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Monolayer transition-metal dichalcogenides have recently become a playground for spintronics and
valleytronics research. Their low-energy spectrum can be described by Dirac cones on the corners of Brillouin
zone, but the physical properties are richer than those of graphene since the spin degeneracy is lifted and the optical
selection rules are valley dependent. This has been exploited for the optical injection of spin- and valley-polarized
currents by the application of static electric fields. In this paper we consider an all-optical method for the injection
of charge-, spin-, and valley-polarized currents. The presence of both a fundamental optical field and its second
harmonic can lead to the injection of currents due to a nonlinear effect involving the quantum interference
between one- and two-photon absorption processes. We analyze how the injected quantities can be controlled
through the parameters of the incident light fields, allowing capabilities of control beyond those achieved with
static fields, and discuss the conditions for experimental verification of our results.
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I. INTRODUCTION

The optoelectronic properties of two-dimensional materials
are often qualitatively different from those of their three-
dimensional counterparts. Novel fields of research that arise
from these differences, such as valleytronics [1], hold promise
for the development of new technologies. In addition, these
materials can be conspicuously integrated into heterostruc-
tures, as coatings for example, paving the way for their
application in integrated optical devices. An outstanding class
of two-dimensional materials are the monolayer transition-
metal dichalcogenides (TMD), which have recently been
shown to display several interesting electronic and optical
properties [2,3]. Their atomic structure consists of a hexagonal
lattice, and the low-energy spectrum is described by gapped
Dirac cones on the corners of the Brillouin zone. Due to strong
spin-orbit coupling and broken inversion symmetry, the spin
degeneracy is lifted in opposite ways in the two valleys, and the
optical selection rules are valley dependent [4,5]. Therefore,
according to the helicity of incident light, optically excited
carriers are valley polarized and, for low enough photon
energies, also spin polarized [6–8]. The injected carriers can
be then driven by an electric field, providing a valley and
spin polarized current [9–11]. Such currents have been the
subject of intensive research, with respect to both fundamental
questions and technological applications [2].

Even though some nonlinear optical properties of mono-
layer TMDs have been studied [12,13], the proposals for
current injection have so far focused on the application of static
fields. However, the need of a static applied electric field does
not allow for fast switching, and offers only limited control
of the currents. In order to better understand these materials,
it would be desirable to have an all-optical method for the
injection of currents, since it would allow for faster switching
and more refined control over the quantities of interest by
using, for example, the polarizations and phase parameters
of the incident fields. This would allow for a more detailed
analysis of optoelectronic properties of monolayer TMDs.

Effective all-optical injection of currents can be achieved
by coherent control. It makes use of both a fundamental

optical field and its second harmonic, which allows for optical
injection of currents by a nonlinear process involving quantum
interference between one- and two-photon absorption [14]. It
has been applied in several experimental scenarios involving
bulk and nanostructure semiconductors [14–19,28], it has been
predicted and seen in graphene [20–22], and experiments to
lead to its observation in topological insulators have recently
been proposed [23]. Here we study how it can be used for
the injection of polarized currents in monolayer TMDs. We
compute the optical injection rates of several quantities for
monolayer films of TMDs. The quantities considered are
carrier, spin, and valley polarization densities, as well as
charge, spin, and valley currents. We show how the polarization
and a relative phase parameter of the incident fields can be
used to control the optical generation of quasiparticles and
their currents on time scales set by the duration of laser pulses.

This article is organized in the following form: in Sec. II
we present the model for monolayer TMDs used for our
calculations. Section III contains an outline of the computation
for the optical injection rate coefficients corresponding to
carrier, spin, and valley densities, as well as charge, spin, and
valley currents. In Sec. IV we show the results obtained for
different polarizations and relative orientations of the incident
fields. The explicit expression for the injection rate coefficients
are shown in the Appendix A. We conclude with a discussion
about the experimental verification of our results in Sec. V.
Since the experimental techniques required to confirm our
results are well established, we expect that such experiments
will help advance the understanding and applications of
optically injected currents in monolayer TMDs.

II. MODEL FOR MONOLAYERS OF TRANSITION-METAL
DICHALCOGENIDES

The calculation of injection rates is performed using
Fermi’s golden rule in a method described earlier [23],
where general expressions were provided for a two-band
Hamiltonian. The main steps of the calculation are provided
in the next section. Here we focus on the particular model
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FIG. 1. (Color online) Bands at the two valleys with the absorp-
tion processes indicated. (a) τ = 1, and (b) τ = −1. Different colors
of the bands distinguish between spin (↑ green) and (↓ yellow). Note
that bands with the same energy have opposite spins on the two
different valleys.

used to describe monolayer TMDs. The main information
about the model necessary for carrying out the calculations
is the matrix elements of the velocity operator, since the
external perturbative Hamiltonian depends on it, as well as
the difference between the conduction and valence matrix
elements of the operators associated with the quantities that
are injected. However, the velocity operator is the only
nontrivial operator needed, as the operators corresponding to
the quantities we consider are related to it. So our goal in this
section is to obtain expressions for those matrix elements.

