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Resonant tunneling and localized states in a graphene monolayer with a mass gap
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We study tunneling of quasiparticles through potential barriers in a graphene monolayer with the mass gap
using a semiclassical (WKB) approach. The main equations are derived in a way similar to the WKB theory for the
Schrodinger equation, which allows for explicit solutions at all orders. The analog of the classical action is used
to distinguish types of possible stationary states in the system. The analysis focuses on the resonant scattering
and the hole states localized in the vicinity of a barrier that are often overlooked. The scattering coefficients for
the physically interesting limits are obtained by matching the WKB approximation with the known solutions at
turning points. The localized states demonstrate unconventional properties and lead to alterations of the single

particle density of states.
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I. INTRODUCTION

Analysis of single particle scattering is an essential step
in describing transport properties of graphene, where the
interaction between carriers is typically small and the system
is often in the ballistic regime [1-3]. The problem of a single
particle tunneling for the Dirac-like Hamiltonian of graphene
leads to many nontrivial properties, not observed in standard
quantum mechanics. In particular it gives rise to the Klein
tunneling [4], also known as Landau-Zenner tunneling in the
theory of semiconductors [4-6], related to transmutation of
electrons into holes and vice versa in the scattering process.
This type of tunneling can be traced in the conductance
or short-noise measurements in ballistic samples [7,8]. In
experiments potential barriers are constructed by inserting
charge impurities [9-11] or by creating terrace steps in the
substrate [12]. Tunable barriers are achieved by varying the
gate voltage [13]. This allows detailed studies of the effect of
barrier shape on the transport [13] and paves the way for the
creation of graphene-based devices [14].

The Achilles heel of graphene application in electronic
devices is a vanishing gap in its spectrum. In order to
open the gap and, furthermore, to control its value various
methods have been proposed. For example, one can apply
electrostatic gates [15] or create a superlattice [16]. Recent
efforts in material science focused on designing new types
of materials by doping graphene [17,18] and by using boron
nitride as a support of graphene sheets [19-21]. A chemical
boron/nitrogen doping [18] opens the way for mass production
of the graphene-based field transistors. Obviously carrier
scattering and subsequently electric transport in graphene-
based switching devices depends on the spectral gap, so that the
latter has to be taken into account in the theoretical modeling.
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Theory description of scattering is most trivial for rectan-
gular or steplike barrier shapes [22-24]. Despite its simplicity
this model is quite useful to illustrate general properties of
the Klein-Landau-Zenner tunneling in graphene. However, it
cannot capture many physical aspects of the tunneling and is
certainly not valid for most experiments, where barriers are
typically smooth. For smooth potential profiles the scattering
problem is more complicated and significant efforts have been
applied to study its various limiting cases [25-30]. When
electrons hit an adiabatically slowly varying potential step the
Klein tunneling can exhibit full particle transmission, when
scattered in the direction normal to the barrier, or exponentially
small transmission, when particles approach the barrier at
an angle [25]. Klein tunneling through the barrier with a
single maximum can be of a resonant character due to the
presence of metastable or evanescent hole states inside the
barrier [28-31], which then acts in a manner to a Fabry-Perot
resonator. Analysis of resonant scattering can be done on
a simplified model of a trapezoidal barrier, which has the
advantage of being exactly solvable [31]. In a more general
case of an arbitrary barrier semiclassical methods can be
employed to obtain scattering coefficients as functions of
the integral characteristics of the potential that cover many
limiting cases [29,30]. Due to the matrix character of the Dirac
equation a derivation of the semiclassical solution can proceed
using multiple recipes that are formally different from the
conventional WKB method used in quantum mechanics, e.g.,
using separate Hamiltonians for electron and hole states [29].
A more traditional approach, based on the expansion of
the wave function in powers of the Planck constant £, is
also possible, being easier technically and arguably more
intuitive physically [30]. The analog of classical trajectories
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that appear from the WKB solution of matrix equations, offers
a convenient tool for classification of all scattering states
associated with the barrier. In particular, it has been used to
distinguish fully localized states [30] that are often overlooked
in studies of the barrier scattering. An appearance of such
states has been discussed earlier only for the rectangular
barrier structure that, however, does not lead to a resonating
Fabry-Perot structure [32].

In this work, having in mind recently obtained graphene-
based devices with spectral gap [18,21], we study resonances
and localized states in the vicinity of a one-dimensional
(1D) barrier for the model where the Dirac Hamiltonian is
complemented with the mass gap. To this goal we apply an
analog of the WKB or semiclassical analysis to the case of the
matrix Dirac equations. Using the expansion of the solution
in power of i we generate a set of the so-called transport
equations, which can be solved explicitly. Analysis of the
scattering problem for a single peaked barrier is done in the
leading order contribution. Explicit expression for the trans-
mission and reflection coefficients are obtained by matching
the WKB solution with the known uniform asymptotics of
the so-called comparison (or reference) equation [33,34]. An
universal Bohr-Sommerfeld-like condition is derived for both
virtual and localized states and its influence on the density
of single particle states is discussed. We shall consider the
situation where the transitions between the two cones of the
graphene spectrum can be neglected. The validity of this
approximation follows from the fact that the potential is
assumed adiabatic, so that its large momenta components that
can induce the transition between the cones are negligible. In
fact this adiabatic condition is also necessary for the validity
of the WKB approximation itself.

