density of states (DOS) at the Fermi level as a
function of By and Bz. Figures 3(b) and 4(b) exhibit peaks
in DOS when the Landau levels cross the chemical potential.
The Landau level index n is indicated on the right vertical
axis. For By = 0 and increasing Bz, the Landau levels with
the indices n ∝ 1/Bz cross the Fermi energy. For increasing
By , the SAS splitting between the Landau levels oscillates
and passes through a series of nodes. A similar oscillatory
SAS splitting was observed experimentally in semiconducting
bilayers with a parabolic dispersion relation [39]. In the regions
between the peaks in DOS, the Hall conductivity has the
quantized values σxy = νe2/h indicated in Figs. 3(b) and 4(b).
Thus, in the double layer geometry, transitions between the
quantum Hall plateaus can be driven by both the in-plane and
out-of-plane components of the magnetic field.

For low magnetic fields, the SAS splitting nodes align along
the dashed lines corresponding to the “magic” tilt angles θN .
In order to find these angles, let us examine where the diagonal
tunneling matrix elements

wn,αn = we−β2/2

2

[
L

(0)
|n|(β

2) + αL
(0)
|n|−1(β2)

]
(14)

vanish. Using the asymptotic approximation of the Laguerre
polynomials for n 	 x 	 1,

L(k)
n (x) ≈ n

k
2 − 1

4 e
x
2

√
πx

k
2 + 1

4

cos

[
2
√

nx − π

2

(
k + 1

2

)]
, (15)

in Eq. (14) for α = 1, we find

wn,n

w
= cos

(
2
√

nβ − π
4

)
√√

nβπ
= cos

(
pF d tan θ

�
− π

4

)
√

πpF d tan θ/2�
. (16)

Here, we kept only the leading terms in 1/n. Assuming that
the Landau level n is at the chemical potential En = vpF , we
expressed the Fermi momentum as pF = √

2ne�Bz, so that

2
√

nβ = pF d tan θ

�
,

β

2
√

n
= eByd

2pF

. (17)

For the opposite chiralities α = −1, using the identity
L

(0)
n+1(x) − L(0)

n (x) = − x
n+1L(1)

n (x) and the asymptotic for-

mula (15), we obtain

wn,−n

w
=

√
β

4n3/2π
cos

(
2
√

n β − 3π

4

)

=
√

e2�ByBzd

2πp3
F

cos

(
pF d tan θ

�
− 3π

4

)
. (18)

The arguments of the cosine functions in Eqs. (16) and (18)
are different, so the matrix elements wn,n and wn,−n vanish at
the different magic tilt angles θN :

pF d tan θN = �

(
πN − π

4

)
, α = +1, (19)

pF d tan θN = �

(
πN + π

4

)
, α = −1. (20)

Equation (19) is equivalent to Eq. (1) for the parabolic
dispersion. Note that the condition (20) was also obtained in
Ref. [40] for a three-dimensional material with an azimuthally
corrugated Fermi surface. Our result (20) does not depend
on the azimuthal direction of the in-plane magnetic field and,
thus, can be experimentally distinguished from the scenario
proposed in Ref. [40]. The magic angles θN given by Eqs. (19)
and (20) are shown by the dashed lines in Figs. 3 and 4,
correspondingly. We observe that the SAS splitting nodes align
very well with these lines for moderate magnetic fields. For
stronger fields, the magic angles become dependent on the
magnitude of the field.

Angular dependence of the Landau levels can be also
observed in the out-of-plane conductance Gzz = dIz/dVz in a
tilted magnetic field. In the tunneling formalism for small w,
the tunneling conductance is proportional to

Gzz ∝ Bz|wn,αn|2 ρ2
n(EF ), (21)

where ρn(EF ) is the DOS for the original unperturbed Landau
level (7) at the Fermi energy, as discussed in Appendix B. The
tunneling conductance Gzz is plotted in panels (c) of Figs. 3
and 4 as a function of both By and Bz. Comparing panels
(b) and (c), we observe that Gzz has maxima where the SAS
splitting is large. Conversely, the tunneling conductance is
suppressed at the magic angles defined by Eqs. (19) and (20)
and shown by the dashed lines. The oscillations of Gzz as a
function of Bz for a fixed By represent the usual Shubnikov-de
Haas oscillations, whereas the oscillations of Gzz as a function
of the tilt angle tan θ = By/Bz represent AMRO.