The simplest model for TMDs has a four-band Hamiltonian
with two valleys, totaling eight states for each small lattice
momentum k around the corners of the Brillouin zone. For
each valley, K (τ = +1) and K ′ (τ = −1), and each spin, ↑
(s = 1) and ↓ (s = −1), the model leads to a gapped Dirac
cone described by the matrix [4,5]

Hτs,k = �t(τkxσx + kyσy) + ��

2
σz + �λτs

2
(σ0 − σz), (1)

where � and λ are parameters with dimensions of frequency,
t is another parameter with dimension of velocity. The
parameters used in the calculations for the figures in this paper
correspond to those of MoS2 and are listed later in Table I, in
Sec. IV, where we show our results. For a given τ and s, (1)
the generic form of a two-band system Hamiltonian

Hk = ��kσ0 + �dk · σ , (2)

with

�k = λτs

2
,

dk = tτkx x̂ + tky ŷ + �τs ẑ, (3)

where �τs = (� − λτs)/2.
In agreement with earlier notation [23], the eigenenergies

for Eq. (2) are written as Ek± = �(�k ± dk) where dk =
|dk|, with (+) = c and (−) = v representing the conduction
and valence bands respectively; we also denote ωcv,k ≡
�

−1(Ek,c − Ek,v) = 2dk. The energy bands for each valley
are displayed in Fig. 1; notice the opposite spin splitting
for the two valleys. The Hamiltonian is diagonalized by the
unitary matrix Uk = exp(−i

φk
2 n̂k · σ ), with n̂k = ẑ × d̂ k/| ẑ ×

d̂ k| and cos φk = ẑ · d̂ k. In order to write arbitrary operators
in the basis of eigenstates, it is useful to consider the triad
	 = {n̂k,d̂ k,n̂k × d̂ k}, which forms an orthonormal basis.

Additionally, since it is known how the operators associated to
each vector in 	 are expressed in the basis of eigenstates,
an arbitrary operator ŵ · σ can be easily written in the
basis of eigenstates U

†
k(ŵ · σ )Uk by decomposing ŵ in the

triad 	.
The velocity operator va

k = �
−1∂kaHk plays a fundamental

role in the determination of optical properties. For a generic
two-band model described by the Hamiltonian (2), written in
the basis of eigenstates, va

k is given by

va
k = ∂ka�kσ0 + ∂kadkσz + dk(n̂k · ∂ka d̂ k)n̂k · σ

+ dk[(n̂k × d̂ k) · ∂ka d̂ k](n̂k × ẑ) · σ. (4)

As it will be clear in Sec. III, the specific matrix elements
necessary for the calculation of the injection rates are

va
cc − va

vv = 2∂kadk,

va
cvv

b
vc = d2

k[∂ka d̂ k · ∂kb d̂ k + i d̂ k · (∂ka d̂ k × ∂kb d̂ k)]. (5)

For the system under consideration, n̂k = 1
k
(−ky x̂ + τkx ŷ)

and dk = √
t2k2 + �2

τs , so

∂kbdk = t2kb

dk
,

∂kb d̂ k = t(τbx x̂ + by ŷ)

dk
− t2kbdk

d3
k

, (6)

and

∂ka d̂ k · ∂kb d̂ k = t2 â · b̂

d2
k

− 2t4kakb

d4
k

+ t4kakb

d4
k

= t2 â · b̂

d2
k

− t4kakb

d4
k

,

d̂ k · (∂ka d̂ k × ∂kb d̂ k) = t2τ dk · (â × b̂)

d3
k

= t2τ�τs ẑ · (â × b̂)

d3
k

,

(7)

which then gives

va
cc − va

vv = 2t2ka

dk
,

va
cvv

b
vc = t2

[
â · b̂ − t2kakb

d2
k

+ i
τ�τs ẑ · (â × b̂)

dk

]
. (8)

The last term in the expressions for va
cvv

b
vc is related to the

chirality χ of the Dirac cone

χτs = t−2d2
k d̂k · (∂kx d̂ k × ∂ky d̂ k)

∣∣
k=0 = τ

�τs

|�τs | , (9)

which is signaled by the opposite signs of the Berry cur-
vature of the corresponding valence (Fτs,v) and conduction
(Fτs,c = −Fτs,v) bands, which are

Fτs,v = 1

2
d̂ k · (∂kx d̂ k × ∂ky d̂ k) = τ

t2�τs

2
(
t2k2 + �2

τs

) 3
2

. (10)

Optical properties of the system contain information of the
Berry curvature and consequently the chirality of the excited
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states. Indeed, the chirality of the Dirac cone has a strong
effect on the optical selection rules for circularly polarized
light, which is absorbed only by Dirac cones with a chirality
that matches the helicity of the incident light. This is one of the
reasons why the optical properties of TMDs are so interesting,
as it will be seen in our results in Sec. IV.