II. SEMICLASSICAL SOLUTION

The Hamiltonian of a single layered graphene in the
presence of electrostatic potential and modified by the gap
is [2]

H =vp(o - p) + go: + ool (x), ey
where vy denotes the Fermi velocity, 0 = (6,,5,), with &;
being Pauli matrices acting in the space of vector functions
¥ = (u,v) that correspond to sublattices A and B, respectively,
0o is the unit matrix, and p = (px,p,) is the momentum
operator. The potential U(x) represents the external barrier,
varying only in the x direction. The second term in this
Hamiltonian, with the constant g = mv%, describes the mass
gap in the quasiparticle spectrum. We assume that U (x) has a
single peak with the maximum at x = 0 and that it vanishes as
|x| — o0. Obviously the problem can be reduced to 1D one
by taking the wave function in the form exp(ip,y)¥(x).

In the analysis it is convenient to use the following di-
mensionless quantities that are related to the barrier potential,
¥=x/D, E=E/Uy, py=vrpy/Uy, and h = hvr/UyD,
where D is the characteristic width of the potential [defined
as the distance between the points at which U(x) is half its
maximal value] and Uj is its maximal value. We shall omit
tildes when it does not lead to ambiguities. Stationary states
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of the system are obtained by solving the following equation:

U+g
—iho, +ip,
with the appropriate boundary conditions, where ¥ denotes a
vector function in the pseudospin space. Following a standard
WKB approach [33] we seek a solution to this stationary

problem ¥ in the form of a series expansion over powers
of the Planck constant as

—ihoy —ipy

U g )\P:E\Il, 2)

V=c Y (—ih) ;. A3)
j=0

Substituting Eq. (3) into Eq. (2) and matching the powers of &
we obtain a recurrent sequence of equations for ¥; as

N d
LY=o, “
where
~_( E+g 0:S —ipy o
L_<axS+ipy s_g ’ S—U Es (5)

and ¥_; = 0. In the mathematical WKB theory Eq. (4) is
referred to as the transport equation, which should not be
confused with transport phenomena in matter.

At the lowest order, j = 0, Eq. (4) is a homogeneous linear
equation

(6)

which is solvable if the condition det(L) =0 is satisfied.
Resolving it we find the analog of the classical action S in
the form

S(x,x0) = / Prdx,

Xo

px=vVE P2, P= [g?+p @)

where the sign of p, is defined by the branch of the root.
Analogously to the WKB analysis in quantum mechanics, here
the “classically allowed” domain is defined by the condition
£2 — P2 > 0, whereas £2 — P? < 0 defines “classically in-
accessible” or forbidden domain and the turning points are
defined by £> — P? = 0.

Substituting Eq. (7) into Eq. (4) we find the leading order
contribution in the form

‘I’o = 81,00, (8)

where e is the corresponding eigenvector of the matrix
equation (6) and the spatial dependence v is arbitrary at this
stage. The explicit form of the eigenvector reads as

1 px +ipy
e= ., O=——— )
<®) E-g
The next order equation
. d
L‘I’l ZGX—\I’O (10)
dx

contains both the leading order ¥, and the next order W,
contributions. The latter can be written in the form

Vv, =ey; +d&, an
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where vector d is orthogonal to e and is explicitly written as

d— (l) g Px iy (12)
= §+g

Substituting solution (11) into Eq. (10) and projecting the
resulting equation onto e, while using that e is the eigenvector
of L with zero eigenvalue, we obtain the equation for ¥ as

vy
dx
where ® is obtained from ® in Eq. (9) by substituting
py — —p,. For the classically allowed domain this yields
the complex conjugate ® = ®*. The solution to Eq. (13) is
easily found as

(® +6) +@wo=0, (13)
dx

1
v Px

In the classically forbidden domain p, — ip, with p, =
v/ P?2 — &2, A similar procedure of projecting the equation is
applied at all orders of the expansion to obtain all terms in the
expansion (3) as shown in Appendix A.

Expression for ¥ in Eq. (14) diverges at p, = 0. Similarly
to the standard quantum mechanics, this divergence limits
the applicability of the WKB expansion which is not valid
close to turning points. Apart from this restriction the validity
domain of the approach is defined by the condition that the next
order contribution ¥ is small as compared with . Interested
readers can find details of the calculations of ratio ¥ /v in
Appendix B. Analysis of the obtained expressions in various
limiting cases leads to the following validity condition:

1/2
Yo = [px —ipy + ipi(é - g)] . (14)

X

dx

<1, (15)

/|

where A, o p_! is the quantum wavelength and y is a factor
that depends on particular relations between parameters py,
Dy, and g.

Apart from factor y the criterium in Eq. (15) coincides with
that in standard quantum mechanics. In many cases y < 1
and, therefore, the applicability of the WKB method for the
Dirac equation is enhanced as compared with the Schrodinger
equation. However, if the g 2 py , this factor rises, y 2 1.
Still in this case the amplitude of ¥ in Eq. (14) also rises,
which is a consequence that the “proximity” interval close to a
turning point, where the WKB expansion fails, also increases.
Thus, the WKB approximation for the Dirac equation works
generally better than in the quantum mechanics far from the
turning points. But the interval around the turning points where
the method is not applicable becomes large when the gap
increases.

