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Instability-induced formation and nonequilibrium dynamics of phase defects
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We study, theoretically and numerically, the onset and development of modulational instability in an
incoherently pumped spatially homogeneous polariton condensate. Within the framework of mean-field theory,
we identify regimes of modulational instability in two cases: (1) strong feedback between the condensate and
reservoir, which may occur in scalar condensates, and (2) parametric scattering in the presence of polarization
splitting in spinor condensates. In both cases we investigate the instability-induced textures in space and time
including nonequilibrium dynamics of phase dislocations and vortices. In particular we discuss the mechanism
of vortex destabilization and formation of spiraling waves. We also identify the presence of topological defects,
which take the form of half-vortex pairs in the spinor case, giving an “eyelet” structure in intensity and dipole-type
structure in the spin polarization. In the modulationally stable parameter domains, we observe formation of the
phase defects in the process of condensate formation from an initially spatially incoherent low-density state. In
analogy to the Kibble-Zurek-type scaling for nonequilibrium phase transitions, we find that the defect density
scales with the pumping rate.
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I. INTRODUCTION

The formation of complex spatiotemporal patterns and
textures is a particularly intriguing phenomenon occurring
in a diverse range of physical systems [1,2]. The patterns
commonly arise in nonlinear dissipative systems driven far
from equilibrium. Among examples of such systems, exciton-
polaritons in semiconductor microcavities have emerged as a
hybrid light-matter system with strongly nonlinear properties.
Effects such as Bose-Einstein condensation [3–5], superfluid-
ity [6–8], and the formation of solitons [9–13] have been well
documented in the literature [14,15].

A particularly important nonlinear effect in the context of
pattern formation in microcavities is the parametric scattering
of resonantly excited polaritons in planar semiconductor
microcavities [16–19]. The pair scattering of pairs of polaritons
to different states in reciprocal space allows a homoge-
neous polariton field to spontaneously break translational
symmetry. This effect enables the formation of ordered
hexagonal/triangular lattices, predicted theoretically [20–22]
and observed experimentally [23] under different excitation
conditions, as well as lattices of breathing solitons [24].

Under nonresonant/incoherent excitation, vortex lattices
were predicted to occur in harmonic traps [25,26] and
later observed in experiments involving multiple excitation
spots [27]. The formation of multilobed [28] and vortex-
antivortex patterns [29] under ring-shaped excitation, as well as
sunflower ripples [30] excited by a narrow pump spot, have also
been reported. In these examples, the translational symmetry
of the system is already broken by the chosen shape of the
pump spot and/or the presence of a gradient in the potential of
polaritons (as in, for example, the case of harmonic traps [4]).

In this work we consider the possibility of spontaneous
breaking of translational symmetry and pattern formation
in planar microcavities excited by a spatially homogeneous
incoherent pump. The pumping creates a reservoir of “hot”
exciton-like polaritons, which form a polariton condensate
through a stimulated scattering process. The translational
symmetry breaking is triggered by linear instability of the
homogeneous condensate to spatial modulations, and the
nonlinear evolution of the unstable state leads to formation
of spatial patterns. We consider two different mechanisms of
such modulational instability (MI) in this system. The first one
arises when the polariton condensate has a strong feedback
effect on the reservoir, in the form of reservoir depletion
due to stimulated scattering of reservoir excitons into polari-
tons. In this case, while polariton-polariton interactions are
repulsive, the essentially saturable nature of exciton-polariton
interactions may lead to effectively attractive nonlinearity for
sufficiently low pump powers [31]. This effective focusing
nonlinearity in the system naturally leads to MI of a spatially
homogeneous state, which was established in several previous
studies for both quasi-1D and 2D geometry [15,26,31–35].

Modulational instability is also known in spin-1 Bose-
Einstein condensates of ultracold atoms due to parametric cou-
pling [36–39] and nonlinear interactions between spin com-
ponents [40], as well as in 1D exciton-polariton condensates
with a spin (polarization) degree of freedom [41]. Although
polariton systems are nonconservative and nonequilibrium,
the two-component spin degree of freedom of polaritons
does allow a second mechanism of MI, which works also in
the defocusing regime where a strong condensate-reservoir
feedback is unnecessary. A circularly polarized excitation
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splits the energy of the σ+ and σ− states due to anisotropic
interactions [42,43] occurring between the spin-polarized
reservoir and condensed polaritons. This splitting sets the
foundation for a parametric scattering process as polaritons in
an initially homogeneous state with wave vector k = 0 on the
upper spin-split branch can now scatter to degenerate nonzero
wave vector states on the lower branch, reminiscent of experi-
ments under resonant excitation in triple microcavities [44] or
experiments in one-dimensional polariton systems [45]. While
such a scattering process is not strictly allowed in isotropic
cavities as it would violate spin conservation, the presence
of sample anisotropy, which typically causes an additional
linear polarization splitting and hybridization of the σ+ and
σ− branches, relaxes this limitation.

By considering the stability of the steady states of the
system to weak perturbations, we find the zones of MI in
the two different regimes. In the scalar case, where MI is
derived from the condensate-reservoir feedback, we find that
the homogeneous state breaks its translational symmetry and
forms a turbulent state of phase dislocations, i.e., vortices.
Unlike the previously studied cases, vortices do not form
as the result of thermal fluctuations [46] or scattering on
disorder [47]. Rather, the spatial fragmentation of the initially
homogeneous condensate due to the development of MI creates
multiple interference between polariton flows generated by the
randomly distributed sources, which leads to the development
of multiple phase dislocations, similar to the scenario pre-
viously considered for multiple pump spots [48] and highly
inhomogeneous trapped polariton condensates [26,49].

In the case of modulationally stable background, we show
that multiple phase singularities can appear as a result of
mean-field evolution of an initial white noise state, which
mimics a precondensate state lacking spatial and phase
coherence. Remarkably, formation of multiple vortices in this
scenario seems to be analogous to, but not the same as,
the Kibble-Zurek mechanism, which acts during the quench
through a phase transition to the Bose-Einstein condensation
(BEC) [50,51]. Indeed, the latter describes the formation of
boundary defects between different domains of condensate
which develop an independent phase rather than inheriting it
from the neighboring spatial domains [52,53].