As indicated above Eq. (15), the approximation for the
Laguerre polynomials is applicable only for the high Landau
levels with n 	 1, i.e., for weak magnetic fields Bz. Moreover,
it is also required that n 	 β2, which means a weak magnetic
field By such that eByd 
 2pF .3

For stronger magnetic fields, Eq. (14) should be
used without approximations. On the horizontal axes in

3In 2D Dirac materials, the Fermi energy and Fermi momentum
can be tuned by external gating. Using the graphene Fermi velocity
v = 106 m/s and the interlayer distance d = 2 nm, we estimate the
magnitude of the magnetic field By = 2pF /ed = 2EF /evd where
the Fermi circles detach as By = 10 and 100 T for EF = 10 and
100 meV.
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panels (b) and (c) in Figs. 3 and 4, the value eByd/pF = 2
corresponds to detachment of the Fermi circles in the two
layers displaced by q, as shown at the top of panels (c).
For α = 1, the effective interlayer coupling, as measured by
the SAS splitting and tunneling conductance Gzz, is maximal
for By = 0 and is suppressed around eByd ≈ 2pF . This is
because the spinor wave functions (7) are orthogonal at the
opposite sides of the Fermi circle. In contrast, for α = −1,
the effective interlayer coupling is suppressed around By ≈ 0
and is maximal for eByd ≈ 2pF , because the spinors (7) have
opposite chiralities in this case. Panels (b) and (c) in Fig. 4
demonstrate an interesting pattern of magnetic oscillations
versus By and Bz around eByd ≈ 2pF . This pattern originates
from quantization of the electron orbits around the unshaded
area ACFG in Fig. 1(b), which shrinks when eByd → 2pF . A
similar pattern of magnetic oscillations versus By and Bz was
observed experimentally [41] in semiconducting bilayers with
population imbalance between the layers.

The first-order perturbation theory in Eq. (13) is applicable
when the SAS splitting wn,αn is smaller than the energy
difference between consecutive Landau levels. Otherwise, the
full equation (10) with the off-diagonal matrix elements wn,m

should be solved numerically. However, it is also possible to
get an insight using the semiclassical approximation described
below.

VI. SEMICLASSICAL DESCRIPTION

Here, we discuss how to derive the magic angles in
the semiclassical approximation. Let us first review the
semiclassical arguments in the case where the layers have a
parabolic in-plane spectrum [31,32]. As illustrated in Fig. 1(b)
(as well as in Fig. 2), the in-plane magnetic field By shifts
the Fermi momenta by q, whereas the perpendicular magnetic
field Bz induces cyclotron motion in momentum space. Then,
interference between the paths ADF and ACF determines
the effective coupling between the layers. Similarly to the
semiclassical Onsager quantization [42–44], the interference
is controlled by the shaded area Sp between the two paths in
Fig. 1(b):

Sp

e�Bz

+ ϕ = π

2
− π + 2πN. (22)

Here, the term π/2 originates from the Maslov index at the
turning points, whereas the term −π represents destructive
interference. For a small shift q 
 pF , the area becomes
Sp = 2pF q = 2pF eByd, so the destructive interference con-
dition (22) becomes

pF d tan θN = �

(
πN − π

4
− ϕ

2

)
, N = 1,2, . . . . (23)

For the in-plane parabolic energy dispersion h( p) = p2/2m,
the extra phase ϕ vanishes, i.e. ϕ = 0, and Eq. (23) reproduces
Eq. (1).

For the in-plane Dirac Hamiltonian (4), the spinor eigen-
states (5) produce an additional phase [42–44]

ϕ = 	2(ADF) − 	1(ACF) + Arg W 21(A) − Arg W 21(F ),

(24)

where the upper indices j = 1,2 denote the layer number. The
first two terms represent the Berry phases

	j (C) = i

∫
C
d p

〈
ψj

p

∣∣∂ p

∣∣ψj
p

〉
(25)

accumulated during the semiclassical motion along the paths
ADF or ACF, denoted by the symbol C for brevity. The last
two terms in Eq. (24) describe the phases picked during the
interorbit tunneling,

W 21(X) = 〈
ψ2

pX

∣∣W ∣∣ψ1
pX

〉
, (26)

where X denotes the intersection points A and F for brevity.
In contrast to Eq. (9), we now allow for an arbitrary interlayer
tunneling matrix W . Note that the phase ϕ does not depend
on a particular choice of the gauge for the eigenstates (5),
although the individual terms in Eq. (24) are gauge dependent.