III. CLASSICAL ACTION AND STATE TYPES

Stationary states in the system can be classified by compar-
ing shifts in the energy of the bands induced by the barrier.
The WKB approach introduces the analog of the classical
action S and momentum p, which are real in the classically
allowed intervals and become complex in classically forbidden
ones. Turning points, which separate allowed and forbidden
intervals, are found from the condition p, = 0, which yields
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FIG. 1. (Color online) Different scattering states in intervals (i)—
(v), shaded by respective colors, for a single peaked barrier U(x).
Continuous black lines in (a) represent the shifted potential U (x) £+
P, x; are turning points found by solving £ = U(x) = P. (b)—(d)
Ilustrate scattering in energy intervals (ii)—(iv) [shaded by the same
colors as in (a)]: (b) Interval (ii) with e-e tunneling of electrons, (c)
interval (iii) with the resonant e-h-e tunneling, and (d) interval (iv)
with localized & states. e/h denote electrons/holes, blue lines give
the effective potential E? — [U(x) — E]?, short dashed lines in (c)
illustrate positions of virtual hole states, and long dashed lines in (d)
represent localized hole states.

the equation
Ux)=EZxP, (16)

where P > 0. Solving this equation is graphically illustrated
in Fig. 1. For the potential of a chosen shape with a single
extremum, this equation can have zero, two, or four different
(real) solutions, labeled as x;,i = 1, ... ,4. We note that unlike
quantum mechanics the role of the effective potential is played
by the quantity E? — [U(x) — E1?, which is illustrated by blue
lines in Figs. 1(b)-1(d).

We can distinguish five energy intervals (i)-(v) (see Fig. 1)
with different types of scattering. For Uy + P < E (i) there
are no turning points, the entire space is classically allowed
and there is standard over-the-barrier electron scattering. For
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Uy — P < E < Uy + P (ii) the [x,x4] interval is classically
forbidden. Figure 1(b) illustrates the corresponding effective
potential through which electrons tunnel. In intervals (i)
and (ii) scattering is thus similar to nonrelativistic quantum
mechanics.

At lower energies nonconventional scattering emerges. In
the interval P < E < Uy — P (iii) two additional turning
points are encountered, x, and x3, leading to two classically
forbidden intervals, [x;,x] and [x3,x4]. The classically al-
lowed domain is subdivided into two intervals of electron
states, (—o0,x1] and [x4,00), and one of hole states, [x»,x3].
For this case scattering is schematically illustrated in Fig. 1(c),
which shows the double barrier structure for the effective
potential. An electron, coming from left, first tunnels through
the barrier interval [x1,x,] becoming a hole in the process, then
travels freely in [x;,x3] and then tunnels through the second
barrier [x3,x4], becoming an electron again. The conversion
between the electron and hole states while passing through
the barrier is qualitatively analogous to the Landau-Zener
tunneling in semiconductors. The scattering amplitude has
resonances due to the quasistationary or virtual hole states in
[x2,x3], schematically illustrated by dashed lines in Fig. 1(c).
One notes that interval (iii) appears only when the hole and
electron bands intersect due to the barrier potential, i.e., when
2P < Uo.

When the energy is lowered further reaching the interval
—P < E < P (iv), turning points x; and x4 disappear at
Foo, leaving a single classically allowed interval [x;,x3] as
illustrated in Fig. 1(d). In this interval the hole states are
localized in the transverse direction x (the motion in the y
direction is free) that are referred to as the localized states for
clarity. Finally, in interval E < — P (v) the remaining turning
points x, and x3 disappear at infinity, and the entire space
becomes classically allowed. In this interval holes scatter on
the potential well.

The structure of the intervals (i)—(v) as function of the
momentum component p,, is illustrated in Fig. 2. Figures 2(a)
and 2(b) illustrate, respectively, the cases where the potential

FIG. 2. (Color online) Band structure: Dependence of scattering
intervals (i)—(v) (shaded respectively as in Fig. 1) on transverse
momentum component p,. Straight lines represent graphene with
zero gap. (a) Illustrates the case U, > 2g with the resonant scattering
in interval (iii), and (b) shows the system without such an interval.
Localized states interval (iv) is present in both panels. Domain (vi)
denotes a gap.
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does and does not lead to the intersection of the electron and
hole bands in the energy scale. In all cases the boundaries of the
electron band increases while that of the hole band decreases
VUi/A—g?
the interval (iii) of the double barrier tunneling disappears. For
a small barrier and/or large gap, Uy < 2g, the double barrier
structure is not found for any p,, as illustrated in Fig. 2(b).
However, interval (iv) of the localized hole states exists for
any p, irrespective of the potential depth, with the remark that
the quantization conditions defines a minimal value of Uy, at
which localized states become possible. For comparison the p,
dependencies of the band boundaries in the gapless case g = 0
are shown by dotted lines in Fig. 2. One notes an important
difference: For the gapless case the resonant scattering interval
(iii) exists for a barrier of arbitrary height.

for larger p,, as follows from Eq. (16). At p, >

IV. TUNNELING PROBABILITY

Following standard scattering theory the scattering coeffi-
cients are defined using solutions with free particle asymptotes
at infinity, which read as

_ eiPrela; + e P eyan, X — —00,
Yix) = {eip*xelbl + eI Y eyhy, x — to0, an
where e , are defined as in Eq. (9) with
+p, +ip,
@1’2 = —%’ Dx = E2 — P% _ gz. (18)
—g )

Transmission and reflection coefficients are defined via the
coefficients of the transfer matrix that connects coefficients

ajpand by 5 as
by _ (T Tu) (@
by T, Tn)\a)’

The coefficients satisfy the relation |a;|> — |ay|* = |b|* —
|b2|2, which follows from the conservation of the probability
current j oc u*v + v*u. The current conservation is also
reflected in the coefficients of the transfer matrix 77 which
satisfy

19)

T =TT =T, detT =1. (20)
One can also introduce the unitary scattering matrix as

()=sG) 5= () e
where

t:T%z, rlz—%, rzz%z. (22)

Reflection and transmission coefficients here satisfy standard
relations |¢]? 4 |r12]> = 1.