We stress that the process of defect formation dur-
ing nonequilibrium condensation of exciton-polaritons does
not follow the scenario of the Kibble-Zurek mecha-
nism [51,54,55]. The main difference is that in the latter, it
is assumed that the system is initially in thermal equilibrium,
and is driven out of equilibrium only in the vicinity of
the phase transition [51,55]. The process is divided into
three phases, corresponding to adiabatic-impulse-adiabatic
evolution. In nonequilibrium condensation, the system is far
from equilibrium at the outset, and the transition to the
quasiequilibrium (condensed) state occurs only after crossing
the critical point.

Nevertheless, the Kibble-Zurek mechanism and the defect
formation in nonequilibrium systems have much in common.
In both cases, defects are created due to symmetry breaking
in separate parts of the system which cannot communicate
in a finite time. In both cases, there is a competition of
two time scales existing in the system, which results in the
same algebraic forms of power-law scalings for the number

of defects and their characteristic creation time [54]. In the
polariton condensation case, the quench time is replaced by
the time scale of the formation of the condensate, which is
controlled by the external pumping rate. We refer the reader
to Sec. IV D and Ref. [54] for the detailed description of the
process.

Regardless of the mechanism of the vortex formation,
either as the result of the MI development or as a result
of transition to BEC, we show that the presence of the
incoherent reservoir affects substantially both stability of
vortices and their collective dynamics even for the case of
a stable homogeneous background. As a consequence, the
vortices can lose their radial symmetry and develop either
into spatially localized rotating phase dislocations or into
nonlocalized spiraling waves.

A similar situation occurs in the spinor case, although
multiple branches of modulationally unstable and stable
solutions are present. Defects in the spin polarization of the
condensate may appear even in the modulationally stable
regime. Such structures move randomly in the microcavity
plane and are composed of half-vortex [56] half-antivortex
pairs [57], exhibiting an associated dipole-type spin tex-
ture. We predict that the density of vortices grows with
increasing pump power similarly to the Kibble-Zurek scaling
behavior.

The paper is organized as follows. In Sec. II, we describe
the mathematical model of a semiconductor microcavity
operating in the strong-coupling regime under the incoherent
homogeneous optical pump of a circular polarization. Then, in
Sec. III, we study the stability and collective dynamics of phase
dislocations in a single-component polariton condensate. Here
the dynamics is mostly affected by the modulational instability
originating from the strong feedback between the condensate
and reservoir. In Sec. IV, we report a numerical analysis of the
condensate dynamics in the presence of polarization splitting
in spinor condensates. In Sec. IV D, we study the defect
formation and the scaling laws for their density in analogy
to the Kibble-Zurek mechanism.

II. THEORETICAL MODEL

Let us begin by considering the incoherent excitation of a
spinor polariton system, i.e., the system where the polarization
degree of freedom is significant. The scalar case, which is
valid when only one spin component is populated, is then
easily obtained by removing one of the spin components. It
is worth recalling that experiments with a circularly polarized
optical pump have resulted in the excitation of a circularly
polarized polariton condensate at the pump position, in both
2D [58] and 1D [59] samples. A theoretical model can be based
on the generalized Gross-Pitaevskii approach [35], where a
condensate of exciton-polaritons can be described by the wave
functions ψ+ and ψ− of the σ+ and σ− circularly polarized
states, respectively:

i�
dψ+
dt

=
(

−�
2∇2

2m
+ g1nR + α1|ψ+|2 + α2|ψ−|2

)
ψ+

+ i�(rnR − �)ψ+ + �XY ψ−, (1)
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i�
dψ−
dt

=
(

−�
2∇2

2m
+ g2nR + α2|ψ+|2 + α1|ψ−|2

)
ψ−

− i��ψ− + �XY ψ+. (2)

Here we assume that the circularly polarized pumping creates
a circularly polarized reservoir, nR , with dynamics described
by the rate equation:

dnR

dt
= −(�R + r|ψ+|2)nR + P, (3)

where P represents the pumping rate. Nonlinear interactions
between polaritons are characterized by α1 and α2, represent-
ing the interaction strengths between parallel and antiparallel
spins [42,43], respectively. Similar parameters, g1 and g2,
characterize the blueshift caused by the circularly polarized
reservoir. � is the polariton decay rate. �XY represents
a linear polarization splitting, which has been reported in
several experimental studies [60–62] and can take values of
0–0.2 meV [60,63]. Even larger values can be expected by the
application of magnetic fields (in the Voigt configuration).

We note that in the limit �R � �, it is possible to proceed
by adiabatic elimination of the reservoir dynamics [26,41].
However we do not make such an approximation here since
the reservoir dynamics is important for our further analysis.

III. NONEQUILIBRIUM DYNAMICS IN
THE SCALAR CASE

A. Modulational instability of the homogeneous steady state

If we consider a circularly polarized pump in a microcavity
with negligible polarization splitting (�XY = 0), then the
model can be reduced to a scalar one (ψ = ψ+) without the
second polarization component (ψ− = 0). First, we study a
scalar steady-state homogeneous solution (HS) of the system
of Eqs. (1)–(3) and discuss its stability. For the sake of
generality we allow also the HSs with nonzero transversal
momenta k0 �= 0, which have the form of traveling waves

ψhs(x,t) = ψ0e
−i μ(k0,|ψ0|)t+ik0x, (4)

where the condensate energy is given by �μ(k0,|ψ0|) =
(�2/2m)k2

0 + α1|ψ0|2 + g1nR0. The HS becomes nontrivial
provided that the external pump compensates for all losses
and overcomes the threshold value [35]: Pth = ��R/r . The
coherent exciton-polariton density and incoherent reservoir
density are given by |ψ0|2 = (P − Pth)/� and nR0 = �/r ,
respectively.