Let us calculate the phase ϕ for the case, where α = 1
and W = w I considered in the previous section. For the wave
functions (5), the Berry phase (6) is given by the half of the
arc traced by the orbit as viewed from the origin. So, we
obtain the Berry phase contribution 	2(ADF) − 	1(ACF) = χ

expressed via the angle χ shown in Figs. 1(b) and 2. On
the other hand, the contribution of tunneling in Eq. (24)
is Arg W 21(A) − Arg W 21(F ) = 2π − χ . We sum the Berry
phase and tunneling contributions and obtain φ = 2π . Thus
the interference condition (23) recovers Eq. (19). For the case
of α = −1 and W = w I , which corresponds to a TI film,
the Berry phase contribution is 	2(ADF) − 	1(ACF) = π ,
whereas the tunneling contribution vanishes Arg W 21(A) −
Arg W 21(F ) = 0. Thus, we substitute ϕ = π in Eq. (23) and
reproduce Eq. (20). In the Bernal-stacked graphene bilayer,
the interlayer tunneling matrix W = w(σx + iσy) couples one
sublattice of one layer to another sublattice of another layer [6]
for the Dirac cones of the same chirality (so α = 1). In this
case, we also obtain the phase ϕ = π . For a hypothetical
tunneling matrix W = wσx , we obtain the phase ϕ = χ =
2 arcsin(q/2pF ), which depends on the in-plane magnetic field
via q = eByd. These results are summarized in Table I. The
phase ϕ strongly depends on the interlayer tunneling matrix
W and the relative chirality α of the coupled Dirac cones.

The above discussion is applicable when the out-of-plane
magnetic field Bz 	 B0 is stronger than the magnetic break-
down field B0. In general, the interlayer tunneling amplitude
w hybridizes and splits the electron orbits at the intersection
points A and F in Fig. 1(b). Below the magnetic breakdown
field at Bz 
 B0, the electrons predominantly move along
the hybridized orbits ACFG and ADFH, called the “lens”
and “peanut” in Ref. [41], and have a small probability
P = exp(−B0/Bz) of changing the orbit. In the opposite
limit Bz 	 B0 above the magnetic breakdown, the electrons
predominantly stay on the circular orbits within each layer and
have a small probability P = 1 − exp(−B0/Bz) ≈ B0/Bz of
tunneling to another layer at the intersection points A and F in
Fig. 1(b). The magnetic breakdown field [38] is given by the
following expression:

B0 = 2πw′2

�ev2 sin χ
=

⎧⎪⎨
⎪⎩

2πpF w2

�ev2q

√
1 − q2

4p2
F

, α = +1,

πqw2

2�ev2pF

√
1− q2

4p2
F

, α = −1,
(27)
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TABLE I. The phase shift ϕ given by Eq. (24), which appears in Eqs. (22) and (23), for different types of Dirac Hamiltonians in the top row
and the corresponding physical systems in the second row. The variable α represents relative chirality of the Dirac cones in Eq. (3), whereas W

is the tunneling matrix in Eq. (9). The angle χ is shown in Figs. 1(b) and 2. The total phase ϕ in the last row is the sum of the third and fourth
rows representing the Berry-phase (25) and the tunneling (26) contributions to Eq. (24).

Type of Dirac Hamiltonian α = 1, W = w I α = −1, W = w I α = 1, W = w(σx + iσy)
Physical system Double layer graphene TI film Bernal-stacked graphene α = 1, W = wσx

	2(ADF ) − 	1(ACF ) χ π χ χ

Arg W 21(A) − Arg W 21(F ) 2π − χ 0 π − χ 0
ϕ mod 2π 0 π π χ

as discussed in Appendix C. Here, χ is the intersection angle
of the two cyclotron orbits in Fig. 2, and w′ is the effective
coupling between the orbits. The angle χ can be expressed via
the in-plane magnetic shift q as sin(χ/2) = q/2pF , and w′
is determined by the spinor structure of the wave functions
in Eq. (5). For α = 1, the angle between the pseudospins
on different orbits is χ , so the effective coupling is w′ =
w cos(χ/2). For α = −1, the angle between the pseudospins
is π − χ , so the effective coupling is w′ = w sin(χ/2).