The coefficients of the transfer matrix are routinely obtained
by matching the semiclassical solution with the uniform
asymptotic solutions, obtained using the asymptotic form of
the potential in the vicinity of the turning points, where the
effective potential \/[U(x) — E]*> — P2 can be approximated
by the linear function, for which exact solution is given by
Airy functions. Using known asymptotic expansions of Airy
functions at x — 0o we match them with the WKB solutions
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for the linear potential, thereby obtaining the scattering
coefficients on both sides of the turning points. This matching
procedure has to be repeated at all four possible turning points.
The validity of this approach relies on the assumption that
the separation between the turning points is sufficiently large
so that the WKB approximation can be used in the intervals
between them.

This assumption, however, fails when the turning points
become too close one to another. In particular, this is the case
for normal scattering p, = 0 and zero mass gap, where x; 3
merge with x 4, respectively. This limiting case is encountered
in the analysis of the resonant scattering in energy interval
(iii). In order to obtain the solution that covers this limit
as well, we may approximate the effective barrier using the
harmonic potential in both intervals [x; 3,x7 4], for which the
exact solution is also known. In this work this is done using
the elegant formalism of the comparison equation [34]. The
advantage of this formalism is its accuracy in describing both
limiting cases of the small and large intervals between pairs of
the turning points x; » and x3 4 and thus the crossover between
the regimes of Klein and Landau-Zenner tunneling. Details
of the derivation of the comparison equation and the outline
of the procedure of matching its solutions with the WKB
expansion is outlined in Appendix C. We note in passing that
this formalism also becomes inadequate in the special case
when all four turning points are close. This situation appears
difficult as the potential in this case should be approximated
by the fourth order polynomial, an exact solution for which
is not known. However, this case is encountered only for the
normal scattering and under conditions that energy of a particle
is close to Uy and that the gap is small.

After relatively straightforward but cumbersome calcula-
tions, some necessary details of which are found in Ap-
pendix C, we obtain the following coefficients of the transfer
matrix:

Ty = eQ1+Q2(slS2ei(91+92+K) _}_e—i’()7

7ia+Ql+Q2[S26i(92+K) + Slefi(9|+K)]'

(23a)
T12 =e (23b)
In these expressions

si =/ 1 —exp(=20;), (24)

Q1 and K are the “classical” action between turning points

1 1
01 = —|SC2,x1)|, Q2= —=1S(xs,x3)l,
h h (25)

K

1
7 [S(x3,x2)],

the phases are

b4 Dy ~+EE—p;
a=5—9+arg[lp’+g+pX+ px]’

ipy+g—p:+E P

0; = % <1 — log [%:D —argF|:l —i%] — % (26)

with I'(x) being the I" function and
0 = arg(p, +ipy), p, =VE*—P%L 27)

It is easy to see that in the limit g = O the coefficients in
Egs. (23) coincide with the known results for the gapless
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case [29]. Using relations (22) one can calculate the reflection
and transmission coefficients. The final expressions simplify
considerably for a symmetric barrier, for which O, = Q1 = Q
and 6, = 0, = 6 and the scattering coefficients become

t =elcos (P +60)2e*? — 1) +isin(P+6)]"", (28a)
r = 2te*21%\/1 — ¢=2Q cos (P + 0). (28b)

Oscillations in the coefficients is a manifestation of resonant
tunneling: The transmission sharply increases when the energy
of a scattered particle matches that of a virtual hole state. We
note that with the exception of the phase factor «, Eq. (28)
coincides with the corresponding expressions in the gapless
case when p, is substituted by P. This coincidence (without
the phase factor) confirms an intuitive expectation which
follows from the structure of the eigenvalue problem.

V. RESONANCES AND LOCALIZED STATES

Transmission through the barrier in the resonant energy
interval (iii) is illustrated in Fig. 3, where the tunneling
coefficient is calculated for the potential U(x) = sech(x) as
a function of momentum components p, and p, of a scattered
particle. The resonances, where |¢| &~ 1, are clearly seen in
the figure as narrow stripes. Contrary to the gapless case, the
regime of complete Klein tunneling, with [t =1 at p, =0,
is absent here. This follows directly from Eq. (28), where in
the gapless case the turning points merge at p, =0 (x; = x;
x3 = x4) yielding Q =0 and thus ¢ = exp(i P). However,
when g # 0, the turning points remain separate at all values
of p, and, therefore, Q # 0. Full transmission can still be
achieved but only at a resonance condition

K(EY+0=n(n+1), (29)

10.6

10.5

10.4

0.05 0.1 0.15 0.2 0.25
Py

FIG. 3. (Color online) Bar diagram for the absolute value of the
transmission coefficient |¢|? as a function of momentum components
Py and p,, calculated from the WKB expression (28) for barrier U =
sech(x) for g = 0.1. The stripes (red) are the domains of resonant
scattering |f| &~ 1 that correspond to positions of the virtual states
given by Eq. (29) illustrated in Fig. 1.
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where the E dependence of K is defined by Eq. (23) and
n=0,1,...,Nnax iS an integer denoting resonances. For
any finite potential this equation has a finite number of
roots that defines the total number Ny,,x of the stripes with
maximal transmission. Equation (29) appears as a standard
Bohr-Sommerfeld quantization condition.