Operators. The quantities of interest are the densities of
carriers 〈n〉, spin 〈Sz〉 and valley 〈τ 〉 polarizations, as well as
current densities of charge 〈J c〉, spin 〈J s〉, and valley 〈J τ 〉,
whose conduction and valence matrix elements are shown
below. We use the area density of all quantities, and in our
calculations the inverse of area dimension arises in the integrals
over the Brillouin zone necessary to obtain the expectation
values. Thus in this notation J c has units of charge ×
velocity while 〈J c〉 has units of charge × velocity/area, for
example.

We keep track of the injected carriers by computing the
density of electrons injected into the conduction band. For each
Dirac cone (labeled by the indices s and τ ), the corresponding
number operator has matrix elements ncc = 1 and nvv = 0,
for all the four Dirac cones. The operators corresponding to
polarizations of spin Sz = �

2 sσz and valley T = τσz have
matrix elements Sz

cc = �

2 s and Sz
vv = −�

2 s, and τcc = τ and
τvv = −τ , for each Dirac cone.

The operators corresponding to currents of charge J c = ev,
spin J s = �

2 sv, and valley J τ = τv, are expressed in terms of
the velocity operator v.

Summarizing, we have

ncc − nvv = 1,

Sz
cc − Sz

vv = �s, (11)

τcc − τvv = 2τ,

for carriers number, spin, and valley, and

J c
cc − J c

vv = e(vcc − vvv),

J s
cc − J s

vv = �

2
s(vcc − vvv), (12)

J τ
cc − J τ

vv = τ (vcc − vvv),

for the charge, spin, and valley currents.

III. OPTICAL INJECTION RATES

As mentioned before, the calculation for the injection rates
is carried out using Fermi’s golden rule, since it makes evident

all the contributions stemming from one- and two-photon
processes and their interference; this is a feature not shared
by the Kubo formalism, for instance. The general formulation
has been already well explained in previous studies [14,23],
so we only show the information that is specific for monolayer
TMDs.

The incident light is described by the electric field E(t) =∑
n E(ωn)e−iωnt , with ωn = ±ω, ± 2ω. It corresponds to

the interaction Hamiltonian Vext = ie
∑

n v · E(ωn)e−iωnt /ωn,
which is treated perturbatively within the Fermi’s golden rule
formalism; e = −|e| is the electron charge. The injection rate
will have a first-order term proportional to V 2

ext , a second
-order one proportional to V 4

ext , and so on. There will also
be an interference term between the first and second order,
which is proportional to V 3

ext . The injection rate for the
density 〈M〉 of a quantity associated with a single-particle
operator M = ∑

k a
†
α,kMαβ,kaβ,k, where α and β are band

indices. 〈M〉 can be decomposed into contributions from
one- and two-photon absorption processes together with their
interference term, 〈Ṁ〉 = 〈Ṁ1〉 + 〈Ṁ2〉 + 〈Ṁi〉 where

〈Ṁ1〉 =
∑
n=1,2

�bc
1 (nω)Eb(−nω)Ec(nω),

〈Ṁ2〉 = �bcde
2 (ω)Eb(−ω)Ec(−ω)Ed (ω)Ee(ω), (13)

〈Ṁi〉 = �bcd
i (ω)Eb(−ω)Ec(−ω)Ed (2ω) + cc.

The optical injection coefficients � associated with M are
obtained from integrals over the Brillouin zone; if k is
represented in polar coordinates, the integral over the radial
component enforces the energy matching condition (ωcv = ω

or ωcv = 2ω), and only the angular integral remains [23],

�bc
1 (ω) =

∫
dθ

2π

dk(Mcc,k − Mvv,k)�bc
1,cv(k,ω)

2t2

∣∣∣∣
dk= ω

2

,

�bcde
2 (ω) =

∫
dθ

2π

dk(Mcc,k − Mvv,k)�bcde
2,cv (k,ω)

2t2

∣∣∣∣
dk=ω

,

�bcd
i (ω) =

∫
dθ

2π

dk(Mcc,k − Mvv,k)�bcd
i,cv(k,ω)