The linear stability analysis of the homogeneous steady
state of our scalar system and its modifications has been
previously performed by many authors [15,31–35]. For our
choice of the system parameters, the linear stability analysis
shows that the HS becomes modulationally (dynamically)
unstable within a pump interval just above the threshold value
of the pump Pth [Fig. 1(a)] (details of the analysis are given in
the Appendix). This MI is associated with the parametrical
generation of field components with nonzero momenta k.
Figure 1(b) presents the linear growth rate Im ω(k) > 0 of
the unstable perturbations as a function of their momenta k.

It has been shown recently [31] that this MI is associated
with the effective attractive nonlinearity induced by the
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FIG. 1. (Color online) Steady-state solutions of the model (1)–
(3) and their stability for a circularly polarized pump (�XY = 0).
(a) The homogeneous solution (HS) (|ψ0|2) as a function of pump P .
The dotted line depicts the modulational instability (MI). (b) Growth
rates [Im ω (ps−1)] of the small perturbations (around |ψ0|2) as a
function of momentum k and HS density |ψ0|2. The vertical axis is
the same as in (a) and the horizontal dashed (blue) line connecting
(a) and (b) indicates that the boundary of modulational instability
occurs for the same maximum homogeneous density. Snapshots of the
condensate phase in real space (c) and the density in two-dimensional
reciprocal space (d) within the MI domain of a HS for pump P =
9 ps−1 μm−2. kcutoff can be identified as the magnitude of the in-plane
wave vector at which all unstable modes disappear. Parameters: α1 =
6 × 10−3 meV μm2, g1 = 4α1, � = 0.165 ps−1, r = 0.01 ps−1 μm2,
�R = 0.5 ps−1. The polariton effective mass was taken as ×10−4 of
the free electron mass.

saturation of the incoherent reservoir. Indeed, based on the
intuition gained from paradigm nonlinear models, such as the
Schrödinger equation with a Kerr nonlinearity, one expects
that the existence of the MI requires a focusing nonlinearity
[64–67]. However, owing to repulsive interactions between
excitons, the nonlinear behavior of an exciton-polariton con-
densate is akin to that of optical waves in a defocusing media.
This seeming contradiction clearly elucidates the influence of
the open-dissipative nature of the system on the nonlinear
behavior [31], which requires inclusion of an incoherent
reservoir of “hot” excitons. To illustrate this influence we
consider a nonlinear energy shift induced by both the coherent
exciton-polaritons and the incoherent reservoir

�μnl(|ψ |2) = α1|ψ |2 + g1
P

�R + r|ψ |2 . (5)

We note that the polariton density |ψ |2 corresponds to a
steady-state solution which, in general, is not necessarily
given by the homogeneous value |ψ0|2. The reservoir intensity
nR follows this steady-state solution |ψ |2. The first term of
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FIG. 2. (Color online) (a) Effective nonlinear energy shift �μnl

versus the condensate density, |ψ |2, for different pump P . Dashed
lines (with the negative slope) represent an effectively focusing
nonlinear response (or nonlinear red shift). The gray triangle
represents the intensities |ψ |2 exceeding values given by the steady-
state homogeneous solutions (|ψ0|2). (b) Vortex width (FWHM) vs
the pump P . The dashed line represents the width approximated
by the value ≈3.5ξ . dmax depicts the maximal diameter allowed
for stable vortices; see Eq. (9). (c) The radial dependence of the
condensate and reservoir density within the vortex profile for P = 20
ps−1 μm−2. (d) The real and imaginary parts of the ψ within the
vortex profile given in (c). Other parameters are the same as in Fig. 1.

Eq. (5) describes the blueshift originating from the repulsive
exciton-exciton interaction, whereas the second term describes
the saturation of the reservoir. We define the effective nonlin-
earity coefficient as geff = �∂μnl/∂|ψ |2. Then the nonlinear
response is effectively focusing provided that the coefficient is
negative geff < 0. Otherwise, if geff > 0 the nonlinear response
is defocusing or repulsive [see thick solid lines in the Fig. 2(a)].
In the vicinity of the steady-state HS with intensity |ψ0|2 this
coefficient takes the form (cf. Eq. (36) in Ref. [31])

geff = α1

(
1 − g1�

2

α1rP

)
. (6)

The effective nonlinear coefficient [Eq. (6)] changes sign for a
pump value PMI = g1�

2/α1r . It means that in the vicinity
of the HS the nonlinear response changes character from
effectively focusing to effectively defocusing. As a result the
modulationally unstable HS becomes stable exactly at this
point P = PMI . The condition PMI > Pth gives a general
criterion for the appearance of MI derived in Ref. [31]:

g1�

α1�R

> 1. (7)

Within the MI interval (Pth < P < PMI ) indicated in
Fig. 1(a), the HS experiences spontaneous translational

symmetry breaking, resulting in the formation of nonuniform
turbulent states of the condensate.

The result of a direct numerical calculation is shown in
Fig. 1(c). In these calculations and those presented throughout
the paper we use a square grid with at least 128 × 128 points
covering the plot area. We make use of an adaptive-step
Adams-Bashforth-Moulton procedure, which was previously
found to be consistent with fixed step methods with an
integration step of 0.01 ps. To double-check the results of our
numerical simulations we repeated them with higher precision
using up to 1024 × 1024 grid points. Unless stated otherwise,
periodic boundary conditions are applied.