The width of the resonances (or lifetime of the virtual levels)
is found by solving the eigenvalue problem with the boundary
conditions corresponding to localized states. This yields the
equation T»(E) = 0 which with the help of Eq. (23) reads
explicitly as

2

Contrary to Eq. (29), it contains an additional complex
contribution and, therefore, its roots are also complex reflect-
ing the virtual character of the localized states. We search
for the roots by explicitly separating its real and complex
parts, ¢ = E 4 i[". Assuming that the tunneling rate is small,
exp(—Q) < 1, we calculate I" perturbatively. In the largest
order Eq. (30) reduces to Eq. (29), and therefore yields
transmission resonances. I" is obtained at the next order as

_ hw . 20 _ dK(E)

F_2At’ w=—log(l —e °%), At= 1E

This expression allows for a physically transparent interpre-
tation if one recalls that w in this limit yields the tunneling
probability and At can be considered as the time a particle
spends in the barrier. Then Eq. (31) coincides with a standard
WKB estimation for the width in quantum mechanics [28].

Due to the hole-electron transmutation in the scattering
the dependence of the solution of Eq. (29) on the quantum
number r is inverse: E decreases at larger n. From Eq. (31)
one can see that I' is a decreasing function on E; this also
follows from the fact that the distance between turning points
x1 and x; increases at smaller E (cf. Fig. 1). This implies
that I" decreases at larger p,. Thus the transmission peaks are
generally sharper at smaller energy and also at smaller p, and
Dy, Which is seen in Fig. 3. When the energy decreases further
and reaches the boundary E = P between domain (iii) of the
resonant scattering and domain (iv) of localized hole states, I"
vanishes.

The existence of hole states localized in the vicinity of the
barrier is often overlooked [29], despite the fact that such
states are found in a much wider parameter interval than
the resonant scattering. Domain (iv) of the localized states
exists for arbitrary Uy and appears in both panels in Fig. 2,
while domain (iii) of the resonance scattering is found only
in Fig. 2(a) where the condition Uy > 2g is fulfilled. Also,
localized states are found at energies E < Uy — P when the
longitudinal momentum p, lies in the interval \/E? — g2 <
Py < V(E = Up)* — >

Eigenvalues of the localized states are also obtained
from the WKB solution by imposing the decaying boundary
conditions on the solutions. The calculations are similar to
the case of resonant scattering and yield Eq. (30) for the
eigenvalues, in which, however, the limit Q — oo must be
taken. The eigenstates are then defined by Eq. (29) with
0 = 0 where quantum number n starts from Ny + 1. The
quantization introduces limitations on the existence and the

i _ 1
K(E)+9+§log(l—e 2Q)=n<n+—). (30)

. (3D
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total number of the localized states. One can estimate the total
number of bound and quasibound states in the system as

Noound ~ ;K(‘P) — % {2/°° dxJUU £2P) — 1} ,
(32)

where we extended the integration limits x; 3 to infinity. Thus
the number of localized states increases at larger P. Even if
no such states are possible initially at p, =0 or P = g, they
will appear at large p,, where the number of such states is
estimated as

Noound ~ ﬂﬁ, B= ;[/_Z /Oo dX\/U (33)

This expression marks a qualitative difference with standard
quantum mechanics where the number of transverse bound
states in a 1D well does not depend on the value of the p,
component. Here it rises with both p, and the gap g.

Localized states modify the single particle density of states
(DOS) by adding additional divergent contribution. In the
absence of the barrier the DOS in gapless graphene is p(E)
E, which approaches zero at the Dirac point £ = 0. When
the gap opens, g # 0, the DOS becomes p(E) o v/ E? — g2,
which goes to zero at the gap edges |E| — g. When the
barrier potential is present the DOS comprises additional
contributions due to the subbands formed by the localized
states. In the limit of small p, and thus the highest energy of
the hole subband n, one obtains an additional contribution
to the DOS as p,(E) x p;l, as the localized states here
are still extended in the y direction, resulting in effective
1D states. This contribution diverges in the limit p, — 0
yielding a van Hove singularity at E = E,(p, = 0). There
is an important difference with the gapless case g = 0, where
the singularity is absent because the system enters the regime
of full Klein tunneling (|¢| = 1 at p, = 0) and both localized
and virtual states are absent. Thus, the gapless system does
not reveal singular contributions in the DOS due to the
barrier. We can also distinguish cases g < Uy and g > U,
depicted in Figs. 1(a) and 1(b), respectively. In the former the
singularities are found inside the gap —g < E < g, while at
Uy — g < E < g the virtual states can lead to appearance of
peaks in the DOS, if the resonances do not overlap. In the latter
case singularities can appear when —g < E < Uy — g.