2t2

∣∣∣∣
dk=ω

,

(14)

where

�bc
1,cv(k,ω) = e2vc

cvv
b
vc

�2ω2
,

�bcde
2,cv (k,ω) = e4t4

�4ω6

[
kckevd

cvv
b
vc + kckdve

cvv
b
vc + kbkevd

cvv
c
vc + kbkdve

cvv
c
vc

d2
k

]
,

�bcd
i,cv(k,ω) = ie3t2

2�3ω4

[
kcvd

cvv
b
vc + kbvd

cvv
c
vc

dk

]
, (15)

and the integrals are over the circle in the Brillouin zone set by the energy matching condition ωcv = ω or ωcv = 2ω.
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Optical injection coefficients. We now look at the injection
coefficients �N (N = 1,2,i) associated with the injection
densities 〈M〉 for our quantities of interest. For the densities
of carriers 〈n〉, spin 〈Sz〉, and valley 〈τ 〉, we denote the optical
injection coefficients by ξN , ζN and ϑN respectively, while for
the densities of their corresponding currents of charge 〈J c〉,
spin 〈J s〉, and valley 〈J τ 〉, we denote the optical injection
coefficients by ηN , μN , and νN .

The expressions for the various optical injection coefficients
are sums over the contributions from each of the four Dirac
cones. After the integrals in Eq. (14) are evaluated with

the use of Eq. (8), we find three independent terms,
namely ξbc

1,τ s , ξbcde
2,τ s , and ηabcd

i,τ s , which are associated with
carrier density and the charge current density respectively.
They can be broken down into their chiral and nonchiral
parts as

ξbc
1,τ s(ω) = ξ̄ bc

1,τ s(ω) + iτ ξ̃ bc
1,τ s(ω),

ξ bcde
2,τ s (ω) = ξ̄ bcde

2,τ s (ω) + iτ ξ̃ bcde
2,τ s (ω), (16)

ηabcd
i,τ s (ω) = η̄abcd

i,τ s (ω) + iτ η̃abcd
i,τ s (ω),

where

ξ̄ bc
1,τ s(ω) = � (ω − 2�τs) e2

2�2ω

(
1 + 4�2

τs

ω2

)
b̂ · ĉ

4
,

ξ̄ bcde
2,τ s (ω) = � (ω − �τs) e4t2

�4ω5

(
1 − �2

τs

ω2

) [(
1 + �2

τs

ω2

)
(b̂ · d̂)ĉ · ê + (b̂ · ê)ĉ · d̂

4
−

(
1 − �2

τs

ω2

)
(b̂ · ĉ)d̂ · ê

4

]
,

η̄abcd
i,τ s (ω) = i� (ω − �τs) e4t2

2�3ω3

(
1 − �2

τs

ω2

) [(
1 + �2

τs

ω2

)
(â · b̂)ĉ · d̂ + (â · ĉ)b̂ · d̂

4
−

(
1 − �2

τs

ω2

)
(â · d̂)b̂ · ĉ

4

]
, (17)

and

ξ̃ bc
1,τ s(ω) = � (ω − 2�τs) e2

2�2ω

[
−�τs ẑ · (b̂ × ĉ)

ω

]
,

ξ̃ bcde
2,τ s (ω) = � (ω − �τs) e4t2

�4ω5

(
1 − �2

τs

ω2

)
�τs

ω

[
ĉ · ê(d̂ × b̂) · ẑ + b̂ · ê(d̂ × ĉ) · ẑ + ĉ · d̂(ê × b̂) · ẑ + d̂ · b̂(ê × ĉ) · ẑ

4

]
,

η̃abcd
i,τ s (ω) = i� (ω − �τs) e4t2

2�3ω3

(
1 − �2

τs

ω2

)
�τs

ω

[
â · ĉ(d̂ × b̂) · ẑ + â · b̂(d̂ × ĉ) · ẑ

2

]
. (18)

The coefficients with a tilde (˜) are chiral and related to the
Berry curvature (10), while those with a bar (̄) are not. The
expressions contain a step function, �(x) = 0,1 as x < , > 0,
reflecting the energy matching conditions for the photon
absorption processes, which are restricted by the band gap.
Notice also that, as the frequency is increased, ξbc

1,τ s has a
discontinuity at the frequency matching the band gap, unlike
ξbcde

2,τ s and ηabcd
i,τ s , which increase starting from zero at the same

frequency, this is illustrated in the plots of Fig. 2. This is
a general distinctive feature between one- and two-photon
absorption processes, which can be seen from the optical
absorption coefficients in Eq. (15); while �bc

1,cv is finite for
k = 0 (the points in the Brillouin zone corresponding to the
minimal energy excitation across the band gap), �bcde

2,cv and �bcd
i,cv

vanish at k = 0.
The other coefficients can be obtained from these by

ζτs(ω) = �sξτs(ω),

ϑτs(ω) = 2τξτs(ω),
(19)