The strongly nonequilibrium state in Fig. 1(c) includes
one- and two-dimensional phase dislocations which move
chaotically and overlap. Therefore this dynamics can be
characterized as a “strong” turbulence regime with overlap-
ping defects (see Ref. [48] and references therein). Two-
dimensional Fourier transformation shows that most of the
spatial momenta are bounded within the ring with the radius
given by the cutoff momenta of the unstable modes kcutoff

[Fig. 1(d)]. Note that direct numerical simulations of the
model (1), (3) for different initial conditions did not reveal
the formation of stationary periodical patterns, known for the
coherently pumped polaritonic systems [20–23]. This is due to
destabilization caused by fluctuations in the exciton reservoir.
The modulational instability discussed later in the spinor case
(Sec. IV) does not depend on having a dynamic reservoir and
can largely be reproduced assuming a static reservoir [25]. This
allows an explicit testing of the effect of the dynamic reservoir
in the spinor case, where we find that periodic patterns are
possible with a static reservoir but are prevented as soon as the
reservoir density is allowed to evolve spatiotemporally. We
assume that it is the freedom for density fluctuations to appear
in the reservoir that leads to the disruption of regular patterns
in the condensate also in the scalar case.

B. Single vortices in the dynamically stable regime

The reservoir contribution becomes negligible in the limit
of very strong pump P � Pth. We expect that in this case
the nonlinear dynamics is very similar to that known for
the conservative systems, including the formation of the
stable phase dislocations and vortices. Indeed the scalar
version of the equations possesses vortex solutions within
the stability interval of the HS for P > PMI [see Figs. 2(b)
and 2(c)]. Similarly to the conservative case, one can define
a characteristic length or an effective healing length in the
vicinity of the HS |ψ0|2:

ξ (P ) = �√
2m geff|ψ0(P )|2

. (8)

The healing length is a typical length scale over which ψ

can change significantly. It also gives the typical size of
the vortices. More precisely the full width at half maximum
(FWHM) of the vortices is approximately given by d ≈ 3.5ξ

at least for a strong enough pumping [P � Pth in Fig. 2(b)].
It is worth mentioning that the spatial oscillations of the
real and imaginary parts of the amplitude profiles of the
vortices go substantially beyond the healing length [Fig. 2(d)],
especially for a moderate pumping in the vicinity of the MI.
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This indicates permanent energy and polariton exchange
within the vortex profile. The presence of these intrinsic
fluxes essentially changes the interaction dynamics between
vortices [68] providing a purely dissipative mechanism for
their mutual repulsion.

The radial symmetry of the vortex phase is broken
also for an inhomogeneous pump, for instance, a Gaussian
pump [13,26]. As a result, the vortices have spiraling phases
indicating again the permanent exchange of particles between
different points within the resonator plane.

The stability analysis, discussed in the context of the HSs,
can also be applied to the vortices, at least in the limit of very
broad states. Indeed, following the healing length ξ (P ), the
vortex width increases for smaller values of the pump and
diverges in the vicinity of the MI [P = PMI in Fig. 2(b)].
The formal condition for the effective focusing nonlinearity
[geff(|ψ |2) < 0] is always satisfied within the vortex profile
close enough to its core. Therefore the steady-state condensate
on a circle with a fixed radius 
c ≡

√
x2 + y2 and density

|ψ(
c)|2 can become unstable against spatially modulated
perturbations. The periodical boundary conditions on the circle
restrict the number of available momenta to the values kc �
n/
c, where n is an integer. In the limit of large radius 
c → ∞
the values of the unstable momenta can be approximated by
those values calculated for the HSs [see Fig. 1(b)]. Therefore
the polariton condensate becomes unstable provided that at
least one of the available momenta (kc � n/
c) is smaller
than the cutoff value kcutoff ≈ 0.19 μm−1 for MI. This allows
estimation of the vortex diameter dmax where the instability just
sets in; i.e., kcutoff = 2/dmax. Therefore the vortices are stable
provided that their diameters do not exceed the maximal value
given by

dmax � 2k−1
cutoff . (9)

It is shown in Fig. 2(b) that the vortex diameter exceeds the
maximal value dmax within the pump interval PMI < P �
18 ps−1 μm−2 in the vicinity of the MI domain. As we will
see below (in Sec. III C) they become unstable and lose their
radial symmetry.

C. Collective dynamics of vortices

Beyond the MI instability interval for P > PMI the
nontrivial HS solution is stable. However, at the onset of
condensation when it passes into the mean-field regime, the
polariton state is spatially incoherent, with random phase.
This leads to the generation of phase defects as the system
goes through the condensate transition, in analogy to the
Kibble-Zurek theory. To go beyond the mean-field approxi-
mation and describe first and second order spatial coherences
when crossing the condensation threshold, one can make
use of stochastic classical field approaches [69,70]. These
describe the precondensate state as an ensemble of fluctuating
white noise states (governed by a stochastic Gross-Pitaevskii
equation). The projection onto the classical condensate state
upon condensation selects a particular realization of the noise.
After the condensate has formed we assume that fluctuations
are weak in comparison to the condensate mean field and can be
neglected. This approach reproduces the typical establishment

and coherent evolution of topological defects in polariton
condensate experiments [57,71]. We note that the account of
fluctuations throughout the evolution would be important for
describing accurately spectral polariton properties or the po-
lariton photoluminescence below threshold [69]. Fluctuations
can in principle shift the phase boundaries between stable and
unstable regions [72]; however, these shifts are expected to be
limited and have little further effect on the dynamics.

For a pumping substantially above the MI threshold the
dynamics is dominated by the defocusing nonlinearity of a
pure condensate (α1). The influence of dissipative dynamics
of the reservoir becomes less important. Using the scalar
version of the governing equations (1), (3) we calculated the
condensate dynamics starting with a spatially incoherent state
given by a small-amplitude white noise. Our initial condition
mimics a particular realization of the stochastic precondensate
state. Similar to the conservative limit we observed the
formation of a spatially coherent condensate accompanied
by the spontaneous formation of the vortices which move
chaotically and interact with each other. Two vortices with
equal (opposite) topological charges repel (attract) each other.
Two attracting vortices mutually annihilate if the distance
between them becomes smaller than the healing length.
Therefore, as discussed in Ref. [48], the whole number of
vortices drops gradually with time and approaches zero, at
least for a very strong pump P > 40 ps−1 μm−2.