VI. CONCLUSIONS

In summary, we have presented a semiclassical analysis of
scattering on a smooth 1D potential barrier in single layered
graphene with a gap. The derivation of the WKB approach
follows a standard strategy of expanding the vector wave
function in powers of the Planck constant which allows us
to explicitly obtain the contributions at each order by solving
the corresponding transport equations. We note that a similar
approach can also be developed for more complicated systems
such as multilayered graphene. Analysis of the scattering
on the barrier potential is done within the leading order
of the WKB expansion. Using the analog of the classical
action several qualitatively different stationary states have
been identified, including those of resonant scattering and
hole states localized in the vicinity of the barrier. WKB
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expressions were obtained for the wave functions, transmission
coefficients, energies of the resonances and localized states, as
well as for the resonance widths. Apart from the phase factor
the expressions obtained in this work have a functional form
similar to that derived earlier for the gapless case. However,
unlike the latter, the system with nonzero gaps exhibits
reflectionless Klein tunneling only at resonances even for the
scattering at normal angle. Positions of the virtual and the
localized states are defined by the same Bohr-Sommerfeld-like
quantization condition. Unlike standard quantum mechanics,
here the number of localized states increases at larger values
of the longitudinal momentum component and at larger gap
values, so that such states are always present in the system.
It was also demonstrated that resonances and localized states
can modify the single particle DOS by introducing van Hove
singularities. Such states may be important in the electrical
transport in the system. However, discussion of this aspect is
beyond the scope of this work.
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APPENDIX A: SOLUTION OF THE TRANSPORT
EQUATIONS

Equation (4) can be solved in the general form by choosing
the solution in the form

v, =ey; +dy;. (AD)
By substituting this into Eq. (4) one obtains
. dy;—
dej:gx< A1 | g% 1), (A2)
dx dx

where we used the fact that e is the eigenvalue, Le=0.
Multiplying this equation by € and d from the left-hand side
and evaluating the resulting scalar products we obtain two
equations

d
©+0) ‘”’ ‘+—¢r] |+ (E+O) X’ !
du
1 =0, A3
= (A3)
dyi_
©+78) ‘”J ‘+—w] L+ (B + 4%
X
dBa E—g
1 —4EZ Sy =0 A4
+dij 1 Ef‘i‘ng ( )

The first equation yields v;_; from x;_; in the explicit form

X
0) F F(x)—F(y
Vi 2150]('—)16 (X)_/ dye ()—=F(®)

X0

E+0) —Xj—1{ A5
X{(+)d +dxX’1} (AS)
where w;o_)l = ¥;_1(xo) is the boundary condition and
X G)/
F(x) = —/ = dx. (A6)
xw ©+0

PHYSICAL REVIEW B 91, 085405 (2015)

Using Eq. (A2) one obtains x; in the form

E—-O&+g (dpj  dxj
48 E—g \  dx d '

Equations (AS5)—(A7) yield explicit solutions for all coeffi-
cients in the WKB expansion for the states. For scattering
problems the boundary conditions for ¥; and x; are typically
defined by the asymptotic solutions. In particular, when the
potential vanishes at infinity one obtains that v is constant
while all other v; and yx; are zero.

Xj= (A7)

APPENDIX B: VALIDITY OF WKB EXPANSION

The general solution of Eq. (13) is

Yo =Ae / I 49, (B1)
=Aexp| — ——dx |,
0 P O+ 0 dx

with A being constant. For the leading correction ; we solve
Egs. (A3) and (A4) with j = 1. Equation (A4) yields

1£E4+gO®—EdO

=feo. f=—77"—" (B2)
dEt—gO+0dr

Equation (A3) is solved using the substitution ¢; = F ¢ which

helps to transform it into the following form:
— (dF d d

(©®+06) —+—f $o+ —{(E—-0)f¢o} =0, (B3)
dx  dx dx

which with the help of Eq. (13) is further recast into

dF d (O+E 1
—+—(L_f> © ;b

dx dx \©®+06 O+Od
Solution to this equation reads as

16+gO+EO—-EdO

4E-g0+O0+0dx

1 ®—Z2 dOde
+/—m—_——dx. (B5)
A4EE— g (O + O) dx dx

The condition of the applicability of the WKB approach away
from turning points is that ratio ¥; /1 is small. This yields

|hF| < 1. (B6)

This condition can be written in a simplified form in the
important cases of particular relations between p., p,,
and g.

‘We consider first the case of large normal momentum p, >
{py,g}. In this case the following leading contributions to F
can be extracted:

PR S

P gy (B7)
4 px px 8

px px

P, = dp,/dx.Both contributions in this expressions are of the
same order, which can be seen, e.g., by evaluating the integral
in the right-hand side by parts. Using the first term in this
result and writing the derivative of p, via the derivative of the
wavelength A, (hp!,/p? o A.), the applicability condition for
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the WKB expansion is recast as

dxr

P2
P2 |dx

> <1 (B8)

In the opposite case p, < {py,g} one obtains

1 P(P ., iP+gl [p?
=__#p_;+l_ﬁ_ p—xza’x. (B9)
4 p; pi 8P—gpyJ i

Taking the first term in this expression and rewriting the
derivative as above we obtain the applicability condition in
the form

P(P+g)|dxr

1. B10
2 x| < (B10)

The remaining possibilities are two intermediate cases: (a)
Py K pr K gand (b) g K px K p,. In case (a) we obtain

2 2 2]
F=-8 0 & [Py, (B11)
2 pt 2 D3
which yields the condition
& |dh| (B12)
pildx| —
In case (b) F can be approximated as
1 ’ i1 2
F=—-Pe L2 [Py (B13)
4pt 8pyJ) pt
leading to the condition
dxr
— | <L (B14)
dx