μτs(ω) = �s

2e
ητs(ω),

ντs(ω) = τ

e
ητs(ω),

where here and below we omit the indices indicating absorp-
tion process and Cartesian components. The results above
are for one Dirac cone only; in order to find total injected
quantities it is necessary to sum the contributions from the
four Dirac cones, with the following results for the optical
injection coefficients

ξ (ω) = 2[ξ̄++(ω) + ξ̄+−(ω)],

ζ (ω) = 2�i[ξ̃++(ω) − ξ̃+−(ω)], (20)

ϑ(ω) = 4i[ξ̃++(ω) + ξ̃+−(ω)],

and

η(ω) = 2[η̄++(ω) + η̄+−(ω)],

μ(ω) = �i

e
[η̃++(ω) − η̃+−(ω)], (21)

ν(ω) = 2i

e
[η̃++(ω) + η̃+−(ω)].

We next analyze these results for different polarizations.

IV. RESULTS

For the system we are considering, one- and two-photon
absorption processes inject scalar quantities while interference
processes inject vectorial ones, so carriers, spin, and valley
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FIG. 2. (Color online) Injection rates for (a) carrier, (b) spin, and (c) valley densities. Blue lines correspond to one-photon absorption
processes, red ones to two-photon processes, and green lines correspond to their sum.

densities are injected by one- and two-photon absorption
processes, but not from the interference between them.
Conversely, charge, spin, and valley currents are injected
solely from the interference processes, not from the one- and
two-photon absorption processes.

Also, the optical selection rules depend on the polarization
of the incident field: while linearly polarized light couples to
electrons in both valleys, circularly polarized light couples to
electrons in only one valley, according to its helicity. This
results in different scenarios for the injection of spin- and
valley-polarized currents according to the polarization of the
incident fields. Therefore we list our results below in separate
subsections for different polarizations.

Finally, for any quantity considered, there will always be
three distinctive frequency ranges: ω < �++, where there is
no photon absorption and no optical injection; �++ < ω <

�+−, where there is photon absorption involving only the
upper valence band, but not the lower; and �+− < ω, where
there is photon absorption involving both valence bands. The
contributions of the two valence bands to the injection of
spin density and spin current density have opposite signs,
while their contribution to carrier and valley densities along
with charge and valley current densities have equal signs.
Therefore the injection of quantities associated with spin will
be enhanced in the second frequency range, while the injection
of quantities associated to charge and valley will be larger in
the third range.

In the remainder of this section we display our results
for different polarizations of the incident fields. The list of
coefficients used in the expressions for the injection rates can
be found in the Appendix A, while Figs. 2 and 3 contain plots
of the injection rates for the quantities of interest, calculated
for MoS2 with the parameters [4] of Table I.

We consider field amplitudes of Eω = 4.1 × 105 V
m

for the
fundamental and E2ω = 100V

m
for the second harmonic, which

are indicative of the largest field intensities allowed within a
simple estimate of the validity the perturbative regime. The
values chosen for Eω and E2ω differ from each other by

TABLE I. Values of the parameters used for the plots.

�t �λ �� Eω E2ω

3.5 Å eV 0.15 eV 1.7 eV 4.1 × 105 V

m
100 V

m

orders of magnitude because they are associated with two-
and one-photon absorption processes, respectively, and since
photon absorption can be treated perturbatively for the sets of
frequencies and intensities considered here, it is expected that a
higher-order term requires a much higher intensity to produce
similar results, which is necessary for optimal interference.
These values depend on the expressions for the injected carrier
density, so we explain how they are obtained in Sec. V.

A. Circular polarizations

For circular polarizations E(ω) = Eωeiθ1 p̂h1
and E(2ω) =

E2ωeiθ2 p̂h2
where h1,h2 = ±1 are the helicities of the light

fields propagating along the ẑ direction, and p̂± = (x̂ ±
i ŷ)/

√
2, so p̂h · p̂h = 0 and p̂+ · p̂− = 1 as well as p̂− ×

p̂+ = i ẑ; both Eω and E2ω are real and positive.
The injection rates for densities are given by

〈ṅ〉 = ξ̄−+
1 (2ω)E2

2ω + ξ̄−−++
2 (ω)E4

ω,

〈Ṡz〉 = h2ζ̃
−+
1 (2ω)E2

2ω + h1ζ̃
−−++
2 (ω)E4

ω, (22)

〈τ̇ 〉 = h2ϑ̃
−+
1 (2ω)E2

2ω + h1ϑ̃
−−++
2 (ω)E4

ω.

The two contributing terms, along with their final sum, are
plotted in Fig. 2 for each quantity.