In contrast, for a weaker pump, the number of phase
singularities converges eventually to some constant value
indicating the formation of a coherent state with a finite number
of dislocations, i.e., a superfluid turbulence [Fig. 3(a)]. A
snapshot of the intensity and phase profiles shows a state of
very distinguishable vortices [Figs. 3(b) and 3(c)]. The vortices
move chaotically, interacting with their neighbors, and, in
general, sustain a dynamical equilibrium. It is remarkable
that the average separations between nearest vortices remains
more or less constant for this particular interval of pump
values. This means that there exists some equilibrium distance
between vortices. Apparently the influence of the dissipative
effects and the condensate flows (mentioned in Sec. III B)
are substantial [68]. The outgoing condensate flows from the
vortex centers hinder attraction between vortices and their
annihilation. For even weaker pump the dissipative effects
become stronger and, as a consequence, the average distance
between vortices under dynamical equilibrium becomes even
smaller [Figs. 3(d), 3(e), and 3(f)]. We note that this dynamical
equilibrium forms over a long time scale exceeding hundreds
of nanoseconds. Therefore the Kibble-Zurek-like scaling law
does not describe the number of vortices in this regime (see
Sec. IV D below).

Even though the HSs are stable, the nonlinear dynamics
of vortices is strongly affected by the reservoir saturation
dynamics. The numerical modeling shows that the vortices
themselves become unstable and develop into radially asym-
metric rotating structures, as can be seen in the snapshot
profiles in Figs. 3(e) and 3(f) (a movie showing the time
dynamics is available in the Supplemental Material [73]).
This is in agreement with the destabilization scenario for the
vortices discussed in the previous subsection. Indeed the vortex
size exceeds the maximal diameter dmax given by Eq. (9) and
therefore becomes unstable.
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FIG. 3. (Color online) Nonlinear dynamics of the condensate
beyond the MI threshold for (a), (b), (c) P = 25 ps−1 μm−2 and (d),
(e), (f) P = 17.5 ps−1 μm−2. (a), (d) Long-time evolution dynamics
of the dislocations number. (b), (e) Snapshots of the condensate
density (μm−2) profiles. (c), (f) Snapshots of the condensate phase
profiles. See also the Supplemental Material [73]. Parameters are the
same as in Fig. 1.

D. Formation of spiraling waves

In the vicinity of the MI the vortices are strongly unstable
and the initial noise first develops into nonuniform dynamical
states similar to those which appear for the modulationally
unstable background [Figs. 4(a) and 4(b)]. In this “strong”
turbulence regime [48] the characteristic distance between
vortices is substantially smaller than their typical core size, so
the vortices are not structured and the chaotic behavior is seen
on the level of a single vortex. However, after some sufficiently
long time of about several thousand polariton lifetimes, the
system switches spontaneously into a more regular regime,
characterized by the formation of a single spiraling topological
dislocation (Fig. 4) (a movie showing the time dynamics is
available in the Supplemental Material [73]). This spiraling
topological state drives away other phase dislocations in
the system and covers eventually the whole computational
window provided that PMI < P � 16 ps−1 μm−2. Similar
spiraling waves are known for other nonequilibrium dissipative
systems [74,75]. In the simplest case they are solutions of the
complex Ginzburg-Landau equation.

It is worth articulating the differences between the spiraling
topological states and the vortices. First, there is no rotational
symmetry in the profiles (Fig. 4). Second, these topological
states are not stationary and experience uniform rotation of the
density with a typical rotation period of about 144 ps. Third,
far from the center the profile converges to the homogeneous
traveling wave solution given by Eq. (4) with the amplitude
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0 300
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(f)

0 42

-

FIG. 4. (Color online) Snapshots of the condensate intensities
[(a), (c), (e)] and phase profiles [(b), (d), (f)] for different time
points and P = 13.5 ps−1 μm−2. (a), (b) Initial turbulent state of
the condensate at t = 1000 ps. (c), (d) Onset of a spiraling wave at
t = 5000 ps. (e), (f) The spiraling waves at t = 11 000 ps. The rotation
period of the spiraling wave is 144 ps. See also the Supplemental
Material [73]. Other parameters are the same as in Fig. 1.

ψ0 and a nontrivial momentum k0. Apparently this solution is
characterized by a permanent radial flux of exciton-polaritons
from the vortex center to the periphery and therefore resembles
a pointlike source of ring waves. We note that these spiraling
waves can exist only in nonequilibrium dissipative systems.

An important question remains as to whether the spiraling
state with a nonzero orbital angular momentum can emerge
from the initially nonrotating turbulent state. Indeed, according
to the conservation law of the total orbital angular momentum,
the phase dislocations appear in pairs which is also valid
for the turbulent state considered here. Apparently the local
intensity fluctuations break the symmetry between the two
dislocations within a pair in such a way that only one of them
develops into the spiraling wave. The periodical boundary
conditions (in x and y directions) were used in our numerical
modeling. However, we have confirmed that the spiraling
waves appear with the same probability independently of
the computational window size and particular realizations
of the initial seeding noise. Moreover, since some phase
dislocations are always present [see Figs. 4(e) and 4(f)], the
total orbital angular momentum of the condensate within the
computational window remains zero. We performed additional
numerical simulations of the condensate dynamics under a
localized pump with a “flat-top” shape in the form of a
super-Gaussian intensity distribution. It turned out that the
spiraling waves appear also for the localized pump where
the condensate density vanishes at the boundaries of the
computational window. These calculations serve as a solid
proof of the existence of the spiraling waves independently of
a particular choice of the numerical boundary conditions.

In general the outgoing radiation from the center of the
topological solution repels the local inhomogeneities of the
profile and other topological solutions. This gives an additional
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purely dissipative mechanism which enforces a long-range
spatial coherence in nonequilibrium systems operating in the
regime of “strong” turbulence.

IV. NONEQUILIBRIUM DYNAMICS IN THE SPINOR CASE

A. Stability of homogeneous states

In the presence of nonzero polarization splitting (�XY �= 0),
the population of σ− components appears even for a fully
polarized σ+ pumping. To emphasize the difference from the
nonlinear dynamics discussed above (see Sec. III) we consider
system parameters which do not satisfy the MI criteria (7) and,
therefore, guarantee the stability of homogeneous solutions in
the scalar limit.