In the last case the applicability condition coincides with that in
the quantum mechanics. In all other situations it contains addi-
tional factors, as follows from Eqs. (B8)—(B12). Equation (B8)
is obtained for the case {p,,g}/px < 1. Therefore, the validity
domain of the WKB approach increases as compared with
quantum mechanics given by Eq. (B14). Contrary to this
case, in Eq. (B12) the additional factor can be much greater
than unity, which follows from the condition g > p, used
in its derivation. Finally, the value of the additional factor
in Eq. (B10) varies from unity in the limit p, > g to large
values, when g >> p,. One can thus see that if the gap g is
large the domain of applicability of the the WKB method
for the Dirac equation has a tendency to decrease as compared
to the Schrodinger equation. However, we note that in this limit
the system is already in the vicinity of the turning point where
the amplitude of the solution ¥/ in Eq. (14) sharply rises.

We arrive to the conclusion, mentioned in the text, that when
the system is away from the turning points the validity of the
WKB expansion for the Dirac equation is generally enhanced
in comparison with the Schrodinger equation. However, the
interval in the vicinity of the turning points where the WKB
approach is not applicable is larger than that in quantum
mechanics and, furthermore, it rises when the gap increases.
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APPENDIX C: SOLUTION FOR TURNING POINTS:
COMPARISON EQUATION METHOD

Calculation of transfer matrix (19) requires finding relations
between coefficients of the scattering solutions in Eq. (17).
Within the WKB expansion this can be in principle done
by calculating jumps in coefficients at the Stockes and anti-
Stockes lines. In practice, however, a much more popular
and simpler approach is to compare the WKB asymptotics
with the more accurate solution in the vicinity of the turning
points, where the WKB approximation fails. In conventional
quantum mechanics such a solution is obtained by using a
linear approximation for the potential close to the turning
points. For the Dirac equation, as discussed in the text, this
approximation fails in the limit of Klein tunneling for the
normal angle scattering with small gaps. In this limit the
effective potential, defined by p, in Eq. (7), is a function with
a single maximum between two turning points for electron and
hole states x; and x,, respectively (or x3 and x4) [see Figs. 1(a)
and 1(c)]. Obviously the simplest solvable approximation for
such potential in the interval [x;,x;] is the second order
polynomial, i.e., the harmonic potential. Using the Taylor
expansion of the effective potential at the point of its maximum
one obtains necessary parameters of this approximate potential
and then proceeds to the standard routine of finding the exact
solution and relating it to the WKB asymptotic. It is clear,
however, that this approximation is suitable only when interval
[x1,x2] is relatively small. At larger intervals it needs be
replaced by two separate linear approximations at x; and x»,
with two separate scattering coefficients matching problems
to be solved for each of them. Therefore, obtaining a WKB
solution, applicable in both limits of large and small p,, for
arbitrary shape of potential U(x) is impossible within this
approximation.

In this work we employ a different and more general
approach referred to as the comparison equation method [34].
Unlike the Taylor expansion it relates the parameters of the
approximate potential with the integral characteristics of the
effective potential. At small intervals [x;,x,] it reduces to
the harmonic approximation described above, while at larger
intervals it coincides with the results obtained by using the
linear approximations at the turning points. Besides, it allows
for a simple generalization to the complex potentials that is,
as we shall see, the case of Dirac equation. Although popular
in mathematical physics, this approach is not particularly well
known in the community of physicist working with the WKB
approximation. Here we provide a necessary introduction
needed to understand the derivation of our results quoted in
the text.

In order to simplify the analysis we first exclude one of
the component functions in vector ¥ = (u,v) by first applying
linear transformation
(ChH

WZ%(M-’_U)’ VZ%(M—U),

which helps to rewrite original system (2) in the form
. AW
(U —-E)W+(g+ipy)V — zhd— =0,

v (€2)
(U= E)V + (g —ip)W +ih—— =0.
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Then we express V from the first of these equations as

1 aw
V= - {ih—+(E—U)W}, (C3)
g +ipy dx

and exclude it from the second equation which becomes
d2
hz =~ +9QW =0, (C4)
where the effective potentlal is given by
du
Q=pl+ih—, (C5)
dx

and p, = /2 — P? is defined by Eq. (7). Equation (C4)
appears in the form of a standard Schrodinger equation
(with zero eigenvalue), however, unlike standard quantum
mechanics the effective potential Q in is now complex. We
now rewrite this equation introducing a new variable z by the
following implicit transformation:

2 2
(2 T\ (4
o= (“ 4) <dx) ’ (€6

where parameter a (generally complex) will be defined later.
Seeking a solution to Eq. (C4) in the form W = W/ V7 we
obtain the following equation for W regarded as a function of z:

h2c%v+<a2—z—2—0)wzo, (C7)
where
L i( - ) (C8)
2(2')*% dx \ (z')3?