The one-photon injection rate has two discontinuities at
ω = �++ and ω = �+−, as the band gaps of the Dirac cones
corresponding to the two spins are reached. This is due to
the Van Hove singularity of the density of states at energies
matching the band gaps. The injection rates then decay for
higher frequencies even though the density of states increases
with the energy. This is due to the extra frequency factors in the
denominator of the interaction Hamiltonian. The two-photon
injection rates depend on the diagonal matrix elements of the
velocity operator, which vanish at the points of the Brillouin
zone with energy difference equal to the band gap. Therefore
the two-photon injection rates increase continuously from zero
as the frequency crosses the band gaps.

As mentioned before, circularly polarized light couples
to only one valley, so the injected carriers are fully valley
polarized. For �++ < ω < �+−, the carriers are also fully
spin polarized, as only electrons from one valence band are
excited. But for ω > �+− electrons from both valence bands
are excited, and the net spin polarization is small. This is
illustrated in Fig. 2. While for carriers [Fig. 2(a)], and valley
polarization [Fig. 2(c)], the spikes at frequencies matching the
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FIG. 3. (Color online) Injection rates for current densities of (a) charge, (b) spin, and (c) valley. Each line corresponds to a different choice
of polarizations of the incident fields as indicated in the legends.

band gaps add constructively, for spin polarization [Fig. 2(b)],
they nearly cancel out. The orientation of the spin and valley
polarizations are set by the helicities of the incident fields,
which determines the valley that is being coupled to the
incident field.

Equal helicities. The interference process depends on the
relative helicities of the two light fields, with contributions
to the injected current densities only when the helicities are
equal, E(ω) = Eωeiθ1 p̂h and E(2ω) = E2ωeiθ2 p̂h.

The charge current injection rate is given by

〈 J̇
c〉 =

√
2[x̂ sin(�θ ) + ŷ cos(�θ )]iη̄+−−+

i (ω)E2
ωE2ω,

(23)

where �θ = θ2 − 2θ1 is the relative phase parameter, and the
injection rates for spin and valley currents are

〈 J̇
s〉 =

√
2h[x̂ sin(�θ ) + ŷ cos(�θ )]iμ̃+−−+

i (ω)E2
ωE2ω,

〈 J̇
τ 〉 =

√
2h[x̂ sin(�θ ) + ŷ cos(�θ )]iν̃+−−+

i (ω)E2
ωE2ω.

(24)

These expressions are illustrated in Fig. 3. The currents do not
increase sharply as the band gaps are reached because the ve-
locity of carriers at the bottom of the conduction bands vanish.

The injected current densities of spin and valley are due to
the fact that the carriers are polarized, and have the same char-
acteristics as the injected charge current density. As discussed
for the injection of the spin density, the spin polarization is
greatly diminished for higher frequencies, and the injected spin
current density also follows this trend as shown in Fig. 3(b).

All the currents are injected along the same direction, which
can be controlled by the relative phase between the light fields.
The spin and valley density injection rates depend directly on
the Berry curvature (10), while the carrier density injection
is independent of it. The orientation of the spin and valley
currents are set by the helicity of the incident fields, which has
to match the chirality of the Dirac cone.

Opposite helicities. When the light fields have different
helicities, the injection rates from interference vanish for all
the current densities of interest.

B. Linear polarizations

The one- and two-photon injection processes do not
depend on the relative orientation of the fundamental E(ω) =

Eωeiθ1 êω and second harmonic E(2ω) = E2ωeiθ2 ê2ω fields,
where Eω and E2ω > 0 are real, as are êω and ê2ω. Therefore
we show here the results for the injection coefficients �1 and
�2, while the results for �i are displayed for the special cases
of parallel and perpendicular polarizations.

The carrier density injection rate is given by

〈ṅ〉 = ξ̄ xx
1 (2ω)E2

2ω + ξ̄ xxxx
2 (ω)E4

ω. (25)

When plotted as a function of frequency, the two contributing
terms, along with the final sum, have a shape similar to the
corresponding curves for circular polarizations, which are
plotted in Fig. 2(a).

Linearly polarized light couples to both valleys, which
results in an injected carrier density only. It neither injects spin-
nor valley-polarization densities, because the contributions to
these quantities from the two valleys cancel each other.

The one- and two-photon injection rates of the current
densities vanish 〈 J̇

c,s,τ

1 〉 = 〈 J̇
c,s,τ

2 〉 = 0. These currents are
injected only through the interference process, and we discuss
the results for J for different polarization orientations of the
incident light below 〈 J̇

c,s,τ

i 〉.
Parallel orientations. Only the interference process de-

pends on the relative orientation of E(ω) = Eωeiθ1 êω and
E(2ω) = E2ωeiθ2 êω.

The charge current density injection rate is given by

〈 J̇
c〉 = 2êωiη̄xxxx

i (ω) sin(�θ )E2
ωE2ω, (26)

which is plotted in Fig. 3(a); the relative phase parameter is
again �θ = θ2 − 2θ1. It increases from zero once excitations
from the higher valence band are possible (ω > �++), and has
a second contribution for excitations from the lower valence
band at higher frequencies (ω > �+−).