Homogeneous stationary solutions can be found by substi-
tuting trial solutions in the form ψ±(t) = ψ±e−iμt into Eqs. (1)
and (2). This gives four stationary equations for real and
imaginary parts of the amplitudes. These are supplemented
by the requirement that the time derivative in Eq. (3) vanishes
for a steady state; that is, |ψ+|2 = 1

r
( P
nR

− �R). Noting that the
phase reference of the system can be freely chosen, we can
for simplicity set Im{ψ−} = 0, which allows one to find the
relation Re{ψ−} = �XY

�
Im{ψ+} from one of the four stationary

equations. The remaining three equations can be solved for the
remaining unknown quantities: Re{ψ+}, Im{ψ+}, and μ.

The dependence of the stationary HSs on the pumping
power is shown in Figs. 5(a) and 5(b). Linear stability of the
steady states can be determined by the standard extension of the
Bogoliubov–de Gennes analysis [15,31–35,41] by considering
perturbations in the polariton and reservoir fields of the form
δψ± = u±ei(kx−ωt) + v∗

±e−i(kx−iω∗t) and δnR = w(ei(kx−ωt) +
e−i(kx−ω∗t)), respectively. The details of the derivation can be
found in the Appendix.

(a)

(b)

(c)

FIG. 5. (Color online) Stationary solutions to Eqs. (1)–(3).
(a) and (b) show the dependence of the σ+ and σ− polarized polariton
populations on the pumping strength, respectively. The different
branches are labeled stable (S), MI, and single-mode unstable (U).
(c) Parametrically unstable zones of the MI1 and MI2 branches.
The shading illustrates the gain of the instability (given by the
imaginary part of ω) for the MI2 solution. The gray rectangle denotes
a region below condensation threshold where ψ± = 0. The vertical
line represents the pump intensity considered in Fig. 7 and Fig. 9.
Parameters: α1 = 1.55 × 10−4 meV μm2, α2 = −0.1α1, g1 = α1,
g2 = α2, � = 0.033 ps−1, r = 0.01 ps−1 μm2, �R = 10 ps−1, �XY =
0.1 meV, P = 92 ps−1 μm−2. The polariton effective mass was taken
as 5 × 10−5 of the free electron mass.

The stationary states labeled U1 and U2 in Figs. 5(a) and 5(b)
are unstable to fluctuations with k = 0. This “single-mode
instability” indicates that even in a confined system (e.g.,
micropillar) the homogeneous steady state would be linearly
unstable in the Lyapunov sense and any spatially homogeneous
perturbation would grow. The stationary states labeled MI1

and MI2 are unstable to spatial modulations with nonzero
wave vectors k. These states would be stable in a confined
system, with no spatial degrees of freedom; however, in a
2D planar system the states MI1 and MI2 undergo parametric
scattering. The state labeled S is fully stable, as the imaginary
part of E = �ω remains negative for all wave vectors (see the
Appendix).

The S shape of the curves MI1, MI2, and U2 is characteristic
of multistability, which is a common feature of resonantly
excited microcavities [76–79] but less studied under the
nonresonant or incoherent excitation [80] that we consider
here. While multistability is strictly only present in the
confined system, since the MI1 and MI2 states are unstable
in the presence of spatial degrees of freedom, they can still
give rise to different (nonstationary) configurations under the
same excitation conditions.

Figure 5(c) shows the regions of MI in the system when the
MI1 or MI2 branches are excited. The MI1 branch begins once
the threshold for polariton condensation is passed (indicated
by the gray rectangle), such that only weak pump intensities
are needed to see the effects of MI.

B. Spin textures due to modulational instability

Due to the presence of MI, we can expect the fragmentation
of the homogeneous density of the condensate and spontaneous
formation of spin textures, even in the presence of homoge-
neous pumping. Solving Eqs. (1)–(3) numerically when the
system is excited just above threshold on the MI1 branch, we
obtain the spin texture shown in Fig. 6. In analogy to the
scalar case, the texture comprises a simultaneous modulation
of the intensity and phase in the system, which oscillate with
multiple frequencies. In addition to the scalar case, there is
also an appearance of a nonuniform polarization, despite the
fact that the pumping of the system is homogeneous in both
intensity and polarization.

C. Spin defects in the dynamically stable regime

When the system is excited with a larger pump power,
the system tends to follow the stable branch (S) in Fig. 5. In
this case one can expect a spatially HS due to the stability
of the (S) branch; however, defects present in the initial state
after transition to condensation (in simulations taken as a low-
intensity white noise as in Secs. III C and III D) are trapped in
the system and stabilize with the structure shown in Fig. 7.

The defects have a nontrivial density structure with local-
ized maxima inside of an otherwise circular shaped drop in
density. These “eyelets” are not fixed in their locations, but
move randomly in the plane with a typical speed on the order
of 0.05 μm/ps. The eyelets also possess a characteristic spin
polarization with a dipole-type shape, as shown in Fig. 7(b).
The structure of the eyelets can also be understood when
looking at the phase distribution, which is shown in Figs. 7(c)
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FIG. 6. (Color online) Spinor MI regime. (a) Density pattern of
a polariton condensate under homogeneous incoherent pumping.
(b) Distribution of the circular polarization degree, ρz = (|ψ+|2 −
|ψ−|2)/(|ψ+|2 + |ψ−|2). (c) Phase of the ψ+ polariton field [the ψ−
component (not shown) has a similar dependence]. (d) Time evolution
of the polariton intensity along a slice in real space. Parameters were
the same as in Fig. 5 (a small pump power was chosen so as to excite
only the MI1 branch).
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FIG. 7. (Color online) Spin defect formation without MI.
(a) Density pattern of a polariton condensate under homogeneous
incoherent pumping. (b) Distribution of the circular polarization
degree, ρz = (|ψ+|2 − |ψ−|2)/(|ψ+|2 + |ψ−|2). The black curves
show the path traced out by the eyelets over 1000 ps. (c) and (d)
show the phase of the ψ+ and ψ− polariton fields, respectively. Black
spots indicate the positions of (half) vortices. Parameters are the same
as in Fig. 5 (with P = 84 ps−1 μm−2).

and 7(d) for the σ+ and σ− polarized components, respectively.
Here it is clear that each eyelet is formed from a pair of half
vortices [56]—one appearing in each spin component.