It can be demonstrated that potential U is of the next
order in powers of i will be neglected. In order to see this
we search solution W as the function of scaled variable
¢ = z/~/h. Substituting this into Eq. (C7) and representing
the transformation parameter as

a*>=h(v+3), (C9)

one finds that all terms in Eq. (C7) are of the order O(h)
except the potential U. The latter is of the order O(%?) and
therefore can be neglected in the WKB limit 2 — 0 leaving
the following equation:

aw 1 ¢?
== - —>)lw=o.
d§2+<v+2 4)W

It describes motion of a quantum particle in the quadratic
potential and is customarily referred to as the comparison
equation reflecting its purpose that is comparing its solution
with the original Eq. (C4). One can now see that the choice
of the scaling above and the consequent elimination of the
last term in Eq. (C7) in fact follows from the harmonic
approximation of the effective potential Q. We also note that
the imaginary part in Q in Eq. (C5) generates terms oc/? in
Eq. (C7) that are still kept.

An arbitrary solution of Eq. (C10) are given by a linear
combination of two parabolic cylinder functions D, (x) as

W= ADU(;)-'_BD—I—V(l{)V (Cll)

(C10)

with constant A and B.
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Solutions (C11) plays the same role as the Airy functions
for the linear approximation for the potential in the vicinity
of the turning point in quantum mechanics. The subsequent
calculation of the transfer matrix S in Eq. (19) essentially
follows the standard routine described in textbooks on quan-
tum mechanics. According to this procedure we compare
the asymptotes of Eq. (C11) with the WKB expansion (17).
Howeyver, since the calculations are done for the Dirac vector
eigenvalue problem, one must return to the original functions
u and v by finding V from Eq. (C3) and then using the inverse
of transformation (C1).

Another nonstandard part of the matching procedure is that
transformation (C6) must be inverted to return back to original
coordinate x. We start the analysis of the transformation with
noting that by virtue of Eq. (C6) two roots of equation Q = 0
(¥ and X,) correspond to z;p = £2a. It is clear that %
do not coincide with the turning points x;, due to nonzero
imaginary contribution to Q in Eq. (C4). One also notes that
the limits z — oo correspond to the limits x — =00, so that
the asymptotic expansions at large coordinates x,z are needed.

We now complete the description of the transformation by
finding its parameter a from effective potential Q close to
turning points x; . To this aim we take the integral of both
sides of Eq. (C6) which yields the equality

/ fdx_/ \/idz

The integral of the right-hand side of this equation is evaluated
exactly yielding wa®. The integral on the left-hand side is
expanded with respect to i. The integration limits ¥, are
obtained by expanding the corresponding equation @ = 0. To
the leading order its roots are found as

(C12)

B —Xo=x1— X% =i —. C13
X2 — X2 X1 X1 1 P ( )
Substituting this and the expansion of Q into the integral on the
left-hand side in Eq. (C12) we obtain two largest contributions
as

[xz\/@dx =ihQ1+%h, (C14)

where Q) is given by Eq. (25). Comparing the integrals on
both sides we obtain

, T . i
a-——=i0Q0;, v=-—0, (C15)
2 b4

so that the transformation parameters given by the “action”
calculated under the barrier between the turning points. We
note in passing that it is this integral relation between a
and the effective potential which makes the comparison
equation method advantageous: It offers a good accuracy of
the approach far beyond the limit of small distance between
the turning points and thus describes the crossover between
the Klein and the normal tunneling regimes by a single
expression.

An explicit relation between x and z away from the turning
points, needed for the asymptotes of solution (C11), is obtained
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similarly by using the integral form of Eq. (C6). Atx < x; and
X > x, this yields, respectively,

X1 —2a Z2
/ VOdx :/ Ja? — s (C16)
and
X b4 2
/ VQdx =/ Ja? — %dz. (C17)
fz 2a

The integrals on the right-hand side are evaluated exactly and
their asymptotes at large |z| > |2a| are obtained in both cases
as

2 2

i iz — it -2mma), (C18)

4 2
where the two largest contributions are retained. The integrals
on the left-hand side of Egs. (C16) and (C17) are expanded
with respect to small /& and large x which gives the following
two leading contributions:

/ VOdx = S(x;,x) — z—ln< f), (C19)
when x < x1, and
/ VOdx = S(x, xz)—lzln(2§> (C20)

when x > x,. Comparing Egs. (C18), (C19), and (C20) gives
the coordinate transformation
.Z2 )
lz —ia“In(—z) = S(xy,x) —

igln <_T%E> +iho (C21)
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in the limit x < x; and

2 h 2
izz —ia’Inz = S(x,x2) — iz In (Fg) +iho  (C22)

at x > x,, where

2 1 1 12 1
Q:Z—h(l—Zlna)+§<v+—>lnu—Z

2 v
1
= > (1) =+

The transfer matrix in Eq. (19) are obtained in the following
steps: (1) taking the asymptotic expansion of solution (C11)
at large z and small 7, (2) expressing obtained asymptotes as
functions of x using Egs. (C15), (C21), and (C22), (3) con-
structing asymptotic solution of the original Dirac eigenvalue
problem using Eq. (C3) and inverse transformations (C1), and,
finally, (4) finding relations for the coefficients of the incoming
and outgoing wave solutions. Following this procedure, which
involved rather tedious but straightforward calculations, we
obtain the coefficients of the transfer matrix in Eq. (19) for
pair of turning points x; . The calculations for the turning
points x3 4 are done analogously. Finally, we note that the total
transfer matrix and the scattering coefficients in Eqs. (23) for
the potential barrier are obtained within the approximation,
that the propagation between turning points x3 and x4 is
described by the leading order WKB solution ¥,. We note
that this approximation generally fails when the applicability
conditions of the WKB approximations are not satisfied, in
particular when [x3,x4] is small.

%) {1 — In(lw)} — %. (C23)
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