When the incident fields are linearly polarized in the same
direction, the excited carriers move in the same direction in
both valleys, which corresponds to a charge current that is
neither spin nor valley polarized.

The direction of the polarization vector provides control of
the angle of the injected charge current, while the relative phase
parameter of the light beams can control only their magnitude
and orientation.

Perpendicular orientations. Here we have E(ω) =
Eωeiθ1 êω and E(2ω) = E2ωeiθ2 ê2ω, and we take ê2ω = ẑ × êω.
The relative phase parameter is again �θ = θ2 − 2θ1.
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The charge current injection rate is given by

〈 J̇
c〉 = 2ê2ωiη̄

yxxy

i (ω) sin(�θ )E2
ωE2ω, (27)

where �θ = θ2 − 2θ1 is the relative phase parameter, and the
injection rates for spin and valley current densities are

〈 J̇
s〉 = 2êωμ̃

xxxy

i (ω) cos(�θ )E2
ωE2ω,

(28)
〈 J̇

τ 〉 = 2êων̃
xxxy

i (ω) cos(�θ )E2
ωE2ω,

which are plotted in Fig. 3. Again the spin polarization is
greatly suppressed for higher frequencies (ω > �+−), because
the valence bands in each valley have opposite spin.

When the incident fields are linearly polarized in
perpendicular directions, the contributions from the two
valleys are combined according to the phase parameter �θ .
Therefore, for some values of �θ , the carriers in both valleys
will move in the same direction, which amounts to a charge
current and no spin or valley currents. For other values of �θ ,
the carriers in different valleys will have opposite direction,
which leads to no charge current density, but finite spin and
valley current densities.

The control scenario here is unique: the charge current is
injected along the direction of the second harmonic field, while
the spin and valley currents are injected along the direction
of the fundamental field. The relative phase parameter �θ

can control their magnitude, with the remarkable ability to
switch between charge current or spin and valley currents
perpendicular to it.

V. DISCUSSION

The validity of our calculations for the optical injection
rates depends on the validity of the perturbative regime, which
requires that the fraction of the injected carrier population
relative to the total number of states in the range of energies
covered by the laser pulse be small [23]. The duration of the
pulse T sets the frequency broadening of the laser �ω =
2π
T , which in turn—via the dispersion relation—determines

the area a of the Brillouin zone that can be populated by
carriers, a = 2πk�k. The momentum width �k is set by the
dispersion relation and is proportional to �ω. The number of
states available in this area of the Brillouin zone is a/a1, where
a1 = (2π)2

L2 is the area occupied by one state. If we restrict the
maximum amplitudes of the laser fields by the condition that
the number of injected carriers with additional energy 2�ω is
at most 5% of the total number of carrier states in the allowed
energy range, we require

(
ξ̄−+

1 (2ω)E2
2ω + ξ̄−−++

2 (ω)E4
ω

)
T L2 < 0.05

a

a1
. (29)

We then estimate the amplitudes by imposing the addi-
tional condition ξ̄−+

1 (2ω)E2
2ω = ξ̄−−++

2 (ω)E4
ω, which gives

optimal interference between the absorption processes [14].
For pulses lasting 1ns with a frequency corresponding to
�ω = 0.9eV , the field amplitudes found are Eω = 4.1 · 105 V

m

for the fundamental and E2ω = 100V
m

for the second harmonic,
which correspond to laser intensities of 22 kW

cm2 and 1.3mW
cm2 ,

respectively. As mentioned before, the values of Eω and E2ω

corresponding to optimal interference differ from each other
by orders of magnitude because they are associated with two-
and one-photon absorption processes respectively, and in the
perturbative analysis, it is expected that a higher-order term
requires a much higher intensity to produce similar results.
We use the above values of Eω and E2ω for all �ω in Figs. 2
and 3, despite the fact that with these values (29) is only
satisfied for �ω ≥ 0.9eV ; but of course the violation is not
too large for frequencies �ω ∼ 0.8eV . Equation (29) can be
used to determine the appropriate field amplitudes for other
frequencies and time duration of the laser pulses. Relaxation
of the injected carriers was not included in the estimation of the
validity of the perturbative regime. If it were included it would
reduce any Pauli blocking, and hence lead to the prediction
that larger pulse intensities or durations could still be treated
perturbatively.

Although the detection of the spin- or valley-polarized
current is difficult, it can be done by pump-probe experiments
[24,25] with circularly polarized light. This would allow
for measuring the separation between the two components
of spin or valley after the current is injected. Experiments
using an analogous technique have already been performed
for monolayer TMDs [26,27].