VII. EXPERIMENTAL RELEVANCE AND CONCLUSIONS

Among the Dirac materials, AMRO have been observed
experimentally in the intercalated graphite [22] at angles close
to θ = π/2 where the magnetic field is almost parallel to
the layers. This is because tan θN ∝ 1/pF d is large for a
small interlayer distance d and a small Fermi momentum
pF . In the graphene double layer reported in Ref. [13], the
interlayer distance d = 1.4 nm includes the boron nitride
layers separating the two graphene layers. Taking the Fermi
energy as EF = 0.2 eV and using the Fermi velocity v =
106 m/s, we find the Fermi momentum pF /� = EF /�v =
3 × 108 m−1. Using Eq. (19), we estimate the first magic
angle as θ1 = arctan(3π�/4pF d) = 80◦. Taking the interlayer
coupling to be w ∼ 10 meV and sin χ ∼ 1 in Eq. (27), we
estimate the magnetic breakdown field as B0 ∼ 1 T. Thus, we
conclude that observation of AMRO in the graphene double
layer of Ref. [13] in a tilted magnetic field is experimentally
feasible.

In conclusion, in this paper we examined the effects of a
tilted magnetic field in the Dirac double layer. We derived
the general equation (10) for the electron energy spectrum
and its approximations (13) and (14) for a sufficiently small
interlayer tunneling amplitude w. We found that the SAS
energy splitting between the Landau levels oscillates as a
function of the in-plane magnetic field By and vanishes
at the series of “magic” tilt angles θN of the magnetic
field given by Eqs. (19) and (20). The interlayer tunneling
conductance (21) is suppressed at these magic angles. Our
results generalize the previously known phenomenon of the
angular magnetoresistance oscillations (AMRO) to the Dirac
double layers, where the magic angles depend on the Berry
phases and coupling between the Dirac cones: see Eqs. (22)–
(24). Our theoretical results are applicable to, e.g., graphene
double layers and thin films of topological insulators studied
experimentally in Refs. [13,36], respectively. We also found
that the quantum Hall conductivity σxy depends on both By and

Bz components of the magnetic field, as indicated by the blue
and white numbers in the panels (a) and (b) of Figs. 3 and 4. It
would be interesting to further explore the role of interactions
in the quantum Hall regime in the tilted field geometry [45].
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APPENDIX A: CALCULATION OF MATRIX ELEMENTS

Here we calculate the matrix element in Eq. (11). Using the
spinor structure of the wave functions (7) and assuming that
|n| � |m|, we write

wn,m/w

= 〈�n,px
|�m,px−q〉

=
⎧⎨
⎩

(M|n||m| + sgn(nm)M|n|−1 |m|−1)/2, |m| > 0,

M|n|0/
√

2, |n| > m = 0,

M00, n = m = 0,

(A1)

where

M|n||m| = 〈φ|n|,px
|φ|m|,px−q〉 (A2)

is the matrix element between the shifted harmonic-oscillator
functions. As discussed in Sec. III, the shift in momentum
�px = −q corresponds to the spatial shift by �y = q/eBz =
ql2/�. So, the matrix element (A2) can be expressed via the
translation operator p̂y = −i�∂y :

M|n||m| = 〈φ|n|,px
|eip̂yql2/�

2 |φ|m|,px
〉, (A3)

where p̂y = �(â − â†)/i l
√

2 is written in terms of the lower-
ing and raising operators. Then we use the Baker-Hausdorff
formula to decouple the operators in the exponent:

M|n||m| = 〈φ|n|,px
|e(â−â†)β |φ|m|,px

〉
= e−β2/2〈φ|n|,px

|e−â†βeâβ |φ|m|,px
〉,

where the parameter β is defined in Eq. (12). Expanding the
exponential functions and using the algebra of the raising and
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lowering operators, we obtain

M|n||m| = e−β2/2(−β)|n|−|m|

×
√

|n|!
|m|!

|m|∑
k=0

(−β2)k |m| . . . (|m| − k + 1)

k!(|n| − |m| + k)!

= e−β2/2(−β)|n|−|m|
√

|m|!
|n|! L

(|n|−|m|)
|m| (β2), (A4)

where we use the definition of the Laguerre polynomials in
the last line. The matrix elements for |m| > |n| are obtained
by interchanging n and m and altering the sign β → −β.