In addition to the slow drift, the eyelets preserve their
shape while undergoing a faster periodic rotation with a period
close to 2π/�XY (a movie of the motion is available in
the Supplemental Material [73]). Apparently this periodical
motion of two bound vortices with opposite spins is induced
by the polarization splitting in spinor condensates. It has been
shown recently [81] that similar spinor effects can evoke
a uniform motion of bound polariton solitons in coherently
driven microresonators.

D. Scaling laws for the defect density

The number of vortices generated in the system outside of
the MI region, during the mean-field evolution of an initially
noisy, low-density state, is found to grow with the pump
intensity, as shown in Fig. 8. The number of vortices is counted
at a time after spatial coherence is established in the system,
where the average polariton and reservoir density achieves a
steady state. Note that at very long times there may be further
recombination of vortex-antivortex pairs.

By taking advantage of the universality of dynamics of
the system in the vicinity of the phase transition, we find
approximate scaling laws governing the number of defects
created during the transition; see solid line in Fig. 8(b). The
scaling laws in the case of exciton-polaritons have similar
forms to the ones obtained from the argument of Kibble and
Zurek [50,51]. However, the dynamics of defect formation is
different due to the fact that the initial state of the system is
strongly out of equilibrium [54]. While in the Kibble-Zurek
mechanism the phase transition is assumed to begin in the
initial state that is close to thermal equilibrium, here the
white-noise initial state is dominated by fluctuations. In both
cases, spontaneous symmetry breaking occurs differently in
separate regions of space which cannot communicate on how
the symmetry is broken due to the finite time scale of the
process. On the borders between these separate regions defects
can appear in the form of domain walls, vortices, or more
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FIG. 8. (Color online) (a) Same as in Fig. 7 under higher power
excitation. (b) Variation of the number of vortices with pump power
obtained numerically. The numerical results are averaged over ten
different initial configurations at each value of pump intensity.
The scaling with pump power is compared to the dependencies
Nd ∼ Pth(1 − Pth/P ) (green curve) and Nd ∼ (P/Pth − 1) (magenta
curve); see Eqs. (15) and (16).
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sophisticated structures, depending on the dimensionality of
the system and the form of the order parameter [50,51,82].

In the case of dynamics described by (1)–(3), starting
from the initial low-density white noise state, the growth
of polariton density initially occurs without establishing any
coherence (a movie showing the dynamics corresponding to
the establishment of the state in Fig. 8(a) can be found in
the Supplemental Material [73]). This corresponds to the first
stage of the process, where there is practically no nonlinearity
and no k dependence of the growth rate. The defects are created
in the second stage, when fluctuations are suppressed due to
nonlinear interactions. In this process, regions of ordered phase
(or patches of a condensate) appear out of the initial disordered
strongly fluctuating phase. Due to spatial and polarization
symmetry breaking, defects are created on the borders between
these condensed regions.

We assume that in the emerging ordered regions described
above the relative phase between the two polarization com-
ponents is approximately equal to π and densities of |ψ+|2
and |ψ−|2 are similar. This assumption is in agreement with
the numerical data presented in Figs. 7(c) and 7(d), where the
phase is equal to π away from the eyelets, and is related to the
fact that such configuration minimizes the energy in Eqs. (1)
and (2). We substitute ψ± = ± 1√

2
ψ to obtain

i�
dψ

dt
=

(
−�

2∇2

2m
+ g1nR + α1 + α2

2
|ψ |2

)
ψ

+ i�

2
(rnR − 2�)ψ − �XY ψ, (10)

dnR

dt
= −

(
�R + r

2
|ψ |2

)
nR + P.

Next, we assume that the reservoir quickly adjusts to the
change of |ψ |2,

nR = P

�R + r|ψ |2/2
. (11)

Let us now assume that there exists a patch of approximately
constant polariton field ψ0 (or a condensate seed) at t = t1. We
can describe small fluctuations around ψ0 by

ψ = [ψ0 + u(t)eikx + v∗(t)e−ikx]e−iμt+λ(t−t1), (12)

where μ and λ are the chemical potential and the growth rate of
the patch, and u, v represent the fluctuations. Expanding (11)
in Taylor series around ψ0, we can rewrite (10) as

i�ψ̇ =
[

− �
2∇2

2m
+ i

�γ0

2

(
1 − |ψ |2

nsat

)
+ geff|ψ |2 + μa

]
ψ ,

(13)

with the accuracy of the order of O(|ψ |4). Here geff =
(α1+α2)(1−g1rP/2�2

A)/2, γ0=(rP/�A)(1+r|ψ0|2/2�A)−
2�, and nsat = 2γ0�

2
A/(r2P ), where �A = �R + r|ψ0|2/2 is

the effective exciton decay rate. The above equation has
the same form as the one derived in Ref. [54], apart from

the negligible dependence of geff on P . The Bogoliubov–de
Gennes modes are u,v∗ ∼ e−iω±t , and the mode frequencies

ω±
γ0

= −i
α

2
± i

√(
α

2

)2

+ (αβ)2 − (εk + αβ)2, (14)

where εk = �k2/2mγ0, the saturation parameter α =
|ψ0|2/nsat, and β = 2geff�

2
A/�r2P . This spectrum has the

property that modes with high momenta are strongly damped
(the imaginary part of the frequency is negative), in contrast
to the initial linear dynamics where no k dependence of
the imaginary part of the spectrum was present. We can
define a characteristic momentum cutoff κ for the modes
that are strongly damped, which scales with the parameters
as κ ∼ γ

1/2
0 . Any fluctuations with momenta higher than κ

will be suppressed, while fluctuations with lower momentum
can form regions of ordered condensate phase. To estimate the
scaling of the number of defects, two different limiting cases
can be considered. In the first case, we assume that the vortices
are formed when the condensate density is already near its
equilibrium value |ψ0|2 = (P − Pth)/�. Here we obtain

Nd ∼ κ2 ∼ γ0 ∼ Pth

(
1 − Pth

P

)
. (15)

Note that the above scaling does not have a power-law form,
which is due to the fact that the transition is effectively
nonlinear.