Corrections to the injection rate coefficients due to the
electron-hole interaction lead to a shift δ in the phase parameter
�θ , which becomes �θ = θ2 − 2θ1 + δ. For semiconductors,
this shift is too small to be easily detected [28]. However, since
calculations for exciton binding energies [29] indicate that
monolayer TMDs have a stronger electron-hole interaction, it
is reasonable to expect a considerable shift δ for them. This
phase shift can be measured by simply varying the relative
phases of the incident fields, and measuring the phases that
lead to the maximum injection rates since they are proportional
to either sin(�θ ) or cos(�θ ). Hence the experiments we are
suggesting here could serve as a probe of the electron-hole
interactions in these materials.

VI. CONCLUSION

We perturbatively computed the optical injection rates of
charge, spin, and valley densities and currents in monolayer
TMDs, for an incident optical field in addition to its second
harmonic. We verified that the interference of one- and
two-photon absorption processes allows for the injection of
currents, resulting in an all-optical method for current injection
that can be fast switched. We also discussed how the relative
phase parameter between the two incident fields, as well as
their polarization, can be used to control the injected currents,
allowing for a more refined analysis than the ones obtained
with DC fields. Additionally, we estimated the validity of
our calculations and discussed the prospects of experimental
verification of our results.

Finally, we emphasize the advantage of the all-optical
method in studying and controlling the injected currents. In all-
optical injection the carriers are injected in specific locations of
the Brillouin zone, while static fields only slightly unbalance
the distribution of carriers. This difference can be used to study
the scattering rate of carriers in specific regions of the Brillouin
zone in a direct way. It can be also used for more refined control
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of the injected quantities. The results of our calculations show
that it is possible to control the direction and intensity of the
injected currents by simply changing the relative phase of the
fields, which can be achieved in a time scale limited only by
the duration of the pulses used. This is perhaps more dramatic
when the perpendicular linear polarizations are considered. In
this case, the phase parameter �θ allows us to select between
charge currents or perpendicular spin and valley currents.
A similar effect usually occurs when DC fields are used for
photocurrent injection [3], where a charge current is converted
into perpendicular spin and valley currents, due to the opposite
Berry curvature in the two valleys. But in that process it is not
possible to control the currents, or fast switch between the
two cases, in contrast to the all-optical method considered in
this paper. We therefore expect that our results will be helpful
for understanding the details of these promising materials,
and clarifying their potential to implement ultrafast optical
switching.
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APPENDIX: OPTICAL INJECTION COEFFICIENTS
FOR LINEAR AND CIRCULAR POLARIZATIONS

The coefficients used for one- and two-photon absorption
processes, obtained from Eq. (14), are

ξ̄ xx
1,τ s(ω)= � (ω − 2�τs) e2

8�2ω

(
1 + 4�2

τs

ω2

)
,

ξ̄ xxxx
2,τ s (ω) = � (ω − �τs) e4t2

4�4ω5

(
1− �2

τs

ω2

) (
1+ 3�2

τs

ω2

)
,

(A1)

and for linear polarization.

For circular polarization we have

ξ̄−+
1,τ s(ω) = � (ω − 2�τs) e2

8�2ω

(
1 + 4�2

τs

ω2

)
,

ξ̄−−++
2,τ s (ω) = � (ω − �τs) e4t2

2�4ω5

(
1 − �2

τs

ω2

) (
1 + �2

τs

ω2

)
,

(A2)

and

ξ̃−+
1,τ s(ω) = −i� (ω − 2�τs) e2

2�2ω

(
�τs

ω

)
,

ξ̃−−++
2,τ s (ω) = −i� (ω − �τs) e4t2

�4ω5

(
1 − �2

τs

ω2

)
�τs

ω
.

(A3)

The interference coefficients for linear polarizations are

η̄xxxx
i,τ s (ω) = i� (ω − �τs) e4t2

8�3ω3

(
1 − �2

τs

ω2

)(
1 + 3�2

τs

ω2

)
,

η̄
yxxy

i,τ s (ω) = −i� (ω − �τs) e4t2

8�3ω3

(
1 − �2

τs

ω2

)2

(A4)

and

η̃
xxxy

i,τ s (ω) = −i�(ω − �τs)e4t2

2�3ω3

(
1 − �2

τs

ω2

)
�τs

ω
,

(A5)

while for circular polarizations the coefficients are

η̄+−−+
i,τ s (ω) = i� (ω − �τs) e4t2

4�3ω3

(
1 − �2

τs

ω2

) (
1 + �2

τs

ω2

)
,

η̃+−−+
i,τ s (ω) = � (ω − �τs) e4t2

2�3ω3

(
1 − �2

τs

ω2

)
�τs

ω
. (A6)

The other injection rate coefficients are obtained from the ones
above.
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