APPENDIX B: DERIVATION OF TUNNELING
CONDUCTANCE

Here, we give a brief derivation of the out-of-plane
tunneling conductance (21) between the two layers. In the
tunneling-current formalism [46] for small interlayer coupling
w, we write

Gzz = dIz

dVz

= 2πe2

�

∑
n,m,px

|wn,αm|2 ρn(EF ) ραm(EF ), (B1)

where n,m are the integers labeling the Landau wave functions
on the different layers, and wn,m are the tunneling matrix
elements (11). In the chosen gauge, the momentum px defines
the coordinate y = −px/eBz around which the Landau wave
functions are localized, as discussed in Sec. III. Thus, for a
double layer of the finite size Lx and Ly , we have∑

px

→ Lx

2π�

∫ eBzLy/2

−eBzLy/2
dpx = eBzLxLy

2π�
, (B2)

where Lx defines the normalization of the differential dpx ,
whereas Ly defines the limits of integrations. So, the tunneling
conductance becomes

Gzz = e2

�

eBzLxLy

�

∑
n,m

|wn,αm|2 ρn(EF ) ρm(EF ), (B3)

Note, that the second fraction containing the magnetic field
Bz represents the degeneracy of the Landau levels. We assume
that DOS of the Landau level n has a finite width 	 [47]:

ρn(E) = 1√
π	

exp

[
− (E − En)2

	2

]
. (B4)

If the width 	 
 |En − En±1| is much smaller than the energy
difference between consecutive Landau levels, the tunneling
conductance (B3) can be approximated as

Gzz = e2

�

eBzLxLy

�
|wn,αn|2ρ2

n(EF ), (B5)

thus producing Eq. (21).
The effect of the Landau levels DOS profile on AMRO

was studied in Ref. [47]. Reference [47] also contains a
derivation of the tunneling conductance for a large Landau
level broadening 	 	 |En − En±1|.

APPENDIX C: DERIVATION OF THE MAGNETIC
BREAKDOWN FIELD

Here we derive Eq. (27) for the magnetic breakdown field
using the Landau-Zener theory of tunneling. The Fermi circles

corresponding to different layers intersect at the angle χ at the
points A and F in Figs. 1(b) and 2. In the vicinity of, e.g., point
A in the momentum space, the effective Hamiltonian of the
double layer in the basis (ψ1,ψ2) can be approximated as[

( p − pA) · v1 w′
w′ ( p − pA) · v2

]
, (C1)

where v1 and v2 are the local velocities of the two orbits
at the point A, and w′ is the local effective coupling. It is
convenient to use the reference frame in momentum space
where pA = 0, and the x axis bisects the angle χ . Then the
velocities are v1 = v(−sin χ

2 , cos χ

2 ) and v2 = v(sin χ

2 , cos χ

2 ),
and the Hamiltonian becomes[−vpx sin χ

2 + vpy cos χ

2 w′
w′ vpx sin χ

2 + vpy cos χ

2

]
. (C2)

In the perpendicular magnetic field Bz described by the
gauge A = −yBz x̂, the momenta become (px,py) → (px +
eBzy,py). The quasiclassical dynamics of a wave packet
moving in the top layer is governed by the upper-diagonal
element of Hamiltonian (C2):

h1 = −v(px + eBzy) sin
χ

2
+ vpy cos

χ

2
. (C3)

The classical equations of motion can be integrated:

ẏ = ∂h1

∂py

= v cos
χ

2
, ⇒ y(t) = t v cos

χ

2
− px

eBz

,

ṗy = −∂h1

∂y
= evBz sin

χ

2
, ⇒ py(t) = t evBz sin

χ

2
,

where the initial conditions are chosen so that h1(0) = 0.
Substituting these solutions into the double-layer Hamilto-
nian (C2), we find the Landau-Zener Hamiltonian with the
time-dependent lower diagonal element[

0 w′

w′ t ev2Bz sin χ

]
. (C4)

According to the Landau-Zener formula, the probability that
the wave packet stays on the same orbit ψ1 is

P = exp

(
− 2πw′2

�ev2Bz sin χ

)
= exp

(
−B0

Bz

)
, (C5)

where B0 is the magnetic breakdown field

B0 = 2πw′2

�ev2 sin χ
. (C6)

The above consideration is applicable to double layers
with both parabolic and Dirac energy dispersion. However,
in the Dirac case, the effective tunneling w′ is determined
by the scalar product of the spinor wave functions (5) in
the opposite layers. The angle between the pseudospins is
χ for α = 1 and π − χ for α = −1, so the effective couplings
are w′ = w cos(χ/2) and w′ = w sin(χ/2), respectively. We
further express the angle sin(χ/2) = q/2pF via the magnetic
shift q and obtain Eq. (27):

B0 =

⎧⎪⎨
⎪⎩

2πpF w2

�ev2q

√
1 − q2

4p2
F

, α = +1,

πqw2

2�ev2pF

√
1− q2

4p2
F

, α = −1.
(C7)
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