In the opposite limit [54], we assume that the vortices are
formed when the condensate density is still very small |ψ0|2 =
0. In this case we obtain

Nd ∼ κ2 ∼ γ0 ∼ P

Pth

− 1. (16)

The two estimates [Eqs. (15) and (16)] are compared to
the numerical results in Fig. 8(b). The numerically obtained
scaling appears to be intermediate between the two extreme
cases.

V. CONCLUSIONS

In this paper we presented a comprehensive theoretical
study of nonequilibrium dynamics of polariton condensates
in incoherently pumped semiconductor microcavities. We
have anticipated two different destabilization mechanisms
that govern nonlinear dynamics of this system. The first
arises when the polariton condensate has a strong feedback
effect on the reservoir of incoherent “hot” polaritons. The
second one is associated with the parametric scattering in
the presence of polarization splitting in a spinor condensate.
Both mechanisms result in the formation of phase defects,
i.e., vortices, triggered by the modulational instability of the
homogeneous condensate.

In the scalar case, we have shown that the presence of the
incoherent reservoir can affect substantially both the vortex
stability and their mutual collective dynamics. In particular this
can lead to the formation of rotating dislocations or delocalized
spiraling waves.

In the spinor two-component condensate we have identified
the presence of topological defects, which take the form of
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half-vortex pairs, giving an “eyelet” structure in intensity and
dipole-type structure in the spin polarization.

In the case when the phase defects are formed in the
dynamically (modulationally) stable regime, as a result of
the condensate formation from an initial spatially and phase-
incoherent state, we find that the defect density scales with the
pumping rate in analogy to the Kibble-Zurek-type scaling for
nonequilibrium phase transitions.
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APPENDIX: LINEAR STABILITY ANALYSIS

The stability of the solutions can be checked using the
standard approach of applying perturbations, in the form
ψ± 
→ e−iμt (ψ± + δψ±), nR 
→ nR + δnR . Substitution into
Eqs. (1)–(3) and collecting terms linear in the small amplitudes
δψ± and δnR , we have

i�
dδψ+

dt
= c1δψ+ + (�XY + α2ψ

∗
−ψ+)δψ− + α1ψ

2
+δψ∗

+

+ α2ψ−ψ+δψ∗
− + (g1 + i�r)ψ+δnR, (A1)

i�
dδψ−

dt
= c2δψ− + (�XY + α2ψ

∗
+ψ−)δψ+ + α1ψ

2
−δψ∗

−

+ α2ψ+ψ−δψ∗
+ + g2ψ−δnR, (A2)

dδnR

dt
= −(�R + r|ψ+|2)δnR − 2rnRRe{ψ∗

+δψ+}, (A3)
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spectrum of fluctuations E = �ω about stationary solutions. Four
stationary state solutions are considered, with energies �μ marked
by the thin horizontal lines in (a). When the imaginary parts of E are
positive, the corresponding stationary solution is unstable, with the
instability region marked by thick solid curves. Parameters were the
same as in Fig. 5.

where we have defined

c1 = g1nR + i�(rnR − �) + 2α1|ψ+|2 + α2|ψ−|2, (A4)

c2 = g2nR − i�� + 2α1|ψ−|2 + α2|ψ+|2. (A5)

We consider perturbations in the polariton and reservoir
fields of the form δψ± = u±ei(kx−ωt) + v∗

±e−i(kx−iω∗t) and
δnR = w(ei(kx−ωt) + e−i(kx−ω∗t)), respectively. Here u± and v±
are complex amplitudes, while w is a real amplitude. ω is a
complex eigenvalue to be determined. Stability of the original
solutions occurs if Im{ω} < 0 such that the perturbation
decays.

Substitution of δψ± and δnR into Eqs. (A1)–(A3) and
collection of terms oscillating as e−iωt and e−iω∗t yields a
set of five coupled equations, which represent an eigenvalue
problem for ω. In matrix form:

⎛
⎜⎜⎜⎜⎜⎝

c′
1 − �ω α1ψ

2
+ �XY + α2ψ

∗
−ψ+ α2ψ−ψ+ (g1 + i�r)ψ+

−α1ψ
∗2
+ −c′∗

1 − �ω −α2ψ∗
−ψ∗

+ −�XY − α2ψ−ψ∗
+ −(g1 − i�r)ψ+

�XY + α2ψ
∗
+ψ− α2ψ−ψ+ c′

2 − �ω α1ψ
2
− g2ψ−

−α2ψ
∗
−ψ∗

+ −�XY + −α2ψ+ψ∗
− −α1ψ

∗2
− −c′∗

2 − �ω −g2ψ
∗
−

−i�rnRψ∗
+ −i�rnRψ+ 0 0 −i�(�R + r|ψ+|2) − �ω

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u+
v+
u−
v−
w

⎞
⎟⎟⎟⎟⎟⎠ = 0,

(A6)

where c′
1 = c1 + �

2k2

2m
− �μ and c′

2 = c2 + �
2k2

2m
− �μ.

The imaginary and real parts of the perturbation spectra,
E = �ω, are shown in Figs. 9(a) and 9(b). The energies of the
stationary states �μ are illustrated by thin horizontal lines in

Fig. 9(a). Where the imaginary parts are positive, thick curves
denote modulational instability at the given wave vectors k.
The stationary state labeled U2 is unstable to fluctuations with
k = 0.

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).
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